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Cortical and subcortical signatures of conscious
object recognition
Max Levinson 1,5, Ella Podvalny1,5, Steven H. Baete 2 & Biyu J. He 1,2,3,4✉

The neural mechanisms underlying conscious recognition remain unclear, particularly

the roles played by the prefrontal cortex, deactivated brain areas and subcortical regions.

We investigated neural activity during conscious object recognition using 7 Tesla fMRI while

human participants viewed object images presented at liminal contrasts. Here, we show both

recognized and unrecognized images recruit widely distributed cortical and subcortical

regions; however, recognized images elicit enhanced activation of visual, frontoparietal, and

subcortical networks and stronger deactivation of the default-mode network. For recognized

images, object category information can be decoded from all of the involved cortical networks

but not from subcortical regions. Phase-scrambled images trigger strong involvement of

inferior frontal junction, anterior cingulate cortex and default-mode network, implicating

these regions in inferential processing under increased uncertainty. Our results indicate that

content-specific activity in both activated and deactivated cortical networks and non-content-

specific subcortical activity support conscious recognition.
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The neural mechanisms of conscious perception remain a
lasting mystery in neuroscience1,2. Despite intense research,
there is currently no general consensus on the brain regions

involved in supporting the content of conscious experience. Several
leading theories make different, experimentally testable predictions
about neural activity underlying conscious perception as compared
to unconscious processing. Recurrent Processing Theory (RPT)3

suggests that conscious perception results from recurrent neural
activity that both encodes and integrates features of the stimulus
perceived. According to RPT, such recurrent processes can be
implemented by sensory pathways alone, such as the connections
within and between early and high-order visual cortices. Informa-
tion Integration Theory (IIT)4 argues for differentiated, yet inte-
grated, information as a hallmark of conscious experience and
proposes a ‘posterior hot zone’ including occipitotemporal sensory
areas and parietal cortex as the content-specific neural correlate of
conscious perception. By contrast, Global Neuronal Workspace
(GNW)5 theory predicts that encoding of stimulus content in
posterior sensory pathways alone cannot generate conscious
experience: additional propagation of stimulus content information
across a highly interconnected large-scale brain network composed
of frontal and parietal areas is necessary.

All theories agree that neural activity encoding stimulus content
in sensory areas is a prerequisite for conscious experience in
humans—a claim that is supported by abundant experimental
evidence6–8. The divergence between theories centers around
whether large-scale broadcasting of stimulus content beyond sen-
sory networks is involved5. The experimental evidence supporting
this key prediction of the GNW theory, however, is scarce. Most
evidence supporting GNW was obtained by contrasting neural
responses between ‘seen’ and ‘unseen’ trials9–11 or between hit/
false-alarm and miss/correct-rejection trials12, but see13. While
such evidence is valuable, it is insufficient to support the hypo-
thesized content-specific broadcast. Recent studies investigated the
neural correlates of conscious content using multivariate pattern
decoding applied to magnetoencephalography (MEG) data14,15,
but this technique cannot definitively discern the neuroanatomical
origins of decoded information16.

Surprisingly, none of these leading theories of consciousness
make specific predictions concerning several brain structures key
to information flow. First, the default-mode network (DMN) is a
hub of corticocortical communication17,18 and anchors one end
of the large-scale cortical gradient, situated opposite to primary
sensory areas19. The DMN has so far been overlooked in studies
of perception, primarily because it typically deactivates during
externally driven sensory tasks20. However, recent findings show
that its activity patterns during deactivation in fact contain
information about the content of visual perception21,22. Studies of
perceptual processing in the DMN remain sparse, and it is cur-
rently unknown whether the DMN is involved in conscious
recognition. Second, subcortical structures including basal
ganglia23,24, thalamus25 and brainstem26,27 contribute to large-
scale cortical communication and influence sensory processing
and perceptual decision-making. While it is well established that
thalamus and brainstem regulate arousal and enable conscious
wakefulness28–31, the precise role that these regions play in
conscious perception, within the wakeful state, remains poorly
understood5,32.

The choice of stimuli and task paradigm may introduce
another source of variability when interpreting studies of con-
scious perception. Everyday perceptual tasks involve recognizing
and interacting with objects and scenes. By contrast, visual con-
sciousness research often resorts to low-level visual stimuli, such
as Gabor patches, for enhanced experimental control. Awareness
of low-level features (e.g., luminance changes) can contribute to
unconscious processing of high-level visual information (e.g., a

face)33, but conscious perception of a high-level object is not
reducible to conscious perception of low-level features and may
involve additional/different mechanisms. Furthermore, the choice
of technique to render the stimulus invisible can influence
observed neural activity. For example, the majority of previous
studies on liminal object recognition have used visual masking to
reduce stimulus visibility9–11,34–36. This approach may result in
nonlinear interactions between object processing and mask pro-
cessing, complicating interpretation of results. In addition, the
mask may render the stimulus invisible by disrupting its pro-
cessing at an early stage37, which may prevent the propagation of
activity across large-scale brain networks that occurs in more
natural scenarios.

Here we shed light on the neural mechanisms underlying con-
scious object recognition across large-scale cortical and subcortical
networks. We recorded whole-brain blood-oxygen-level-dependent
(BOLD) activity using high-field (7 Tesla) functional magnetic
resonance imaging (fMRI) while subjects performed a liminal object
recognition task. Our findings reveal content-specific neural activity
underlying conscious object recognition across both activated and
deactivated cortical networks, together with non-content-specific
activity in subcortical regions that facilitates conscious recognition.
They point to a broader view of the neural correlates of conscious
perception than suggested by existing theories, and underline the
need to better understand the roles of default-mode network and
subcortical regions.

Results
Paradigm and behavior. To identify neural mechanisms under-
lying conscious object recognition, we designed an experimental
paradigm wherein object stimuli are presented at a liminal
contrast38. We operationalized “recognition” by instructing sub-
jects to report whether they saw an object. Subjects were
instructed to respond “yes” whenever they saw an object, even if
the visibility was unclear, and respond “no” when they saw
nothing or low-level features only, such as lines or cloud-like
abstract patterns. This definition of subjective recognition,
allowing unrecognized trials to include conscious perception of
low-level features, is consistent with prior studies of conscious
object recognition34–36. To identify the liminal image contrast, we
conducted an adaptive staircase procedure whereby the contrast
of each image was titrated (see Fig. 1a, b and Methods) to reach a
~50% subjective recognition rate across identical trials for each
participant. The present paradigm is analogous to threshold-level
visual detection tasks using low-level stimuli39–41, but with
important differences in stimulus type (e.g., Gabor patches vs.
objects) and the definition of threshold (visibility of any stimulus
feature vs. object recognition).

Experimental stimuli included four common visual object
categories: faces, animals, houses and manmade objects (Fig. 1c).
In each trial, participants reported the category (four-alternative
choice discrimination) of the presented image and their
recognition experience (Fig. 1d). If the image was not recognized,
they were instructed to make a genuine guess about its category.
The stimuli set included real and scrambled images. Scrambled
images were created by phase-shuffling a randomly chosen real
image from each category to preserve category-specific low-level
image features but destroy any meaningful content (see
Methods), and were presented at the same contrast as their real
object counterparts. The stimuli were presented in a randomized
order to prevent category predictability.

Participants reported 48.0 ± 2.6% (mean ± s.e.m., N= 25) of
real images as recognized (i.e., % of “yes” reports), which did
not differ from the intended recognition rate of 50% (Fig. 1f,
Wilcoxon signed-rank test, W= 126.5, p= 0.33). We computed
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every subject’s recognition rates for each individual object
image (Supplementary Fig. 1a). Subjects recognized the
majority of object images at a rate of 46.8 ± 4.7% (mean ± s.e.
m. of the mode, where each subject’s mode is the center of their
tallest histogram bin shown in Supplementary Fig. 1a), con-
firming success of our staircase procedure on the single-subject
level. The recognition rate of scrambled images was 28.0 ± 3.1%,
significantly below the recognition rate of real images (Fig. 1f,
Wilcoxon signed-rank test, W= 315.0, p= 4.1 × 10−5) and
significantly above zero (Wilcoxon signed-rank test, one-
sided, W= 325.0, p= 6.12 × 10−6). Because participants were
instructed to report recognition only if they perceived an object,
“yes” reports to scrambled (noise) images constitute false
alarms in a signal detection framework38.

We next characterized categorization behavior in recognized and
unrecognized trials. Categorization accuracy of real object images
was 78.8 ± 2.2% for recognized images and 32.0 ± 1.9% for
unrecognized images. Recognized images produced a significantly
higher categorization accuracy than unrecognized images (W=
325.0, p= 1.2×10−5, N= 25, Wilcoxon signed-rank test, Fig. 1g).
Categorization accuracy for unrecognized images was still sig-
nificantly above the chance level of 25% (W= 251.0, p= 3.9×10−3,
N= 25, Wilcoxon signed-rank test, Fig. 1g), suggesting that stimuli
that failed to be consciously recognized were processed uncon-
sciously to the point of influencing categorization behavior,
consistent with earlier studies42. Category-specific categorization

behavior is shown in Supplementary Fig. 1b. This pattern of
behavioral results is fully consistent with a previous study using the
same paradigm carried out at a faster pace38.

