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Longitudinal analysis of blood markers reveals
progressive loss of resilience and predicts human
lifespan limit
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We investigated the dynamic properties of the organism state fluctuations along individual

aging trajectories in a large longitudinal database of CBC measurements from a consumer

diagnostics laboratory. To simplify the analysis, we used a log-linear mortality estimate from

the CBC variables as a single quantitative measure of the aging process, henceforth referred

to as dynamic organism state indicator (DOSI). We observed, that the age-dependent

population DOSI distribution broadening could be explained by a progressive loss of phy-

siological resilience measured by the DOSI auto-correlation time. Extrapolation of this trend

suggested that DOSI recovery time and variance would simultaneously diverge at a critical

point of 120− 150 years of age corresponding to a complete loss of resilience. The obser-

vation was immediately confirmed by the independent analysis of correlation properties of

intraday physical activity levels fluctuations collected by wearable devices. We conclude that

the criticality resulting in the end of life is an intrinsic biological property of an organism that

is independent of stress factors and signifies a fundamental or absolute limit of human

lifespan.
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Aging is manifested as a progressive functional decline
leading to exponentially increasing prevalence1,2 and
incidence of chronic age-related diseases (e.g., cancers,

diabetes, cardiovascular diseases, etc.3–5) and disease-specific
mortality6. Much of our current understanding of the relationship
between aging and changes in physiological variables over an
organism’s lifespan originates from large cross-sectional
studies7–9 and led to development of increasingly reliable “bio-
logical clocks” or “biological age” estimations reflecting age-
related variations in blood markers10, DNA methylation (DNAm)
states11,12 or patterns of locomotor activity13–15 (see16 for a
review of biological age predictors). All-cause mortality in
humans17,18 and the incidence of chronic age-related diseases
increase exponentially and double every 8 years3. Typically,
however, the physiological indices and the derived quantities such
as biological age predictions change from the levels observed in
the young organism at a much lower pace than it could be
expected from the Gompertzian mortality acceleration.

Most important factors that are strongly associated with age
are also known as the hallmarks of aging19 and may be, at least in
principle, modified pharmacologically. In addition to that, by
analogy to resilience in ecological systems, the dynamic properties
such as physiological resilience measured as the recovery rate
from the organism state perturbations20,21 were also associated
with mortality22 and thus may serve as an early warning sign of
impending health outcomes23,24. Hence, a better quantitative
understanding of the intricate relationship between the slow
physiological state dynamics, resilience, and the exponential
morbidity and mortality acceleration is required to allow the
rational design, development, and clinical validation of effective
antiaging interventions.

We addressed these theoretical and practical issues by a sys-
tematic investigation of aging, organism state fluctuations, and
gradual loss of resilience in a dataset involving multiple Complete
Blood Counts (CBC) measured over short periods of time (a few
months) from the same person along the individual aging tra-
jectory. Neutrophil to Lymphocyte Ratio (NLR) and Red cell
distribution width have been already suggested and characterized
as biomarkers of aging25–28. Instead of focusing on individual
factors, to simplify the matters, we followed29,30 and described
the organism state by means of a single variable, henceforth
referred to as the dynamic organism state indicator (DOSI) in the
form of the log-transformed proportional all-cause mortality

model predictor. First, we observed that early in life the DOSI
dynamics quantitatively follows the universal ontogenetic growth
trajectory from31. Once the growth phase is completed, the
indicator demonstrated all the expected biological age properties,
such as association with age, multiple morbidity, unhealthy life-
styles, mortality and future incidence of chronic diseases.

Late in life, the dynamics of the organism state captured by
DOSI along the individual aging trajectories is consistent with
that of a stochastic process (random walk) on top of the slow
aging drift. The increase in the DOSI variability is approximately
linear with age and can be explained by the rise of the organism
state recovery time. The latter is thus an independent biomarker
of aging and a characteristic of resilience. Our analysis shows that
the auto-correlation time of DOSI fluctuations grows (and hence
the recovery rate decreases) with age from about 2 weeks to over
8 weeks for cohorts aging from 40 to 90 years. The divergence of
the recovery time at advanced ages appeared to be an organism-
level phenomenon. This was independently confirmed by the
investigation of the variance and the autocorrelation properties of
physical activity levels from another longitudinal dataset of
intraday step-counts measured by wearable devices. We put for-
ward arguments suggesting that such behavior is typical for
complex systems near a bifurcation (disintegration) point and
thus the progressive loss of resilience with age may be a dynamic
origin of the Gompertz law. Finally, we noted, by extrapolation,
that the recovery time would diverge and hence the resilience
would be ultimately lost at the critical point at the age in the
range of 120–150 years, thus indicating the absolute limit of
human lifespan.