Interestingly, subjects’ categorization behavior in scrambled
image trials followed a similar pattern (Fig. 1g): categorization
accuracy (assessed by whether the reported category corresponds
to the category of the original image from which the scrambled
image was generated) was 61.7 ± 2.8% for recognized images and
27.7 ± 2.2% for unrecognized images, which was significantly
above chance only for recognized images (Wilcoxon signed-rank
test, W= 253.0, p= 3.95 × 10−5 and W= 159.0, p= 0.29,
respectively). Categorization accuracy was also significantly
higher for recognized than unrecognized scrambled images (only
participants with more than 5 scrambled images in each group
were included, N= 22, Wilcoxon signed-rank test, W= 231.0,
p= 5.96 × 10−5). These results are consistent with evidence
suggesting that category-specific low-level image features, which
are preserved in phase-scrambled images, contribute to categor-
ization behavior43. Because “Yes” reports to scrambled images
were accompanied by higher categorization accuracy than “No”
reports, these false-alarm reports likely reflect genuine false
perception as opposed to button press mistakes.

Lastly, we tested for any change in perceptual behavior across
task blocks. Recognition rate and categorization accuracy did
not change significantly over the course of the experiment
(Supplementary Fig. 1b, c, one-way repeated-measures ANOVA,

Fig. 1 Experimental paradigm and behavior. a A schematic timeline of experimental sessions conducted across two days. b Example of an object image
presented at various levels of contrast. c Examples of real and scrambled object images from four categories. d Trial structure of the main object
recognition task. Following a central fixation period, participants viewed a brief stimulus presented at an individually-calibrated recognition threshold
contrast. Next, participants reported the stimulus category and their recognition experience. e Illustration of trial types. Each participant may report the
same stimulus (top) as recognized in one trial and as not recognized in another. f Percentage of trials reported as recognized for real and scrambled images
(N = 25). Dashed line indicates intended threshold-level recognition rate for real images (two-sided Wilcoxon sign-rank test). ***p = 4.1 × 10−5.
g Accuracy of category report in recognized and unrecognized image trials for real (N = 25, ***p = 1.2×10−5) and scrambled (N = 22, only subjects
reporting more than 5 scrambled-image trials as recognized are included, ***p = 5.96 × 10−5) images (two-sided Wilcoxon sign-rank test). The accuracy of
reported category in scrambled-image trials is determined based on the category of the original stimulus used to generate the scrambled image. In all
figures, boxplot center line depicts the median and bounds indicate upper and lower quartiles.
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F14, 294= 0.98, p > 0.4 and F14, 294= 1.63, p > 0.07, respectively),
suggesting that there was no substantial learning or fatigue effect
in our task. This was partly because subjects were already
familiarized with the stimuli set from the staircasing and localizer
tasks prior to the main task.

Widespread brain responses to recognized and unrecognized
object images. Subjects’ brain activity was recorded by whole-
brain 7 T fMRI while they performed the aforementioned task.
Using a general linear model (GLM), we extracted BOLD
responses triggered by stimuli that were reported as recognized or
unrecognized (“Yes”/“No”). The fMRI BOLD signal reflects local
metabolism associated with neuronal activity and, accordingly,
activation implies greater population neuronal activity and
deactivation implies reduced neuronal activity44. We found
widespread cortical responses (p < 0.05, FWE-corrected across the
whole brain) to both recognized and unrecognized (real) object
images (Fig. 2a). Stimulus-induced activation was found in areas
previously implicated in object recognition, including occipito-
temporal visual cortex45 and orbitofrontal cortex36. In addition,
we observed activation in frontoparietal ‘task-positive’ areas that
were previously shown to correlate with conscious perception9, as
well as stimulus-induced deactivation in DMN regions and
bilateral hippocampi, which are coupled with the DMN46.
However, strikingly, the activation and deactivation responses
span overlapping spatial extents in recognized and unrecognized
trials (Fig. 2b).

Several subcortical regions also responded to object images
(p < 0.05, FWE-corrected across the whole brain, Fig. 2c). In both
recognized and unrecognized conditions we observed stimulus-
induced activation in the brainstem and bilateral thalami. Sub-
regions of the basal ganglia, including both ventral (nucleus
accumbens) and dorsal (body of caudate, putamen) striatum,
showed significant activation in recognized trials; among these,

only the body of caudate also exhibited significant activation in
unrecognized trials.

The overlapping spatial extent of brain response between
recognized and unrecognized trials is surprising and contrary to
the GNW theory, which predicts that conscious perception
involves recruitment of additional large-scale cortical networks
that are largely silent during unconscious perception5,47. Our
data suggest instead that threshold-level object stimuli elicit
spatially similar widespread responses—across activated and
deactivated large-scale brain networks—regardless of subjective
recognition outcome. Subjective recognition may therefore
reflect response magnitude and/or pattern differences within
these distributed brain networks. We directly test this possibility
in the following sections.

Subjective object recognition correlates with amplified activa-
tion and deactivation. While responses to recognized and
unrecognized object images show similar spatial extent, the
response magnitude varied with recognition status as revealed by
a GLM contrast of recognized > unrecognized trials (Fig. 3a; p <
0.05, FWE-corrected; MNI coordinates of significant clusters
listed in Supplementary Table 1). Almost all cortical and sub-
cortical regions that responded to liminal object stimuli (Fig. 2a)
also showed a difference in their response magnitudes to recog-
nized vs. unrecognized images (Fig. 3a), including both activated
and deactivated regions.

Does the recognition effect (Fig. 3a) stem from a change in
response magnitude or a change in response direction (activa-
tion vs. deactivation)? To answer this question, we extracted
regions-of-interest (ROIs) from the recognized > unrecognized
contrast (see Methods, ROI definition from recognition contrast)
and, for each ROI, calculated percent signal change of the BOLD
response (Fig. 3b). This analysis shows that positive contrast
values (yellow-red in Fig. 3a) stem from stronger activation in

Fig. 2 Widespread brain response to liminal object stimuli. a Statistical parametric maps of BOLD response to liminal object stimuli that were
subsequently recognized (Yes, top row) and unrecognized (No, bottom row), plotted on an inflated cortical surface template. b Same data as in a,
showcasing the overlap in brain areas exhibiting positive (“pos”) and negative (“neg”) responses from baseline according to GLM parameter estimates.
The positive and negative responses indicate activation and deactivation, respectively. c Same analysis as a presenting activity in subcortical regions only
(within black contour), whereas the cortical activity shown in a is excluded for clarity (plotted on MNI152 template brain volume). The results are shown
for voxels exhibiting significant p-values only, which were determined using cluster-based FWE-correction in FSL, with a voxel-defining Z statistic threshold
of p < 0.01 and a cluster size threshold of p < 0.05.
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recognized trials (Fig. 3b, right) in subcortical (brainstem,
thalamus, basal ganglia), visual and frontoparietal ‘task-positive’
networks; negative contrast values (blue in Fig. 3a) stem from
stronger deactivation in recognized trials (Fig. 3b, left) in the
DMN and bilateral hippocampi.

These results indicate that conscious object recognition is
associated with stronger positive and negative responses across
widely distributed brain networks. They are consistent with
previous visual masking studies showing recognition-related
effects in ventral temporal cortex45, orbitofrontal cortex36, and
lateral frontoparietal regions9 but also reveal additional brain
regions whose activity correlates with subjective recognition,
including anterior cingulate cortex, bilateral insulae, DMN, and
subcortical structures.

Recognition-related effects in subcortical brain regions. We
performed several analyses to better understand the recognition-
related effects in subcortical regions revealed by the above ana-
lysis. First, to pinpoint the source of thalamic activation related to
recognition, we entered the MNI coordinates of each local max-
imum from both left and right thalamus (Supplementary Table 1)
into the Thalamic Connectivity Atlas48 which outputs the prob-
ability of anatomical connectivity between a given thalamus voxel
and several broad cortical areas. Both voxels had the highest
probability of connectivity with prefrontal cortex compared
to other cortical areas (left: 43%, right: 73%). The primary pro-
jection from the thalamus to prefrontal cortex is from the med-
iodorsal nucleus (MD)49, suggesting that the differential thalamic

activation during recognized vs. unrecognized trials likely origi-
nated from the MD nucleus.

We next investigated whether the lateral geniculate nucleus
(LGN), the earliest hub of visual information processing in the
brain, is also involved in this task. At previously published MNI
coordinates for the LGN50 (Supplementary Table 2) we observed
a cluster of voxels showing a significant difference in response
to recognized vs. unrecognized object images in each hemisphere
(p < 0.05, FWE-corrected across the whole brain), supporting a
correlation between LGN activity (which could reflect feedback
from V1) and subjective recognition51.

Lastly, we overlaid the Harvard Ascending Arousal Network
Atlas31 on the recognized > unrecognized activity contrast
(Fig. 3a, right) to better identify brainstem structures. We found
an effect in pendunculopontine nucleus (PPN) and locus
coeruleus (LC), two nuclei situated in pons, and in ventral
tegmental area (VTA) and dorsal raphe nucleus situated in the
midbrain. MNI coordinates for identified brainstem structures
are presented in Supplementary Table 2. As components of the
arousal network, activity in these areas may reflect changes in
arousal that correlate with or predict38 subjective recognition of
liminal stimuli.

The widespread cortical responses to recognized objects carry
category information. To test whether the amplified activation
and deactivation during subjective recognition contained infor-
mation about perceived stimulus content, we examined whether
the object category could be decoded from activity patterns in

Fig. 3 Effects of subjective object recognition on BOLD response magnitudes across the brain. a Group-level GLM contrast of recognized > unrecognized
objects. Left: data overlaid on a template cortical surface. Right, top: significant effects in subcortical regions (black contour). Right, bottom: significant
effects in brainstem (black contour), overlaid with ROIs from the Harvard Ascending Arousal Network Atlas (green contours). Plotted on MNI152 template
brain volume. Data were thresholded using cluster-based FWE-correction in FSL, with a voxel-defining Z statistic threshold of p < 0.01 and a cluster size
threshold of p < 0.05. b GLM-estimated percent signal change of the stimulus-triggered response, averaged across voxels within significant clusters shown
in A. Blue and orange labels denote clusters with negative and positive contrast values, respectively; ROIs are sorted according to response magnitudes in
recognized trials. Data are sorted by subjective recognition report, averaged across stimulus categories. Statistical testing was not performed to avoid
circularity. Error bars indicate s.e.m. across subjects (N = 25). BG: basal ganglia, IPS: intraparietal sulcus, aPCC: anterior posterior cingulate cortex, ACC:
anterior cingulate cortex, aIns: anterior insula, IFJ: inferior frontal junction, MFG: middle frontal gyrus, OFC: orbitofrontal cortex, HC: hippocampus, AG:
angular gyrus, PCC: posterior cingulate cortex, STG: superior temporal gyrus, SFG: superior frontal gyrus, mPFC: medial prefrontal cortex, LC: locus
coeruleus, DR: dorsal raphe, VTA: ventral tegmental area, PPN: pedunculopontine nucleus, L: left, R: right.
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these ROIs (defined from the recognized vs. unrecognized GLM
contrast, see Methods and Fig. 3) using trials containing real
object images (Fig. 4a). Stimulus category was decodable from
multivoxel activity patterns in recognized, but not unrecognized,
trials in most cortical areas involved in subjective recognition.
Importantly, stimulus category was decodable from both acti-
vated and deactivated regions, including visual, task-positive, and
DMN networks as well as bilateral hippocampi (Fig. 4b, purple
circles, p < 0.05, label permutation test with FDR correction
across all ROIs). Category decoding was unsuccessful in sub-
cortical areas, including brainstem, basal ganglia, and thalamus,
suggesting that their involvement in subjective recognition is
non-content-specific. To test whether there is a difference in
decoding accuracy between cortical and subcortical regions and
whether it is confounded by voxel count, we fit a linear mixed
model (see Methods) with parameters including: ROI location
(cortical or subcortical), voxel count, their interaction, in addition
to the intercept and the subject-level random effects for each
parameter (model summary is reported in Supplementary
Table 3, group-level data are plotted in Supplementary Fig. 2e).
We observed a significant effect of ROI location (beta= 0.052 ±
0.012, estimate ± s.e.m., p < 0.001), indicating weaker decoding

for subcortical regions, but no significant effect of voxel count
(beta= 0.011 ± 0.012, p= 0.58) or their interaction (beta= 0.019
± 0.019, p= 0.31). This result suggests that decoding accuracy is
significantly higher in cortical than subcortical ROIs, with
voxel count controlled for. Notably, none of the ROIs (cortical
or subcortical) had significant stimulus category decoding in
unrecognized trials.

To assess the influence of subjective recognition on category
information, we compared decoding accuracy between recognized
and unrecognized trials. Decoding accuracy was significantly
higher for recognized than unrecognized trials in almost every
ROI that had above-chance decoding in recognized trials (Fig. 4b,
yellow shading, p < 0.05, label permutation test with FDR
correction across ROIs), including both activated and deactivated
cortical regions. One potential concern with this analysis is that
decoding performance could be affected by a bias in ROI
selection, given that the ROIs were defined based on differential
activation magnitudes between recognized and unrecognized
trials. To address this potential issue, we performed a searchlight-
based decoding analysis across the whole brain, separately for
recognized and unrecognized trials. This analysis confirmed the
widespread presence of object category information in recognized
trials (Supplementary Fig. 2a; p < 0.05, cluster-based permutation
test across the whole brain) and failed to detect any significant
category information in unrecognized trials (Supplementary
Fig. 2b), in agreement with the ROI-based results. Notably, the
searchlight analysis did not reveal significant stimulus category
information in brain areas that did not show BOLD response
amplification, suggesting that the distributed category informa-
tion is contained within those areas showing amplified activation
or deactivation during successful recognition.

Because stimulus category is highly correlated with subjects’
reported category in recognized trials (categorization accuracy:
79%, Fig. 1g, ‘Real/Y’; also see Supplementary Fig. 1d, ‘real rec’),
one potential concern is that the successful stimulus-category
decoding in recognized trials is in fact due to information about
the reported category instead of the perceived category. If this was
the case, the reported category should be decodable from
unrecognized trials also. Because categorization accuracy is only
at 32% in unrecognized trials (Fig. 1g, ‘Real/N’; also see
Supplementary Fig. 1d, ‘real unrec’), this analysis provides an
opportunity to dissociate stimulus- and report-related activity.
We attempted to decode reported category in recognition-related
ROIs and in whole-brain searchlight analysis, but neither method
yielded any above-chance decoding performance. This control
analysis suggests that our main analysis captures information
about the perceived rather than the reported category.

Together, these results reveal a widely distributed set of brain
areas encoding information about stimulus content during
conscious object recognition, including both activated and
deactivated cortical areas, and the hippocampus. By contrast,
several subcortical areas (brainstem, basal ganglia, thalamus)
show heightened activation during successful recognition with no
category-specific information. Unlike the graded BOLD responses
(Figs. 2–3), which have the same spatial extent in recognized and
unrecognized trials but with differential response magnitudes,
these results reveal an all-or-none pattern of stimulus-content-
related information which exists in widespread cortical areas
during conscious recognition but is undetectable in unrecognized
trials. In addition, these results reveal a sharp contrast between
cortical and subcortical regions: while both exhibit recognition-
related amplification of responses, content-specific information
was found only in cortical networks. Critically, content-specific
information is not limited to activated cortical regions as
previously thought, but exists saliently in deactivated cortical
regions as well.

Fig. 4 Decoding object category from multi-voxel activity patterns within
ROIs. a Schematic of the ROI-based decoding procedure. For each ROI,
GLM-estimated activation values across voxels (seven voxels shown for
simplicity) from a subset of the data (training data) were used to train a
classifier to distinguish between stimulus categories. Held out data (testing
data) were then used to test whether the classifiers could accurately
decode stimulus category from new activation patterns. Separate classifiers
were created for subjectively recognized objects and unrecognized objects.
b Classifier accuracy within ROIs (locations shown in Fig. 3a) that were
defined by greater activation (blue labels) or deactivation (orange labels) in
response to recognized compared to unrecognized image trials. Rings
around data points: significant difference from chance. Shaded columns:
significant difference between recognized and unrecognized. p < 0.05, one-
sided label permutation test, FDR-corrected across all ROIs. Error bars
indicate standard error of the mean across subjects (N = 25).
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Subjective object recognition in early and object-selective
visual cortex. Previous studies on conscious object recognition
using masking paradigms found increased activity and category
selectivity with recognition in category-selective visual areas but
not early visual cortex34–36,45. To allow a direct comparison of
our data with these findings, we identified early visual cortex
(EVC, including V1–V4) and category-selective ventral temporal
cortex (VTC) ROIs for each subject from independent functional
localizers (see Methods, Visual object localizer and Retinotopic

mapping; for approximate ROI locations, see Fig. 5a). The VTC
ROIs were defined by contrasting localizer responses to each
object category against the three other categories to derive
category-selective ROIs.

EVC exhibited greater activation in response to recognized
than unrecognized object images (Fig. 5b, t22= 3.289, p= 0.0033,
paired t-test), consistent with the whole-brain analysis (Fig. 3a).
We found this effect in most sub-regions of EVC (Supplementary
Fig. 3a, left: V1: t22= 3.97, p= 6.47 × 10−4; V2: t22= 2.62,

Fig. 5 Object recognition in visual areas. a For visualization purposes, group-level visual ROIs are plotted on a template cortical surface. Ventral temporal
cortex (VTC, category-selective) ROIs were obtained from a group-level category localizer GLM analysis. Early visual cortex (EVC, V1–V4) outlines are
taken from the vcAtlas101. Top: ventral view; bottom: posterior view. Analyses were performed using subject-level EVC and VTC ROIs derived via individual
functional localizers. b GLM-estimated percent signal change in response to object stimuli, averaged across object categories and voxels in individually-
defined visual ROIs. ROIs were averaged together within early (EVC) and higher-order (VTC) areas. Error bars indicate s.e.m. across subjects (EVC N= 23,
VTC N= 25). c Object category decoding accuracy within individually-defined early visual cortex (EVC) and category-selective ventral temporal cortex
(VTC) ROIs. Shaded columns: significant difference between recognized and unrecognized, p < 0.025, paired t-test. Error bars indicate s.e.m. across
subjects (N = 23; EVC and VTC ROIs were matched for the number of voxels, so this analysis only included the 23 subjects with EVC ROI definition).