Results
Quantification of aging and development. Complete blood
counts (CBC) measurements are most frequently included in
standard blood tests and thus comprise a large common subset of
physiological indices reported across UKB (471473 subjects, age
range 39–73 y.o.) and NHANES datasets (72,925 subjects, age
range 1–85 y.o., see Supplementary Table 1 for the description
of the data fields). To understand the character of age-related
evolution of the organism state we employed a convenient
dimensionality-reduction technique, the Principal Component
Analysis (PCA). The coordinates of each point in Fig. 1A is
obtained by averaging the first three Principal Component scores

Fig. 1 Quantification of aging and development. A The graphical representation of the PCA for 5–85 year old NHANES participants follows an age-cohort
averaged aging trajectory. Centers of each sequential age cohort are plotted in first three PCs. Three approximately linear segments are clearly seen in
aging trajectory, corresponding to (I) age < 35; (II) age 35–65; (III) age > 65. B Dynamic organism state indicator (DOSI) mean values (solid line) and
variance (shaded area) are plotted relative to age for all participants of NHANES study. The average line demonstrates nearly linear growth after age of 40.
In younger ages the dependence of age is different and consistent with the universal curve suggested by the general model for ontogenetic growth31. To
illustrate the general character of this early-life dependence we superimposed it with the curve of mean weight in age cohorts of the same population
(dotted line). All values are plotted in normalized from as in31. The average DOSI of the “most frail” (“compound morbidity index”, CMI > 0.6) individuals is
shown with the dashed line. C Distributions of sex- and age-adjusted DOSI in cohorts of NHANES participants in different morbidity categories relative to
the DOSI mean in cohorts of “non-frail” (1 or no diagnoses, CMI < 0.1) individuals. Note that the distribution function in the “most frail” group (more than
six diagnoses, CMI > 0.6) exhibited the largest shift and a profound deviation from the symmetric form.
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of PCA-transformed CBC variables in age-matched cohorts in
NHANES dataset. The average points follow a well-defined tra-
jectory or a flow in the multivariate configuration space spanned
by the physiological variables and clearly correspond to various
stages of the organism development and aging.

Qualitatively, we differentiated three distinctive segments of
the aging trajectory, corresponding to (I) early adulthood
(16–35 y.o.); (II) middle ages (35–65 y.o.); and (III) older ages
(older than 65 y.o.). The middle segment in trajectories for
women has additional change of direction presumably associated
with menopause, but we leave its investigation for future work.
Inside each of the segments, the trajectory was approximately
linear. This suggests that over long periods of time (age), CBC
variations other than noise could be described by the dynamics of
a single dynamic variable (degree of freedom) tracking the
distance travelled along the aging trajectory and henceforth
referred to as the DOSI.

Morbidity and mortality rates increase exponentially with age
and a log-linear risk predictor model is a good starting point for
characterization of the functional state of an organism and
quantification of the aging process15,29. Accordingly, we employed
Cox proportional hazards model32 and trained it using the death
register of the NHANES study using log-transformed CBC
measurements and sex variable (but not age) as covariates.
Altogether, the training subset comprised participants aged 40 y.o.
and older. The mortality risk model yielded a single value of log-
hazards ratio for every subject and increased in full age range of
NHANES participants (Fig. 1B). As we will see below, it was a
useful and dynamic measure of the organism state henceforth
identified with DOSI.

Early in life the dynamics of the organism state has, of course,
nothing to do with the late-life increase of mortality rate (i.e.,
aging), but is rather associated with ontogenetic growth. Accord-
ingly, we checked that the organism state measured by DOSI
follows closely the theoretical trajectory of the body mass adopted
from31:

xðtÞ ¼ X 1� 1� x0
X

� �1
4

� �
e
�t
t0

� �4

: ð1Þ

Here x is the body mass, or in the linear regime any quantity such
as DOSI depending on the body mass, t is the age, t0 is the
characteristic time scale associated with the development, and x0
and X are the asymptotic levels of same property at birth and in the
fully grown state, respectively. The dots and the dashed lines in
Fig. 1B represents age-cohorts averaged body mass trajectory and
the best fit of the age-cohort averaged DOSI levels by Eq. (1) for
the same NHANES participants. The approximation works
remarkably well up until the age of about 40. The characteristic
time scale from the fit, t0= 6.8 years, coincides almost exactly with
the best fit value of 6.3 years obtained from the fit of body mass
trajectory.

As the body size increases, the metabolic output per unit mass
slows down and the organism reaches a steady state correspond-
ing to the fully grown organism. The inspection of Fig. 1B shows,
however, that the equilibrium solution of the organism growth
problem appears to be unstable in the long run and the organism
state dynamics measured by DOSI exhibits deviations from the
stationary solution beyond the age of ~40 years old.

To separate the effects of chronic diseases from disease-free
aging, we followed33 and characterized the health status of each
study participant based the number of health conditions
diagnosed for an individual normalized to the total number of
conditions included in the analysis to yield the “compound
morbidity index” (CMI) with values ranging from 0 to 1. The list
of health conditions common to the NHANES and UKB studies

that were used for CMI determination is given in Supplementary
Table 2.