Fig. 6 Comparing the neural responses to phase-scrambled and real object images. a Group-level GLM contrast of real object > scrambled images. Left:
data overlaid on a template cortical surface. Right: data presented in subcortical regions only (within black contour; green contour indicates nucleus
accumbens), plotted on MNI152 template brain volume. Data were thresholded using cluster-based FWE-correction in FSL, with a voxel-defining Z statistic
threshold of p < 0.01 and a cluster size threshold of p < 0.0.5. b GLM-estimated percent signal change of stimulus-triggered responses, averaged across
voxels within clusters shown in a. Orange and blue labels denote clusters with positive and negative contrast values, respectively. In all plots, data are
averaged across object categories and error bars indicate s.e.m across subjects (N = 25). AG: angular gyrus, PCC: posterior cingulate cortex, mPFC: medial
prefrontal cortex, IFG: inferior frontal gyrus, acc: accumbens, IFJ: inferior frontal junction, dACC: dorsal anterior cingulate cortex, L: left, R: right.
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p= 0.016; V3: t22= 1.42, p= 0.17; V4: t21= 2.51, p= 0.02),
including the primary visual cortex which did not show an object
recognition effect in previous studies using visual masking34,36,45.
Two possible explanations for this discrepancy are if masking
interrupts recognition-related feedback to V1, or if masks elicit
strong neural responses that obscure weaker recognition effects.
Interestingly, activation magnitude in VTC did not significantly
vary with recognition (Fig. 5b, t24= 0.44, p= 0.66, paired t-test;
individual sub-regions results shown in Supplementary Fig. 3a,
right), although the whole-brain analysis did reveal a significant
recognition effect in parts of the ventral temporal cortex (Fig. 3a).
The overall BOLD responses were weaker in VTC than in EVC
(Fig. 5b, recognized: t22= 4.43, p= 2.1 × 10−4; unrecognized: t22=
4.50, p= 1.8 × 10−4; paired t-test). This pattern of results may be
due to the VTC ROIs being defined by category selectivity (instead
of intact vs. scrambled objects) and, as a result, producing relatively
weak responses to non-preferred categories.

We next tested whether object category information, decoded
from multivoxel activity patterns, varied with subjective recognition.
For this analysis the voxel count was equated between EVC and
VTC regions (see Methods, MVPA). Category decoding was
significantly better than chance in both areas for recognized trials
(Fig. 5c; EVC: p= 0.001; VTC: p= 0.001; label permutation test; for
results from individual sub-regions see Supplementary Fig. 3b), and
lower for unrecognized trials (EVC: p= 0.018; VTC: p= 0.065;
label permutation test). Further, decoding performance was
significantly better for recognized than unrecognized trials in
VTC (difference of 14.2 ± 2.5%, p= 0.001, label permutation test),

and a smaller difference was found in EVC (difference of 4.6 ± 2.1%,
p= 0.028, label permutation test). Lastly, decoding accuracy was
higher for VTC than EVC for recognized objects (p= 0.001, label
permutation test) but not unrecognized objects (p= 0.73, label
permutation test).

These results are consistent with prior studies pointing to the
critical involvement of high-level visual cortex in object
recognition8,45, but also reveal differential activity in early visual
cortex that correlates with conscious object recognition.

Scrambled images elicit heightened processing in prefrontal
and default-mode areas. We next investigated the differences in
neural processing between real object images and scrambled images.
Scrambled images elicited a substantial but lower fraction of
recognition reports (28%) as compared to real object images (48%,
Fig. 1f), and a similar but poorer pattern of category discrimination
accuracy (Fig. 1g). Previous studies showed that scrambled images
recruit category-selective visual cortex to a much lesser extent than
real object images45; as such, scrambled images are often used as the
baseline condition in functional localizers to define higher-order
visual areas. Thus, one might expect that scrambled images elicit
weaker higher-order visual cortical activity and a failure of propa-
gation of category information to frontoparietal areas.

We first compared the amplitude of neural responses elicited
by real object and scrambled images (Fig. 6a, cluster sizes and
MNI coordinates are reported in Supplementary Table 4).
Interestingly, no difference is found between real object and

Fig. 7 Neural responses and category information elicited by phase-scrambled images. a GLM-estimated percent signal change of stimulus-triggered
response for each ROI defined in Fig. 3. Data are separated by subjective recognition report, averaged across stimulus categories. Shaded columns:
significant difference between recognized and unrecognized, paired t-test, p < 0.05, FDR-corrected across ROIs (N= 25). b Same as a, but for individually-
defined early (EVC, N=;23) and category-selective (VTC, N= 25) visual areas. c, d Stimulus category decoding accuracy within recognition-contrast ROIs
(c, same ROIs as in a, N= 25) and individually-defined visual ROIs (d, N= 23). Rings around data points: significant difference from chance, one-sided label
permutation test, p < 0.05 FDR-corrected across ROIs (c) or p < 0.025 (d). In all plots, error bars indicate s.e.m. across subjects.
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scrambled images in visual cortex. This lack of difference is likely
due to image presentation at a liminal contrast which introduces
a high level of sensory uncertainty, unlike object localizers that
use high-contrast images.

Instead, scrambled images elicited stronger activation than real
object images in the left inferior frontal junction (IFJ) and bilateral
dorsal anterior cingulate cortex (dACC) (Fig. 6a, b, blue). Both
clusters are contained within larger clusters observed in the
recognized > unrecognized contrast using real object images
(compare to Fig. 3a). Surprisingly, no brain area showed stronger
activation to real objects compared to scrambled images. Instead, a
positive real > scrambled contrast (Fig. 6a, red) resulted from
scrambled images eliciting stronger deactivation in DMN regions
(including mPFC, L AG and PCC), right inferior frontal gyrus and
part of the basal ganglia (nucleus accumbens) (p < 0.05, FWE-
corrected; Fig. 6a, b, red-orange). The DMN regions overlapped
with clusters revealed by the unrecognized > recognized contrast
using real object images (compare to Fig. 3a).

Importantly, this difference in activation patterns between real
object and scrambled images cannot be attributed to a lower
recognition rate for scrambled images. Both IFJ and dACC show
stronger activation in recognized than unrecognized trials (for
both real and scrambled images, Figs. 3a and S4), as well as
stronger activation to scrambled images. Similarly, DMN regions
show stronger deactivation in recognized trials, as well as stronger
deactivation to scrambled images. By contrast, we suggest that the
enhanced activation of IFJ and dACC and deactivation of DMN
regions to scrambled images likely reflect inferential processing
when stimulus input is highly ambiguous. Several additional
analyses described below further support this idea.

First, using the ROIs identified from the recognition contrast of
real object images (Fig. 3a), we extracted their responses to
scrambled images, separated by recognition status (Fig. 7a). This
analysis revealed a similar pattern of activation and deactivation to
real object and scrambled images (compare Fig. 7a with Fig. 3b),
with comparable magnitudes of the recognized—unrecognized
difference (Supplementary Fig. 4b). The whole-brain GLM contrast
of recognized vs. unrecognized trials also appears qualitatively
similar albeit weaker for scrambled images (compare Supplemen-
tary Fig. 4 to Fig. 3a). This pattern of results, showing similar
recognition-related effects between real and scrambled images, is
further evidence for a genuine ‘false perception’ interpretation of
“recognized” scrambled images.

Second, using the same ROIs, we attempted to decode the
category of scrambled images (i.e., category of the original object
image from which the scrambled image was generated, whose
low-level image features are preserved by phase-scrambling).
Some of these ROIs overlap with the ROIs obtained from the real
vs. scrambled image contrast (Fig. 6a), allowing us to test whether
areas whose responses differ between real and scrambled images
contain content-specific activity. We did not take subjective
recognition status of scrambled images into account here, because
low trial counts for recognized scrambled images precluded
effective cross-validation within that subgroup. The category of
scrambled images could be decoded from nearly all cortical ROIs
investigated (with the exception of left superior temporal gyrus),
but no subcortical ROIs (Fig. 7c; p < 0.05, label permutation test
with FDR correction across ROIs). The cortical areas with
heightened activation (L IFJ and dACC, as components of L MFG
and ACC) or deactivation (DMN areas) in scrambled image trials
(Fig. 6) all contained decodable category information. This result
further strengthens the evidence for heightened processing
of stimulus/perceptual content in these areas when scrambled
images are presented.

Within visual areas, category decoding of scrambled images
was significantly above chance in both EVC (p= 0.001, label

permutation test) and VTC (p= 0.001) (Fig. 7d). Subjective
recognition of scrambled images did not correlate with response
magnitude in either EVC or VTC (Fig. 7b).

Importantly, stimulus category was decodable across the brain
in scrambled image trials but not in unrecognized object image
trials (Fig. 4b), despite the fact that the latter but not the former
contains a meaningful object stimulus. Together, these results
suggest that scrambled images, which contain low-level visual
features but lack object information, trigger a different mode of
neural processing that is more reliant on frontoparietal areas
(including dACC, IFJ, and DMN areas). They support the idea
that higher-order processes are recruited to infer stimulus
category under uncertainty, which sometimes triggers a pattern
of large-scale brain activity similar to that elicited by recognition
of real meaningful objects and as a result drives false perception—
seeing a meaningful pattern out of a meaningless noise pattern.

Discussion
Here we report large-scale brain signatures of conscious object
recognition. Contrary to leading theories of conscious perception,
we observed widespread brain responses to both recognized and
unrecognized object images with nearly identical spatial extent
but different response magnitudes. Outside visual cortex, these
responses encompassed a ‘task-positive’ network including cor-
tical and subcortical regions, which showed stronger activation to
recognized than unrecognized object images, and the default-
mode network, which showed stronger deactivation to recognized
images. Strikingly, nearly all of the responsive cortical regions,
either activated or deactivated, exhibited activity patterns con-
taining information about the perceptual content, while content-
specific activity was absent in subcortical regions. Lastly, phase-
scrambled images, which are devoid of any meaningful content
but preserve low-level visual features, triggered false perception
accompanied by heightened processing in specific prefrontal and
DMN regions, suggesting that these regions may be involved in
top-down inferential processing when sensory input has a high
level of uncertainty.

Stimulus category could be decoded from nearly all of the
activated as well as deactivated cortical regions in recognized
trials, but not when recognition failed (Fig. 4b). We also observed
widespread object category information in a localizer task using
high-contrast images (Supplementary Fig. 2d), suggesting that the
large-scale broadcasting of content-specific information in our
main task is not due to potentially increased task difficulty. In
addition, a control analysis showed that this result likely reflects
perceived rather than reported category, since reported category
was undecodable in unrecognized trials that had a similar trial
count. In contrast to recurrent-processing theory (RPT) and
integrated information theory (IIT) proposals suggesting that the
content-specific neural correlates of conscious perception are
localized to posterior sensory areas, our results instead reveal that
subjective recognition triggers content-specific activity across
widely distributed cortical networks.

Our results during subjective recognition are broadly con-
sistent with the global neuronal workspace (GNW) theory, which
predicts that conscious contents are broadcast throughout a dis-
tributed brain network. Evidence for perceptual content repre-
sentation in this distributed network during conscious but not
unconscious processing was previously weak13,52; our findings
substantially strengthen the evidence for global broadcasting as a
correlate of conscious perception. Specifically, we show that
neural representations of content exist during subjective recog-
nition in PFC, ACC, PCC—brain areas proposed by the GNW
theory as hubs for information broadcasting during conscious
processing5.
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However, our results are inconsistent with the GNW theory’s
formulation of unconscious processing. The GNW theory sug-
gests that unconscious processing involves a weak, slow-decaying
wave of activation along feedforward pathways, potentially
reaching prefrontal cortex, while only conscious processing trig-
gers global activation (‘ignition’) involving a more extensive
network of reverberant loops, which enables access of a given
piece of information to a wider array of brain regions—especially
frontoparietal areas5,47,53. While our results show non-content-
specific activation as a correlate of unconscious processing of
objects, it is difficult to explain the wide spatial extent of these
responses, nearly identical to that of the responses to recognized
images, with a purely feedforward propagation thesis. This result
calls into question the previous focus on the spatial extent of
brain responses as a defining correlate of conscious perception,
and raises instead the importance of content-specificity of such
activity. That is, responses to recognized images are both stronger
and content-specific (and critically, in both activated and deac-
tivated networks, a point we elaborate on below).

One might wonder whether our result of widespread over-
lapping responses in recognized and unrecognized trials partially
stems from the detection of low-level stimulus features, which
could potentially be consciously perceived in unrecognized trials.
If this were the case, one would expect to observe above-chance
category decoding accuracy in unrecognized trials because low-
level features of object stimuli differ across object categories38,43.
Our data and experimental procedure are sensitive to such
category-specific low-level features of object images, as is evident
from successful category decoding from brain responses to
scrambled images (Fig. 7c). Because the responses to unrecog-
nized real images did not contain any information about object
category (Fig. 4b), it is unlikely that the widespread activation
stems from conscious perception of low-level image features.
Instead, our finding of broad cortical activation and deactivation
in unrecognized trials is consistent with increasing evidence
showing that unconscious processing can penetrate into higher-
order association cortices including the prefrontal cortex12,54,55.
Importantly, our results substantially extend this prior literature
by showing that the spatial extent of cortical activation can be
similar between success and failure of subjective recognition,
while the response amplitudes have a graded modulation (high vs.
low) and information content has an all-or-none pattern (present
vs. absent) across this widespread cortical network.

The default-mode network (DMN) is not part of the postulated
neural mechanisms underlying conscious perception by any of
the current prominent theories3–5,56, although an earlier
hypothesis proposed that the automatic associations served by
this network facilitate perception and cognition57. We observed
that the DMN deactivates to both unrecognized and recognized
object images, and this deactivation is stronger for recognized
images (Figs. 2 and 3). This finding is consistent with a wealth of
previous studies showing DMN deactivation in externally orien-
ted tasks20. Given DMN’s known involvement in self-referential
processing58, one might propose that the stronger deactivation
observed in recognized trials is due to a reduction in task-
irrelevant thoughts when recognition is successful. However, this
is unlikely because during successful recognition, despite a
stronger deactivation, stimulus content information is encoded
throughout the DMN (9 out of 10 DMN regions had significant
decoding, Fig. 4b) while stimulus content is not encoded when
recognition was unsuccessful. Thus, contrary to being task-irre-
levant, the strong deactivation in DMN accompanying subjective
recognition actively encodes perceived stimulus content.

This pattern of findings is consistent with recent observations
of content-specific deactivation of DMN. For example, the lateral
parietal component of the DMN (angular gyrus) exhibits stronger

deactivation and increased pattern-based information during
successful memory encoding59, similar to the dissociation
between activity level and information strength observed herein.
Another recent study revealed retinotopically organized maps in
the DMN whereby the DMN selectively deactivates depending on
the spatial location of a visual stimulus21. An earlier study from
our laboratory22 showed that the DMN contains content-specific
information during prior-guided recognition of degraded images.
In that study, recognition was only possible after relevant prior
knowledge has been acquired, and prior-guided recognition was
associated with reduced deactivation as well as enhanced content-
specific information. Taken together with our current findings,
these results suggest that the effect of recognition on the gross
activity level in the DMN depends on whether recognition is
driven by prior knowledge22 (whereby deactivation is reduced) or
fluctuations in spontaneous brain activity as in the present
paradigm (whereby deactivation is stronger). However, in both
cases, pattern-based information increases with recognition.

The hippocampus is functionally coupled with the DMN46

and we observed a similar pattern of stronger deactivation with
enhanced category information during subjective recognition in
the hippocampus (Figs. 3b and 4b). The hippocampus has an
established role in memory and relational processing, but
existing studies largely suggest that its involvement in conscious
perception is limited to scenes rather than objects60,61. How-
ever, consistent with our findings, a previous intracranial study
found that event-related potentials directly recorded from the
hippocampus distinguished between identified and unidentified
object stimuli62.

Together, these findings provide insight into the role of DMN
in subjective object recognition, and urge future theories on
conscious perception to take this network, a hub of corticocortical
communication17,18, into consideration.

Several subcortical regions, including the brainstem, thalamus
and basal ganglia, showed a significant recognized > unrecognized
activity contrast (Fig. 3) but did not contain any detectable
category information (Fig. 4b). This result was not due to any
systematic difference in ROI sizes between cortical and sub-
cortical regions (Supplementary Table 1, Supplementary Fig. 2e).
It is possible that this null result is partially due to lower fMRI
sensitivity to subcortical activity. Currently, no non-invasive
neuroimaging method in humans provides equal sensitivity to
cortical and subcortical regions. However, prior work demon-
strates that 7 T fMRI can measure subcortical signals involved in
perceptual processes with a considerable improvement over 3 T
fMRI63. It remains possible that subcortical regions encode
content-specific information in finer-grained activity patterns
within a single voxel, which we cannot detect. However, our
finding suggests that content-specific information in these sub-
cortical regions is at least much weaker than that in the cortical
networks, resulting in undetectable content information in sub-
cortical regions using the current methods involving high-field
fMRI, in contrast to the strong content-specific information in
widespread cortical networks. Below we discuss the implication of
this finding.

In the thalamus, recognition-related activity centers around the
mediodorsal (MD) nucleus. The MD-PFC circuit has been
implicated in attentional control and cognitive flexibility64, and a
recent rodent study showed that MD sends a content-invariant
signal to PFC which amplifies and sustains rule-specific neural
sequences in the PFC65. The thalamus’ role in our task may thus
be to amplify object information in the cortex for it to cross the
threshold of recognition, or to ensure that recognized object
information is maintained in cortex for the duration of the trial.

Previous studies have shown that the basal ganglia are involved
in perceptual decision-making23. Specifically, the dorsal striatum
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implements adjustments in decision bias66; as such, the stronger
response in recognized trials in the caudate and putamen may
indicate such a biasing effect. Stimulus-triggered responses in
nucleus accumbens are often linked to reward anticipation and its
associated sensation of pleasure67. While decisions made in our
task were not externally rewarded, successful recognition can be
genuinely rewarding, which might contribute to the elevated
response in nucleus accumbens in recognized compared to
unrecognized trials.

Several brainstem nuclei also showed higher activity during
subjective recognition. These nuclei, including the pedunculo-
pontine nucleus68, locus coeruleus69, ventral tegmental area70,
and dorsal raphe nucleus71, all modulate arousal. Arousal-related
activity in the brainstem neuromodulatory system correlates with
stimulus detection26 and the precision of visual cortical
representations72. Hence, these brainstem nuclei might con-
tribute to subjective recognition either via generally supporting
sensory detection or by refining the representation of high-level
object information in cortex.

These results thus reveal a previously underappreciated aspect
of the neural machinery supporting conscious recognition:
content-invariant activity in several subcortical circuits that may
either enhance or enable content-specific activity in widespread
cortical networks underlying subjective object recognition.
Although the role of subcortical brain regions in regulating
arousal and states of consciousness is well established, their
involvement in conscious perception remains unclear5,32. Our
results provide initial findings that both indicate their involve-
ment in conscious perception and outline an important difference
between subcortical and cortical mechanisms.

Surprisingly, we were able to decode category information from
scrambled-image trials across the brain, in both activated and
deactivated brain regions (Fig. 7c). The scrambled images do not
contain objects, but only low-level image features which differ
across categories and are preserved by the phase-scrambling
procedure. The successful category decoding in scrambled ima-
ges, however, cannot be attributed to the presence of low-level
image features alone, because we were unable to decode stimulus
category in unrecognized real object image trials (Fig. 4b), despite
these having higher trial counts (scrambled images account for
16.7% of all trials; unrecognized real object image trials account
for 43.3%). Instead, we suggest that in our paradigm, scrambled
images elicit inferential processes attempting to resolve stimulus
content under high sensory uncertainty, which sometimes result
in meaningful percepts (‘false perception’). In this process, sti-
mulus information may be propagated across the brain in an
attempt to resolve its content and can thus be decoded from
neural activity.