CMI can be viewed as a convenient proxy to the Frailty Index
introduced in34, that is a composite marker, depending on the
prevalence of 46 health deficits. Unlike the Frailty Index, CMI
requires only the variables that are available simultaneously in
NHANES and UKB. In NHANES, among individuals aged 40
and older, the correlation between the Frailty Index and CMI was
pretty high (Pearson r= 0.64). Therefore we accept semi-
quantitative correspondence between CMI and Frailty Index
and categorize UKB and NHANES participants in cohorts of
individuals of increasing level of frailty according to CMI.

Multiple morbidity manifests itself as elevated DOSI levels.
This can be readily seen from the difference between the solid and
dashed lines in Fig. 1B, which represent the DOSI means in the
cohorts of healthy (“non-frail”, CMI < 0.1) and “most frail” (CMI
> 0.6) NHANES participants, respectively. In groups stratified by
increasing number of health condition diagnoses, the normalized
distribution of DOSI values (after adjustment by the respective
mean levels in age- and sex-matched cohorts of healthy subjects)
exhibited a progressive shift and increased variability (see Fig. 1C
and Supplementary Fig. 1b for NHANES and UKB, respectively).

For both NHANES and UKB, the largest shift was observed in
the “most frail” (CMI > 0.6) population. The increasingly heavy
tail at the high end of the DOSI distribution in this group is
characteristic of an admixture of a distinct group of individuals
occupying the adjacent region in the configuration space
corresponding to the largest possible DOSI levels. Therefore,
DOSI displacement from zero-mean (after proper adjustments
for age and sex) was expected to reflect the fraction of “most frail”
individuals in a cohort of any given age. This was confirmed to be
true using the NHANES dataset (Fig. 2A; r= 0.83).

The fraction of “most frail” subjects still alive increased
exponentially at every given age until the age corresponding to
the end of healthspan was reached. The characteristic doubling
rate constants for the “most frail” population fractions were 0.087
and 0.094 per year in the NHANES and the UKB cohorts,
respectively, in comfortable agreement with the accepted
Gompertz mortality doubling rate of 0.085 per year35, see Fig. 2B.

We note that the prevalence of diseases in the NHANES cohort
is consistently higher than that in the UKB population, although
the average lifespan is comparable in the two countries. This may
be a consequence of the enrollment bias in the UKB: life tables
analysis in36 suggests the UKB subjects appear to outlive typical
UK residents.

Dynamic organism state indicator (DOSI) and health risks. In
the most healthy subjects, i.e., those with no diagnosed diseases at
the time of assessment, the DOSI predicted the future incidence
of chronic age-related diseases observed during 10-year follow-up
in the UB study (Supplementary Table 2). There was no relevant
information available in NHANES. We tested this association
using a series of Cox proportional hazard models trained to
predict the age at the onset/diagnosis of specific diseases. We
observed that the morbidity hazard ratios associated with the
DOSI relative to its mean in age- and sex-matched cohorts were
statistically significant predictors for at least the most prevalent
health conditions (those with more than 3000 occurrences in the
UKB population). The effect size (HR ≈ 1.03–1.07) was the same
regardless of whether a disease was diagnosed first in a given
individual or followed any number of other diseases. Only
emphysema and heart failure which are known to be strongly
associated with increased neutrophil counts37,38 demonstrated
particularly high associations. Therefore, we conclude that the
DOSI is a characteristic of overall health status that is universally
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associated with the risks of developing the most prevalent diseases
and, therefore, with the end of healthspan as indicated by the
onset of the first morbidity (HR ≈ 1.05 for the “First morbidity”
entry in Supplementary Table 2).

In the most healthy “non-frail” individuals with life-shortening
lifestyles/behaviors, such as smoking, the DOSI was also elevated,
indicating a higher level of risks of future diseases and death
(Fig. 2C). Notably and in agreement with the dynamic nature of
DOSI, the effect of smoking appeared to be reversible: while the
age- and sex- adjusted DOSI means were higher in current
smokers compared to non-smokers, they were indistinguishable
between groups of individuals who never smoked and who quit
smoking (c.f.15,39).

Physiological state fluctuations and loss of resilience. To
understand the dynamic properties of the organism state fluc-
tuations in relation to aging and diseases, we used two large
longitudinal datasets, jointly referred to and available as GERO-
LONG, including anonymized information on: (a) CBC mea-
surements from InVitro, the major Russian clinical diagnostics
laboratory and (b) physical activity records measured by step
counts collected by means of a freely available iPhone application.

The CBC slice of the combined dataset included blood test
results from 388 male and 694 female subjects aged 30–90 with
complete CBC analyses that were sampled 10–20 times within a
period of more than 3 years (up to 42 months).

There was no medical condition information available for the
GEROLONG subjects. Hence, for the CBC measurements we
used the mean DOSI level corresponding to the “most frail”
NHANES and UKB participants as the cutoff value to select
“non-frail” GEROLONG individuals (141 male and 266 female
subjects aged 40–90) for subsequent analysis.