Studies of visual object recognition typically find a strong and
replicable result of reduced activation in ventral temporal visual
cortex when viewing high-contrast versions of scrambled images
as compared to real object images45. Contrary to our initial
prediction based on these prior studies, we did not detect this
effect in our data (Fig. 6a). This null finding is likely related to the
liminal nature of our stimuli: in our study, the contrasts of real
object images were titrated to an individual’s perceptual thresh-
old, and scrambled images were presented at the same contrast.
Thus, the brain may not receive enough information to conclude
that a scrambled image is actually lacking meaningful content
compared to liminal object images. Instead, when no real object
information is present in bottom-up sensory input, top-down
inferential processes may be especially active, as supported by our
finding that scrambled images elicit stronger activation in the
dACC and IFJ than real object images (Fig. 6, blue). The IFJ is
involved in controlling object-based attention73, and the dACC is
associated with uncertainty resolution74 and hypothesis testing75.

In addition, recent rodent studies suggest that the dACC sends
predictions about visual contents back to visual cortex via feed-
back connections76,77. Scrambled images, lacking object-level
content to be eventually detected, may elicit more extensive
hypothesis testing than images containing real objects. This
process may be facilitated by connections between IFJ and dACC
within the cognitive control network78.

Similar results were found in DMN regions: scrambled images
elicited stronger deactivation than real object images. As with IFJ
and dACC, these DMN regions contain content-specific infor-
mation about the category from which the scrambled images were
generated (Fig. 7c), which strongly correlates with the perceived
category during false perception (i.e., false-alarm trials; see
Fig. 1g, ‘Scram/Y’). Thus, the amplified deactivation to scrambled
images in DMN does not reflect suppression of task-irrelevant
activity; instead, the most parsimonious explanation is that the
DMN regions are also involved in top-down inferential proces-
sing and represent the content of perceptual outcome in their
deactivation. This is an exciting hypothesis for future studies to
address.

Is the neural mechanism for subjective recognition the same
for scrambled stimuli as for real object stimuli? It is still possible
that consciously perceived content is encoded differently between
real and scrambled stimuli, but our study was not designed to
answer this question (the number of scrambled image trials
reported as recognized was too low to permit content decoding in
this group of trials). However, the recognized > unrecognized
GLM contrasts suggest substantial overlap between real and
scrambled images with nearly identical contrast magnitudes
(Supplementary Fig. 4b; also compare Fig. 3b to Fig. 7a). This is
consistent with the notion that subjective recognition of real and
scrambled object images both involve perceptual inference, but
inferential processes are engaged to a higher degree under greater
sensory uncertainty79. Supporting this idea is our finding that the
same regions showing heightened responses to scrambled images,
dACC and IFJ (activation) and DMN (deactivation), also corre-
lated with subjective recognition in both real and scrambled
image trials.

There are several limitations to the present study. First, to
probe subjective recognition, we relied on subject’s report — the
gold-standard approach. Several recent studies have developed
no-report paradigms in the context of binocular rivalry and
inattentional blindness to investigate the neural correlates of
conscious perception80. Thus far, studies using this approach
have reported mixed findings, with some reporting strongly
reduced frontoparietal activation81 and others reporting pre-
served PFC encoding of conscious content82. It is unclear if a no-
report paradigm for genuine and false object recognition, paral-
leling the current paradigm, could ever be established. But if so,
such a paradigm could be used to shed light on this contentious
issue and help reveal the relationship between neural mechanisms
involved in subjective recognition and the (automatic or volun-
tary) reporting of this recognition. Second, using 7 T fMRI, we
recorded whole-brain activity with fine spatial resolution and
high sensitivity to cortical and subcortical regions. However, due
to the slow hemodynamic response, this technique cannot capture
fast neural dynamics. We cannot, for example, address whether
unrecognized trials contain evidence for the GNW notion of
“failed ignition”14, in which transient and weak content-specific
activation fails to ignite the global workspace5. Future investiga-
tion using intracranial recordings or an MEG-fMRI data fusion
approach83,84 will be able to fill in the temporal dimension. Third,
following prior studies of conscious object recognition, the
“recognized” versus “unrecognized” responses are influenced by
individual participants’ criteria for a meaningful object percept.
While such cross-subject variability is not the focus of the present
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study, it is of interest for future work to understand individual
differences in object perception. Lastly, in this study, we focus
on activation magnitude and information content of stimulus-
triggered neural responses that underlie genuine and false object
recognition. Previous studies e.g.,12 including our own38,85 have
shown that spontaneous brain activity fluctuations in the pre-
stimulus period influences conscious perception and subjective
recognition. An important direction for future studies is to better
understand the relationship between pre-stimulus brain state
and stimulus-triggered activity, which can exhibit complex,
nonlinear interactions86,87.

In sum, our study demonstrates that conscious object recog-
nition is supported by a much more extensive brain network than
was previously known. Rather than recruiting additional cortical
areas, subjective recognition is correlated with amplified positive
and negative responses across visual, frontoparietal, subcortical
and default-mode networks. At the same time, stimulus content
information, undetectable during unrecognized trials, becomes
widely distributed across activated and deactivated cortical
regions during successful recognition. By contrast, subcortical
regions exhibit enhanced activation during subjective recognition
that is non-content-specific, suggesting that they may facilitate
content-specific activity in the cortex during conscious percep-
tion. Our results further highlight the dorsal anterior cingulate
cortex, inferior frontal junction, and the default-mode network as
hubs for perceptual inference, contributing to both genuine and
false recognition. These results point to a more comprehensive
framework for conceptualizing neural mechanisms underlying
conscious object recognition, which involve content-specific
activity across activated and deactivated cortical networks and
content-invariant subcortical activity.

Methods
Participants. All participants (N= 38, 26 females, mean age 27.18, range 20 to 38)
provided written informed consent. The experiment was approved by the Insti-
tutional Review Board of New York University School of Medicine (protocol
#15-01323). The participants were right-handed, neurologically healthy, and had
normal or corrected-to-normal (wearing contact lenses) vision. 10 enrolled parti-
cipants did not complete the experiment due to the following reasons: poor per-
formance in image contrast staircasing task (4 subjects, see below), request to end
experiment early (6 subjects). Data from 3 subjects who completed the experiment
were not analyzed due to poor performance in the main object recognition task (see
below). Data from a total of 25 subjects were used in the final analysis.

Experimental procedure. The experiment consisted of two separate scanning
sessions, conducted on two separate days (Fig. 1a). Day 1 included image contrast
staircase (with simultaneous anatomical MRI acquisition) and functional localizers.
Day 2 began with an 8-minute recognition task to confirm the threshold contrasts
obtained on day 1, and if necessary, an additional 8-minute staircase session to
adjust for threshold changes across experiment days. This was followed by the
main object recognition task.

Experimental stimuli. Stimulus images were created as described in our previous
work38. Briefly, images from four categories: faces, animals, houses, and objects
(Fig. 1c) were selected from public domain labeled photographs or from Psycho-
logical Image Collection at Stirling (PICS, http://pics.psych.stir.ac.uk/), resized to
300×300 pixels and converted to grayscale. The actual experimental stimuli from
PICS are not available for commercial use; therefore, the images shown in Figures
were downloaded from https://www.pexels.com/ and are presented to demonstrate
the outcome of the image processing procedure described below. Pixel intensities
were normalized by subtracting the mean and dividing by the standard deviation.
Images were then filtered with a 2D Gaussian smoothing kernel with a standard
deviation of 1.5 pixels and 7 × 7 pixel size (imgaussfilt, MATLAB). Five unique
images were included in each category, resulting in 20 unique real images in total.
Scrambled images were created by randomizing the 2D Fourier transform phase of
one image from each category. The edges of all images were gradually brought back
to background intensity by multiplying the image intensity with a Gaussian win-
dow (standard deviation 0.2). Stimuli were presented using the Psychophysics
Toolbox88 in MATLAB via an MRI-compatible LCD monitor (BOLDScreen,
Cambridge Research Systems) with a 120-Hz refresh rate, located 210 cm behind
the center of the scanner bore. Subjects viewed the screen using an eye mirror

attached to the head coil. Stimuli subtended 4.3 degrees of visual angle at central
fixation.

Image contrast staircase. On Day 1, subjects performed an adaptive staircase
procedure “QUEST”89 in the scanner in order to determine individual image
contrast (c) yielding a recognition rate of 50% (proportion of “yes” responses to
the second question). The image pixel intensity, I, at a given contrast, c, was
calculated as:

I cð Þ ¼ b Iscaled*cþ 1
� � ð1Þ

where b is the background intensity (set to a constant value of 127) and scaled pixel
intensities (Iscaled) were obtained by rescaling the image pixel intensities between
−1 and 1. As a result, the lightest pixel value in the image was equal to Imax ¼
b 1þ cð Þ and the darkest Imin ¼ b 1� cð Þ. Therefore, we defined the contrast of a
presented image as:

c ¼ Imax � Imin

2b
ð2Þ

which ranged between 0 and 1.
Subjects performed the QUEST procedure in the scanner under conditions

similar to the main task performed on Day 2, except timing parameters were
shorter. The inter-trial interval (ITI) was randomly selected from 0.75 or 1 s, and
the fixation period between stimulus presentation and categorization prompt was
0.5 s. Because the shorter ITI allowed subjects to better predict the time of stimulus
onset than in the main task, effective 50% threshold contrasts were lower in
QUEST than in the main task. The target threshold in QUEST was thus set to 55%
rather than 50% to compensate. The threshold contrast for each image was
identified using an independent QUEST process containing 40 trials. 20 such
processes (one for each real image) were executed such that different images were
interwoven into a total session of 800 trials. The task was broken into four blocks of
200 trials each, and subjects were allowed to rest in between blocks. Task
performance was considered acceptable if categorization accuracy for recognized
images was at least 30% higher than for unrecognized images, and if the QUEST
procedure successfully converged on 55% recognition rate for each image. On Day
2, we first tested whether the threshold contrasts still yielded 50% subjective
recognition. Subjects completed 80 trials (4 trials per image) with the following
timing parameters: ITI of randomly 2 or 3 s, post-stimulus fixation of 2 s. If
subjects reported to recognize more than 80% or less than 30% of trials, they
performed a shorter QUEST task with the same timing parameters to account for
threshold changes across days. These 14 subjects completed two interwoven
QUEST processes with 40 trials each, including all real images. Instead of adjusting
the contrast of each image individually, the staircasing target was 50% recognition
across all images. We thus accounted for any change in overall recognition
threshold across days, but not for any new differences between images.

Main object recognition task. Subjects performed the main task in fifteen 24-trial
runs lasting ~7.5 min each on Day 2 (see Fig. 1a), for a total of 360 trials. Two
subjects did not complete all 15 runs but their data were still included (see Sup-
plementary Table 5), and one subject performed 3 extra runs for a total of 18. Each
run contained one trial per stimulus (20 real object, 4 scrambled), and subjects
were not informed of the presence of scrambled images. Subjects were allowed to
rest between runs. The entire task lasted about 2.5 h. Each trial (Fig. 1d) began with
a fixation cross on a gray background for a period of random duration between 6
and 20 s, with the set of fixation durations following an exponential distribution.
The timing jitter ensured that the subject could not predict the onset of the sti-
mulus. The stimulus image was then presented behind the fixation cross for 8
frames (66.7 ms). Image intensity increased gradually from 0.01 (1st frame) to
threshold intensity (8th frame). After the stimulus disappeared, the fixation cross
persisted for another randomly chosen duration of either 4 or 6 sec (following an
exponential distribution). The luminance of the blank screens before and after the
stimulus was equal to the background luminance of the stimulus screen. Each trial
ended with 2 sequential questions about the stimulus, each appearing for 2 s. The
first question asked what category the image belonged to: animal, face, house, or
object. In case the object was not detected, subjects were instructed to make a
genuine guess. This question targeted objective performance (i.e., accuracy). The
response button mapping for this question was randomized across trials. The
second question targeted subjective experience and asked whether subjects had a
“meaningful visual experience” of the object stimulus (“yes” or “no”). Meaningful
was defined during a practice session outside of the scanner as something that
makes sense in the real world, as opposed to an image of pure noise or meaningless
shapes. Subjects were instructed to respond ‘yes’ if they had any sense of the object
presented, regardless of whether the particular content was identified. For example,
perceiving a furry tail may constitute a meaningful experience of an animal, though
it could belong to either a monkey or a cat. Subjects indicated their answers to the
questions via a fiber-optic button box attached to their right hand (Psychology
Software Tools, Inc.). Task performance was considered acceptable if recognition
rate for each category was above 15%, and if categorization accuracy for recognized
images was at least 30% higher than for unrecognized images.
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MRI data acquisition. Experiments were conducted in a Siemens 7 T MRI scanner
using a 32-channel head coil with internal head cage at New York University
Center for Biomedical Imaging. High-resolution (1.0 mm isotropic voxels) T1-
weighted MPRAGE images were acquired with the following parameters: FOV 256
mm, 192 sagittal slices, TR 3000 ms, TE 4.49 ms, flip angle 6°, fat suppression on.
For intensity normalization, proton density (PD) images were acquired with the
following parameters: FOV 256mm, 192 sagittal slices, 1.0 mm isotropic voxels, TR
1760 ms, TE 2.57 ms, flip angle 6°, bandwidth 280 Hz/Px. Blood oxygen level-
dependent (BOLD) fMRI images were acquired with the following parameters:
FOV 192 mm, 54 oblique slices covering all of cortex, voxel size 2.0 mm × 2.0 mm,
slice thickness 2.0 mm with distance factor 10%, TR 2000 ms, TE 25ms, multiband
factor 2, GRAPPA acceleration 2, phase encoding direction P- > A, flip angle 50°.

Anatomical MRI data preprocessing. Preprocessing of anatomical images was
performed using FSL90 version 5.0.10. To extract anatomical brain images, T1 and
PD images were first skull-stripped using BET90. The resulting PD brain image was
smoothed using a 2 mm kernel, and PD voxels with values less than 1 (an arbitrary
threshold, considered to be noise after visual inspection of several example images)
were set to 0. The T1 brain was divided by the smoothed PD brain to correct for
inhomogeneities91. The resulting T1/PD image was finally masked by the smooth
PD image, to remove remaining noise around the edges of the brain. In preparation
for cortical surface reconstruction with Freesurfer’s recon-all command (http://
surfer.nmr.mgh.harvard.edu), a new full-head T1 image was created by taking the
original T1-weighted image including skull, and replacing the inhomogeneous
brain with the new T1/PD brain.

Functional MRI data preprocessing. We performed the following pre-processing
steps for each task run using FSL’s FEAT tool. We first corrected for motion
artifacts using MCFLIRT, which aligns each volume to the volume acquired at the
middle of the run and estimates 3 dimensions of head rotation and translation
across time (6 DOF). We removed one or more blocks from 3 subjects due to
excessive motion defined as a >6 mm spike within the relative mean displacement
timecourse (Supplementary Table 5). To account for the long whole-brain acqui-
sition time (2000 ms), we interpolated signal from each slice to the middle of each
TR (slice timing correction). We then extracted the brain using BET, applied spatial
smoothing (3.0 mm FWHM for main task, 4.0 mm FWHM for category localizer),
applied high pass filtering with a temporal cutoff of 150 s to remove slow drifts, and
applied grand mean scaling to normalize the mean voxel intensity across runs and
scanning sessions. The functional images were registered to anatomical images
using linear boundary-based registration (BBR92) and anatomical images were
registered to a standard brain image (MNI 152) using linear registration (12 DOF).
Artifacts related to motion, arteries or CSF pulsation were removed using ICA
(MELODIC) and inspecting 30-40 components that together explain ~75% of
variance in the BOLD signal93.

General linear model (GLM) analysis. We used a GLM (implemented with FEAT
tool in FSL) to assess stimulus-triggered activation. For each task run, we created
one regressor for each possible combination of stimulus category (face, animal,
house, object), recognition report (yes, no), and image type (real, scrambled), all
aligned to stimulus onset. Thus, each run had up to 16 stimulus regressors, given 4
categories × 2 recognition statuses × 2 image types. Two additional control regres-
sors modeled 1) trials in which the subject did not provide a recognition response,
and 2) the question/button-press period. Each regressor was convolved with a
gamma-shaped hemodynamic response function (half-width of 3 s and lag of 6 s).

For each subject, a fixed effects analysis modeled the average response to each
stimulus condition across runs. Subject-level parameter estimates were entered into
a mixed effects analysis (FLAME1 method) to produce group-level estimates of
each condition. To localize brain activation and deactivation following presentation
of liminal object stimuli, we averaged group-level parameter estimates across
stimulus categories, resulting in four contrasts: real objects subjectively recognized
> baseline, real objects subjectively unrecognized > baseline, scrambled objects
subjectively recognized > baseline, and scrambled objects subjectively unrecognized
> baseline. We next computed two comparative contrasts: recognized real objects >
unrecognized real objects, and real objects > scrambled objects. We modeled the
response to each category separately to avoid confounding recognition responses
with category-selective responses when recognition rates differed across categories
(Supplementary Fig. 1b). However, in an additional analysis we confirmed that a
GLM with only four regressors (rec/unrec x real/scrambled) resulted in a
qualitatively similar recognized > unrecognized contrast map, albeit with weaker
effect sizes.

Whole-brain, group-level statistical maps for contrasts of interest were
thresholded using FSL’s FLAME1 cluster-based approach implementing gaussian
random field theory to correct for multiple comparisons across voxels, with a
cluster-defining voxel threshold of p < 0.01 and cluster size p < 0.05. FLAME1 has
been shown to produce acceptable false positive rates in comparison to other
common thresholding methods94. In all group analyses, to account for missing
voxels in four subjects due to limited field of view or movement during functional
MRI acquisition, we calculated group-level statistics in missing voxels by using only
those subjects who contained data in these voxels (≥21 out of 25 subjects in all

cases). These voxel statistics were added to the full-brain statistic image before
applying cluster-based thresholding. This process increased the number of
analyzed voxels by 7.8%.

ROI definition from recognition contrast. The recognized > unrecognized GLM
contrast revealed one extensive, contiguous cluster showing a positive contrast
effect across the brain, while we observed negative effects in several independent
clusters. To identify individual clusters that encompass specific brain regions, we
applied a more conservative threshold to both positive and negative effects (voxel
p < 0.001, cluster size p < 0.05). The whole-brain map at this stricter threshold
identified the same coarse brain areas as the original, more liberal threshold, but
with lower significant voxel counts and better separation between neighboring
clusters. A few clusters remained that still covered easily separable brain regions.
For these, we manually split each cluster by masking with anatomical ROIs from
the Harvard-Oxford cortical and subcortical atlas distributed with the FSL analysis
package90. The clusters that were manually split were: left anterior insula and left
middle frontal gyrus; right anterior insula, right middle frontal gyrus, and right
orbitofrontal cortex; basal ganglia and thalamus. All of the final clusters were
aligned back to each individual subject’s anatomical space for use in ROI-based
analyses. For reporting cluster locations, we labeled up to 4 local maxima (based on
contrast Z values) that best describe the structures that make up each cluster
(Supplementary Table 1).