The difference between the mean DOSI levels in groups of the
middle-aged and the eldest available individuals was of the same
order as the variation of DOSI across the population at any given
age (see Fig. 1B). Accordingly, serial CBC measurements along
the individual aging trajectories revealed large stochastic fluctua-
tions of the physiological variables around its mean values, which
were considerably different among individual study participants.
Naturally, physiological variables at any given moment of time
reflect a large number of stochastic factors, such as manifestation
of the organism responses to endogenous and external factors (as
in Fig. 2C). We therefore focused on the statistical properties of
the organism state fluctuations.

Auto-correlation function is the single most important
statistical property of a stationary stochastic process represented
by a time series x(t):

CðΔtÞ ¼ hδxðt þ ΔtÞδxðtÞit ; ð2Þ
where Δt is the time lag between the subsequent measurements of
x, δx(t)= x(t)− 〈x〉t is the deviation of x from its mean value
produced by the averaging 〈x(t)〉t along the individual trajectory
(see e.g.,40).

The autocorrelation function of x=DOSI averaged over
individual trajectories in subsequent age cohorts of GEROLONG
dataset was plotted vs. the delay time in Fig. 3A and exhibited
exponential decay over a time scale of ~2–8 weeks depending
on age.

The exponential character of the autocorrelation function,
CðΔtÞ � expð�εΔtÞ is a signature of stochastic processes follow-
ing a simple Langevin equation:

δ _x ¼ �εδx þ f ðtÞ; ð3Þ
where δ _x stands for the rate of change in fluctuations δx, ε is the
relaxation or recovery rate, and f is the “force” responsible for
deviation of the organism state from its equilibrium.

The auto-correlation function decay time (or simply the auto-
correlation time) is inversely proportional to the relaxation
(recovery) rate ε and characterizes the time scale involved in the
equilibration of a system’s state in response to external perturba-
tions. We therefore propose using this quantity as a measure of an
organism’s “resilience”, the capacity of an individual organism to
resist and recover from the effects of physiological or pathological
stresses41,42).

We fitted the DOSI auto-correlation functions averaged over
individuals representing subsequent age-matched cohorts to an
exponential function of the time delay. We observed that recovery
rates obtained from fitting to data in the subsequent age-cohorts
decreased approximately linearly with age (Fig. 3C). Extrapola-
tion to older ages suggested that the equilibration rate and hence
the resilience is gradually lost over time and is expected to vanish
(and hence the recovery time to diverge), at some age of
~120–150 y.o.).

The exponential decay of auto-correlation function is not
merely a peculiarity of an organism state indicator computed
from CBC. We were able to use another set of high resolution
longitudinal measurements of daily step counts collected by
wearable devices. Step counts measurements were obtained from

Fig. 2 The relation between the dynamic organism state indicator (DOSI) and lifestyles, frailty, and health risks. A Fraction of frail persons is strongly
correlated with the excess DOSI levels, that is the difference between the DOSI of an individual and its average and the sex- and age-matched cohort in the
“non-frail” population in NHANES. B Exponential fit showed that until the age of 70 y.o. the fraction of the “most frail” individuals in the population grows
approximately exponentially with age with the doubling rate constants of 0.08 and 0.10 per year in the UKB and the NHANES cohorts, respectively.
C Distribution of log-hazards ratio in age- and sex-matched cohorts of NHANES participants who never smoked, smoked previously but quit prior to
the time of study participation, or were current smokers at the time of the study. The DOSI level is elevated for current smokers, while it is almost
indistinguishable between never-smokers and those who quit smoking (two-sided Mann–Whitney test p > 0.05). Each boxplot shows the center (median)
of the distribution, boxplot bounds show the 25 and 75% percentiles and boxplot whiskers show the 5 and 95% percentiles.
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users of fitness wristband (3032 females, 1783 males of age 20–85
y.o.). The number of measurements for each user was at least
30 days and up to 5 years.

In15 we observed, that the variability of physical activity
(namely, the logarithm of the average physical activity), that is
another hallmark of aging and is associated with age and risks of
death or major deceases, also increases with age and hence may
be used as an organism state indicator. The autocorrelation
function of the physical activity levels shows already familiar
exponential profile and signs of the loss of resilience in
subsequent age-matched cohorts as shown in Fig. 3B.

The recovery rate inferred from as the inverse autocorrelation
time from physical activity levels trajectories is plotted alongside
the recovery rates from CBC-derived DOSI in Fig. 3C. We
observed that the recovery rates revealed by the organism state
fluctuations measured in apparently unrelated subsystems of
the organism (the blood cell counts and physical activity levels)
are highly concordant, both decrease as the function of the
chronological age at the same pace, and, if the extrapolation
holds, vanish at the same limiting age.

Eq. (3) predicts, that the variance of DOSI should also
increase with age. Indeed, according to the solution of the
Langevin equation with a purely random and uncorrelated force,

〈f(t+ Δt)f(t)〉t= Bδ(Δt) (with δ(x) being the Dirac’s delta-
fucntion and B being the power of the stochastic noise), the
fluctuations of x=DOSI should increase with age thus reflecting
the dynamics of the recovery rate: σ2 ≡ 〈δx2〉 ~ B/ε.

Remarkably, the variability in a DOSI did increase with age in
every dataset evaluated in this study. Following our theoretical
expectations of the inverse relation between the resilience and the
fluctuations, we plotted the inverse variance of the DOSI
computed in sex- and age-matched cohorts representing the
most healthy subjects (see Fig. 3D). Again, extrapolation
suggested that, if the tendency holds at older ages, the population
variability would increase indefinitely at an age of ~120–150 y.o.

As expected, the amplification of the fluctuations of the
organism state variables with age is not limited to CBC features.
In Fig. 3D we plotted the inverse variance of this physical activity
feature and found that it linearly decreases with age in such a way
that the extrapolated variance diverges at the same critical point
at the age of ~120–150 y.o.

To demonstrate the universality of of the organism state
dynamics, we followed the fluctuation properties of the Phenoage,
another log-linear mortality predictor trained using the explicit
age, sex and a number of biochemical blood markers29. By its
nature, PhenoAge is another DOSI produced from a different set

Fig. 3 Physiological state fluctuations and loss of resilience. A The auto-correlation function C(Δt) of the Dynamic organism state indicator (DOSI)
fluctuations during several weeks averaged in sequential 10-year age-cohorts of GEROLONG subjects showed gradual age-related remodelling.
Experimental data and fit to autocorrelation function are shown with solid and dashed lines, respectively. The DOSI correlations are lost over time Δt
between the measurements and, hence, the DOSI deviations from its age norm reach the equilibrium distribution faster in younger individuals. B The auto-
correlation function C(Δt) of fluctuations of the negative logaritm of steps-per-day during several weeks averaged in sequential 10-year age-cohorts of
GEROLONG Stepcounts subset subjects showed similar gradual age-related remodelling. C The DOSI relaxation rate (or the inverse characteristic recovery
time) computed for sequential age-matched cohorts from the GEROLONG dataset decreased approximately linearly with age and could be extrapolated to
zero at an age in the range of ~110–170 y.o. (at this point, there is complete loss of resilience and, hence, loss of stability of the organism state). The solid
lines and shaded areas show the line of linear regression fit and its 95% confidence interval. D The inverse variance of DOSI decreased linearly in all
investigated datasets and its extrapolated value vanished (hence, the variance diverged) at an age in the range of 120–150 y.o. We performed the linear fit
for subjects 40 y.o. and older, excluding the “most frail” (“compound morbidity index”, CMI > 0.6) individuals. The solid lines and shaded areas show the
line of linear regression fit and its 95% confidence interval. The blue dots and lines show the inverse variance of log-scaled measure of total physical
activity (the number of steps per day recorded by a wearable accelerometer) for NHANES participants. Phenoage29, calculated using explicit age and
additional blood biochemistry parameters also demonstrated age-related decrease of the inverse variance in NHANES population.
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of features. Unfortunately, we could not not obtain a sufficient
number of individuals with all the relevant markers measurements
from the longitudinal dataset from InVitro. Accordingly, we could
not compute the corresponding autocorrelation function. We
were, however, able to compute PhenoAge for NHANES subjects
and observed an increase in variability of the PhenoAge estimate
as a function of chronological age and a possible divergence of
PhenoAge fluctuations at around the age of 150 y.o.

Discussion
The simultaneous divergence of the organism state recovery times
(critical slowing down in Fig. 3C) and the increasing dynamic
range of the the organism state fluctuations (critical fluctuations in
Fig. 3D) observed independently in two biological signals is
characteristic of proximity of a critical point23,40 at some advanced
age over 100 y.o. Under these circumstances, the organism state
dynamics are stochastic and dominated by the variation of the
single dynamic variable (also known as the order parameter)
associated with criticality23,43. A proper identification of such a
feature requires massive high-quality longitudinal measurements
and sophisticated approaches auto-regressive models. In a similar
study involving CBC variables of aging mice, we were able to
obtain an accurate predictor associated with the age, risks of death
(and the remaining lifespan), and frailty44. In this work we turned
the reasoning around and choose to quantify the organism state by
the log-linear proportional hazards estimate of the mortality rate
followed15,29,45, using CBC and physical activity variables. This
inherently dynamic quantitative organism state indicator (DOSI)
increased with age, predicted the prospective incidence of age-
related diseases and death, and was elevated in cohorts repre-
senting typical life-shortening lifestyles, such as smoking, or
exhibiting multiple morbidity.

The log-linear risks model predictor demonstrated a non-
trivial dependence on age also early in life, that is in the age range
with almost no recorded mortality events in the training dataset.
The age-cohort averaged DOSI increased and then reached a
plateau (Fig. 1B) in good quantitatively consistent with the pre-
dictions of the universal theory of ontogenetic growth31. The
agreement between the theory and the DOSI dependence on age
is very good, and hence we are led to believe that the features of
the “aging trajectory” in Fig. 1A are not coincidental artifacts of
data analysis.