Visual object localizer. Subjects viewed images of objects (same as in the main
task but full-contrast) and performed a one-back memory task. This task was
constructed using a standard block design of twenty 14-second blocks, with 8 s of
fixation between blocks. Each block consisted of images from only one category,
such that there were 5 blocks for each category randomly interwoven throughout
the run. Each block contained 14 trials, and in each trial an image was presented
for 500 ms followed by 500 ms blank screen fixation. Subjects were instructed to
press any button whenever they saw the same image appear twice in a row. We
used a GLM to estimate object category selectivity in higher-order visual cortex.
Boxcar regressors were constructed for each category and model parameter esti-
mates were entered into contrasts of faces>others, animals>others, houses>others,
manmade objects>others. An anatomical mask of higher-order visual cortex was
created by first combining regions taken from the Harvard-Oxford brain atlas:
inferior lateral occipital cortex, occipital fusiform gyrus, posterior parahippocampal
gyrus, temporal fusiform cortex, temporal occipital fusiform cortex. Next, voxels
overlapping with early visual cortical regions V1-V4 (see Retinotopic mapping)
were excluded. For each GLM contrast, we defined ROI as voxels passing a contrast
Z-value threshold of 2.3 within this mask. If less than 100 voxels survived the
threshold, we did not define an ROI for that contrast. If the number of significant
voxels within a particular contrast was greater than 500, the Z threshold was
progressively increased by 0.1 until the voxel count fell below 500. These voxel
count cut-offs were determined based on an early study of ventral temporal
category selectivity95 that found average cluster volumes between 900 and
4900 mm3. On average, our category-selective ROIs contained 330.7 ± 16.3 voxels,
corresponding to 2645.6 ± 130.4 mm3.

Retinotopic mapping. Early visual cortical regions were identified using retino-
topic mapping as described in22. Briefly, a bar-shaped aperture moved across the
screen to reveal a circular checkerboard with 11.78° diameter, with one sweep
across the screen lasting 36 s. The bar moved across the screen in 8 sweeps, with
each sweep following a different combination of bar orientation and direction.
Subjects fixated at a dot at the center of the screen and were instructed to press a
button when the dot color changed between green and red. Color changes occurred
semi-randomly with approximately two changes per sweep. Preprocessing was
performed using AFNI and included motion correction by aligning each volume to
the first volume in the run, linear trend removal using linear least-squares, and
spatial smoothing (5 mm FWHM kernel). Population receptive field (pRF96)
analysis was also performed in AFNI97 to find the receptive field center and size
that best explained the observed BOLD time-series for each voxel. The model
outputs were X and Y location, sigma (size) and R2 estimate of the best-fitting
model. X and Y data were converted into polar angle and eccentricity components.
In order to manually delineate different visual regions, these components were
projected onto each individual subjects’ Freesurfer-derived cortical surface recon-
structions. Following the guidelines from97, in both left and right hemispheres of
each subject we defined the following visual field maps: V1, V2d, V2v, V3d, V3v
and V4. Within each hemisphere, we merged the dorsal and ventral portions of V2
and V3 into one single V2 or V3 ROI. Two subjects’ retinotopic data were too
noisy for acceptable ROI definition: therefore, all analyses involving early visual
cortex ROIs contained data from 23 subjects only.

The first five subjects reported difficulty fixating for the full extent of the
retinotopy scan and we observed noisier than expected retinotopic maps. For the
remaining 20 subjects, we thus included four additional shorter (~2 min each)
retinotopic mapping scans while viewing rotating checkerboard-patterned wedges
(to measure polar angle) and expanding/contracting checkerboard-patterned rings
(to measure eccentricity). Subjects performed the same color-change detection task
as for the first retinotopy scan. Stimuli were presented in the following order:
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clockwise rotating wedge, counter-clockwise rotating wedge, expanding ring,
contracting ring. All stimuli subtended 5.89° of visual angle at their maxima.
Preferred polar angle and eccentricity values for each voxel were derived using the
@RetinoProc command in AFNI, and we defined visual field maps using the same
method as above. Finally, for each visual area we extracted the larger ROI derived
from the two retinotopic mapping methods. On average across subjects and
collapsed across hemispheres, retinotopic ROI voxel counts were 883.8 ± 32.8 (V1),
875 ± 36.7 (V2), 741.5 ± 42.4 (V3), 268.1 ± 42.8 (V4).

Multivariate pattern analysis (MVPA). We performed MVPA using The
Decoding Toolbox98 in MATLAB within the following ROIs: significant clusters
from the group-level recognized>unrecognized GLM contrast, and individually-
defined early (retinotopic) and higher-order (category-selective) visual cortex. The
two visual ROIs were matched for the number of voxels within each subject,
selected according to the following procedure: all subregions were combined to
form two larger regional ROIs (V1-V4 combined into early visual cortex, and four
category-selective regions combined into higher-order visual cortex). The region
with a greater voxel count had voxels removed until it contained an equal number
of voxels to the smaller region. The removed voxels were those that had the lowest
parameter estimates in a visual object-responsive GLM derived from the object
localizer data. Decoding was additionally performed within each visual subregion
separately (V1-V4 and four category-selective ROIs) but not controlled for voxel
counts.

We trained three linear support vector machine classifiers (cost parameter = 1)
to decode stimulus category from GLM-derived beta estimates corresponding to
recognized real object trials, unrecognized real object trials, and scrambled object
trials. Scrambled image trials were not separated by subjective recognition because
recognized, scrambled trial counts were too low for effective classifier training and
N-fold cross-validation: subjects frequently recognized only one scrambled image
per run. Beta maps in functional space (2 mm isotropic voxels) were aligned to
individual subject anatomical space but kept at the 2 mm isotropic voxel resolution.
Decoding accuracy was determined using a leave-one-run-out cross-validation
scheme. In each cross-validation fold, the classifier was trained using beta estimates
from all but one task run and tested on beta estimates from the left out run. Six
binary classifications were performed, consisting of all possible pairwise
combinations of the four stimulus categories. For each binary classification, the test
sample was assigned to one of two categories. Whichever category was chosen in a
majority of these binary classifications was selected as the predicted category. To
resolve ties, the predicted category was the one that had the maximum decision
value summed over all binary classifications98. Accuracy was first calculated for
each stimulus category separately, and then averaged across categories to produce a
final balanced accuracy output per ROI. Significant decoding accuracy at the
group-level was assessed using a label permutation test. For each subject, category
labels were randomly shuffled within each run separately to maintain cross-
validation structure. The classifier was trained and tested using the actual beta
estimates but shuffled category labels. This process was repeated 100 times per
subject, to generate 100 sets of permuted balanced accuracies. 1000 group-level
averages were created by randomly sampling one permuted balanced accuracy
output from each subject. The true group-averaged balanced accuracy was
tested against this null distribution with α = 0.05, followed by FDR correction
(q threshold = 0.05) across all ROIs to account for multiple comparisons. The
same permutation test was performed to compare accuracy differences between
recognized and unrecognized image trials: the true accuracy difference (recognized
accuracy – unrecognized accuracy) was compared to a null distribution of 1000
permuted accuracy differences.

A searchlight-based MVPA analysis was also performed in a similar manner,
except a 3-voxel radius sphere centered on each voxel across the whole brain was
used instead of ROIs. Statistics were performed using permutations and threshold-
free cluster enhancement (TFCE99), which accounts for both cluster-like behavior
and multiple comparison correction. Briefly, each permuted group average map
was tested against chance (25%). Each voxel’s t-statistic was transformed using
TFCE, and the maximum TFCE value across the brain was incorporated into a null
distribution of maximal statistic. The real group average was also TFCE
transformed and tested against the null distribution of maximal statistics. Voxels
surviving a threshold of p < 0.05 were declared significant.

Linear mixed model. We constructed a linear mixed model to assess the effects of
ROI voxel count and brain region location (cortical or subcortical) on accuracy of
decoding the object category in recognized trials. Using the lme4 package in R, we
fit a model with four-fixed effects parameters: voxel count, brain location, their
interaction and the intercept. We additionally included all four parameters as
subject-level random effects to ensure maximal random effects structure justified
by the design100. The model was fit using restricted maximum likelihood estima-
tion (REML) and the BOBYQA optimization algorithm. To improve the model fit,
voxel counts were scaled by 1/1000 and centered to zero mean, and decoding
accuracies were angular transformed ðarcsineð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

proportion
p ÞÞ . The model summary

is reported in Supplementary Table 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Due to the large file size of raw 7 T fMRI data, the datasets generated and analyzed
during the current study are available from the corresponding author by reasonable
request after appropriate de-identification is carried out. Stimulus images were selected
from public domain labeled photographs or from Psychological Image Collection at
Stirling (PICS, http://pics.psych.stir.ac.uk/). Source data are provided with this paper.

Code availability
We used publicly available open source software toolboxes, and custom scripts written in
MATLAB, to analyze our data. Code supporting this study is available at a dedicated
Github repository: https://github.com/BiyuHeLab/NatCommun_Levinson2021.
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