According to the theory, the development of any organism is
the result of a competition between the production of new tissue
and life-sustaining activities. The total amount of the energy
available scales as the fractional power of the body mass m3/4

according to the universal allometric Kleiber–West law46,47. On
the one hand, the energy requirements for the organism main-
tenance increase linearly as the body mass grows and hence the
initial excess metabolic power drives the growth of the organism
until it reaches the dynamic equilibrium corresponding to the
mature animal state.

As we can see in Fig. 1B, the mature human organism is
dynamically unstable in the long run and deviations from the
ontogenetic growth theory predictions pick up slowly well after
the organism is fully formed. The organism state dynamics
measured by DOSI over lifetime qualitatively reveals at least three
regimes reflecting growth, maturation, and aging, respectively.
The apparent life-stages correspond well to the results of multi-
variate PCA of CBC variance (Fig. 1A) in this work and also that
of physical activity acceleration/deceleration patterns from15.
Every arm of the aging trajectory is characterized by a specific set
of features strongly associated with age in the signal.

Schematically, the reported features of the longitudinal
organism state dynamics can be summarized with the help of the

following qualitative picture (Fig. 4). Far from the critical point
(at younger ages), the organism state perturbations can be
thought of as confined to the vicinity of a possible stable equili-
brium state in a potential energy basin (A). Initially, the dynamic
stability is provided by a sufficiently high potential energy barrier
(B) separating this stability basin from the inevitably present
dynamically unstable regions (C) in the space of physiological
parameters. While instability basin, an organism state experiences
stochastic deviation from the metastable equilibrium state, which
is gradually displaced (see the dashed line D) in the course of
aging even for the successfully aging individuals.

The characteristic organism state auto-correlation time
demonstrated here (3–6 weeks, see Fig. 3A) is much shorter than
lifespan. The dramatic separation of time scales makes it very
unlikely that the linear decline of the recovery force measured by
the recovery rate in Fig. 3C can be explained by the dynamics of
the organism state captured by the DOSI variation alone.
Therefore, we conclude that the progressive remodeling of the
attraction basin geometry reflects adjustment of the DOSI fluc-
tuations to the slow independent process that is aging itself. In
this view, the aging drift of the DOSI mean in cohorts of healthy
individuals (as in Fig. 1B) is the adaptive organism-level response
reflecting, on average, the increasing stress produced by the aging
process.

The longitudinal analysis in this work demonstrated that the
organism state measured by DOSI follows a stochastic trajectory
driven mainly by the organism responses to unpredictable stress
factors. Over lifetime, DOSI increases slowsly, on average. The
dynamic range of the organism state fluctuations is proportional
to the power of noise and is inversely proportional to the recovery
rate of the DOSI fluctuations. Therefore, the organism state of
healthy individuals at any given age is described by the mean
DOSI level, the DOSI variability and its auto-correlation time.
Together, the three quantities comprise the minimum set of bio-
markers of stress and aging in humans and could be determined

Fig. 4 Schematic representation of loss of resilience along aging
trajectories. Representative aging trajectories are superimposed over the
potential energy landscape (vertical axis) representing regulatory
constraints. The stability basin (A) is separated from the unstable region
(C) by the potential energy barrier (B). Aging leads to a gradual decrease in
the activation energy and barrier curvature and an exponential increase in
the probability of barrier crossing. The stochastic activation into a
dynamically unstable (frail) state is associated with acquisition of multiple
morbidities and certain death of an organism. The white dotted line (D)
represents the trajectory of the attraction basin minimum. Examples 1
(black solid line) and 2 (black dashed line) represent individual life-long
stochastic DOSI trajectories that differ with respect to the age of first
chronic disease diagnosis.
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and altered, in principle, by different biological mechanisms and
therapeutic modalities.

The DOSI recovery rate characterizes fluctuations of DOSI on
time scales from few weeks to few months, decreases with age and
thus indicates the progressive loss of physiological resilience. Such
age-related remodeling of recovery rates has been previously
observed in studies of various physiological and functional
parameters in humans and other mammals. For example, in
humans, a gradual increase in recovery time required after
macular surgery was reported in sequential 10-year age cohorts48

and age was shown to be a significant factor for twelve months
recovery and the duration of hospitalization after hip fracture
surgery49,50, coronary artery bypass51, acute lateral ankle liga-
ment sprain52. A mouse model suggested that the rate of healing
of skin wounds also can be a predictor of longevity53.

The resilience can only be measured directly from high-quality
longitudinal physiological data. The Framingham Heart Study7,
Dunedin Multidisciplinary Health and Development Study54 and
other efforts produced a growing number of reports involving
statistical analysis of repeated measurements from the same
persons, see, e.g.,55,56. Most of the time, however, the subsequent
samples are years apart and hence time between the measure-
ments greatly exceeds the organism state autocorrelation time
reported here. This is why, to the best of our understanding, the
relation of the organism state recovery rate and mortality has
remained largely elusive.

In the presence of stresses, the loss of resilience should lead to
destabilization of the organism state. Indeed, in a reasonably
smooth potential energy landscape forming the basin of attrac-
tion, the activation energy required for crossing the protective
barrier (B) decreases along with the curvature at the same pace,
that is, linearly with age. Whenever the protective barrier is
crossed, dynamic stability is lost (see example trajectories 1 and 2
in Fig. 4, which differ by the age of crossing) and deviations in the
physiological parameters develop beyond control, leading to
multiple morbidities, and, eventually, death.

On a population level, activation into such a frail state is driven
by stochastic forces and occurs approximately at the age corre-
sponding to the end of healthspan, understood as “disease-free
survival”. Since the probability of barrier crossing is an expo-
nential function of the required activation energy (i.e., the barrier
height)40, the weak coupling between DOSI fluctuations and
aging is then the dynamic origin of exponential mortality accel-
eration known as the Gompertz law. Since the remaining lifespan
of an individual in the frail state is short, the proportion of frail
subjects at any given age is proportional to the barrier crossing
rate, which is an exponential function of age (see Fig. 2B).

The end of healthspan can therefore be viewed as a form of a
nucleation transition40, corresponding in our case to the spon-
taneous formation of states of chronic diseases out of the meta-
stable phase (healthy organisms). The DOSI is then the order
parameter associated with the organism-level stress responses at
younger ages and plays the role of the “reaction coordinate” of the
transition to the frail state later in life. All chronic diseases and
death in our model originate from the dynamic instability asso-
ciated with single protective barrier crossings. This is, of course, a
simplification and yet the assumption could naturally explain why
mortality and the incidence of major age-related diseases increase
exponentially with age at approximately the same rate3.

The reduction of slow organism state dynamics to that of a
single variable is typical for the proximity of a tipping or critical
point23. DOSI is therefore the property of the organism as a
whole, rather than a characteristics of any specific functional
subsystem or organism compartment. We did observe a neat
concordance between the decrease in the organism state recovery
rates (Fig. 3C) and DOSI variance divergence (Fig. 3D) from

seemingly unrelated sources such as blood markers and the
physical activity variables. This is likely a manifestation of com-
mon dynamic origin of a substantial part of fluctuations in
diverse biological signals ranging from blood markers (CBC and
PhenoAge covariates) to physical activity levels. We therefore
predict that similar divergence of variance and increase in auto-
correlation times will be found in future studies involving other
risk-associated markers, including DNAm clocks.

According to the presented model, early in life the dynamics of
DOSI is described by a simple Langevin Eq. (3). External stresses
(such as smoking) or diseases produce perturbations that modify
the shape of the effective potential leading to the shift of the
equilibrium DOSI position. For example, the mean DOSI values in
cohorts of individuals who never smoked or who quit smoking are
indistinguishable from each other, yet significantly different from
(lower than) the mean DOSI in the cohort of smokers (Fig. 2C).
Thus, the effect of the external stress factor is reflected by a change
in the DOSI and is reversed as soon as the factor is removed.

These findings agree with earlier observations suggesting that
the effects of smoking on remaining lifespan and on the risks of
developing diseases are mostly reversible once smoking is ceased
well before the onset of chronic diseases15,39. The decline in the
lung cancer risk after smoking ablation57 is slower than the
recovery rate reported here. This may be the evidence suggesting
that long-time stresses may cause hard-to repair damage to the
specific tissues and thus produce lasting effects on the resilience.

In the absence of chronic diseases when the organism state is
dynamically stable, the elevation of physiological variables asso-
ciated with the DOSI indicates reversible activation of the most
generic protective stress responses. Moderately elevated DOSI
levels are therefore protective responses that can measured by
molecular markers (e.g., C-reactive protein) and affects general
physical and mental health status45. We also predict, that death is
preempted by the activation into a state with excess DOSI and
loss of resilience. The excessive DOSI levels observed in older
individuals can be thought of as an aberrant activation of stress-
responses beyond the dynamic stability range. Thus elevated
levels and long auto-correlation times of DOSI fluctuations are
therefore characteristics of chronic diseases and predict death.

We propose that therapies targeting frailty-associated phenotypes
(e.g., inflammation) would, therefore, produce distinctly different
effects in disease-free vs. frail populations. In healthy subjects, who
reside in the region of the stability basin (B) (see Fig. 4), a
treatment-induced reduction of DOSI would quickly saturate over
the characteristic auto-correlation time and lead to a moderate
decrease in long-term risk of morbidity and death without a change
in resilience. Technically, this would translate into an increase in
healthspan, although the reduction of health risks would be tran-
sient and disappear after cessation of the treatment. In frail indi-
viduals, however, the intervention could produce lasting effects and
reduce frailty, thus increasing lifespan beyond healthspan. This
argument may be supported by longitudinal studies in mice sug-
gesting that the organism state is dynamically unstable, the
organism state fluctuations get amplified exponentially at a rate
compatible with the mortality rate doubling time, and the effects of
transient treatments with life-extending drugs such as rapamycin
produce a lasting attenuation of frailty index44.

The emergence of chronic diseases out of increasingly unstable
fluctuations of the organism state provides the necessary dynamic
argument to support the derivation of the Gompertz mortality
law in the Strehler–Mildvan theory of aging58. In59,60, the authors
suggested that the exponential growth of disease burden observed
in the National Population Health Survey of Canadians over 20 y.
o. could be explained by an age-related decrease in organism
recovery in the face of a constant rate of exposure to environ-
mental stresses.
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Our study provides evidence suggesting that late in life the
organism state dynamics is dominated by features that originate
from the proximity of the critical point, corresponding to the
vanishing resilience. The exact parameters, such as maximum
lifespan, are the results of extrapolations yielding the estimate in
the range of 100–150 years. The questions of whether the critical
point corresponds to a specific age or even achievable along a
realistic trajectory, are not too practical: due to the presence of
strong stochastic forces, most individuals escape the attraction
basin, lose the resilience and disintegrate into states corre-
sponding to chronic diseases well before reaching the ultimate
age. Hence the extrapolation may serve to establish the upper
bound on attainable age or the limiting lifespan.

We therefore argue, that the loss of resilience cannot be avoided
even in the most successfully aging individuals and, therefore, could
explain the very high mortality seen in cohorts of super-centennials
characterized by the so-called compression of morbidity (late onset
of age-related diseases61). Formally, such a state of “zero-resilience”
at the critical point corresponds to the absolute zero on the vitality
scale in the Strehler–Mildvan theory of aging, thus representing a
natural limit on human lifespan. We also note, that very late in life,
as the probability of the loss of resilience increases, so should the
deviations from Gompertz mortality law. A recent careful analysis
of human demographic data supports this argument and yields an
estimate for limiting lifespan of 138 years62.

The semi-quantitative description of human aging and
morbidity proposed here should work well long before the
maximum age and belongs to a class of phenomenological
models. Whereas it is possible to associate the variation of the
organism state measured by DOSI with the effects of stresses or
diseases, the data analysis presented here does not provide any
mechanistic explanations for the progressive loss of resilience.
It is worth to note that the recent study predicts the maximum
human lifespan limit from telomere shortening63 that is com-
patible with the estimations presented here. It would therefore
be interesting to see if the resilience loss in human cohorts is
associated or even caused by the loss of regenerative capacity
due to Hayflick limit.

The proximity of the critical point revealed in this work
indicates that the apparent human lifespan limit is not likely to be
improved by therapies aimed against specific chronic diseases or
frailty syndrome. Thus, no dramatic improvement of the max-
imum lifespan and hence strong life extension is possible by
preventing or curing diseases without interception of the aging
process, the root cause of the underlying loss of resilience. We do
not foresee any laws of nature prohibiting such an intervention.
Therefore, further development of the aging model presented in
this work may be a step toward experimental demonstration of a
dramatic life-extending therapy.

Methods
Complete blood count datasets. NHANES CBC data were retrieved from the
category “Complete Blood Count with 5-part Differential - Whole Blood” of
Laboratory data for NHANES surveys 1999–2014. Corresponding UKB CBC data
fields with related database codes are listed in Supplementary Table 1. The fraction
of samples with missing (or filled with zero) CBC data was <0.035% in any studied
dataset and those samples were discarded. Differential white blood cell percentages
were converted to cell counts by multiplication by 0.01 ×White blood ceel count.
All CBC parameters were log-transformed and normalized to zero-mean and unit-
variance based on data of NHANES participants aged 40 y.o. and older to further
carry out PCA and train Cox proportional hazards model.

Step counts datasets. NHANES step counts per minute records during 1 week
were retrieved from the category “Physical Activity Monitor” of Examination data
for NHANES 2005–2006 survey. Autocorrelation of log-transformed daily step
counts was calculated using data from “Fitbit” devices of 4532 users aged 20–80 y.o.
(1601 male and 2892 female).

Hazards model. The Cox proportional hazards model was trained using NHANES
2015 Public-Use Linked Mortality data. We used CBC data and mortality linked
follow-up available for 40,592 NHANES participants aged 18–85 y.o.. NHANES
population aged 40–85 y.o. was split randomly into training (12,851 participants)
and test (12,883 participants) subsets. Cox model was trained using training subset
(6259 male and 6592 female) with 2392 recorded death events during follow-up
until the year 2015 (1999–2014 surveys). CBC components and the biological sex
label were used as covariates.

The model predicted the all-cause mortality well and yielded a concordance
index value of CI= 0.68 and CI= 0.67 in NHANES training and test subsets and
CI= 0.65 in UKB (samples collected 2007–2011, 218,530 male and 257,965 female
participants aged 39–75 y.o., 28,210 recorded death events during follow-up until
the year 2020). The Cox proportional hazards model was used as implemented in
lifelines package (version 0.25.1) in python. The model was then applied to
calculate the hazards ratio for all samples in the GEROLONG, UKB and NHANES
cohorts (including individuals younger than 40 y.o.).

The DOSI defined as log-hazard ratio of the risk model throughout the
manuscript) turned out to be equally well associated with mortality in the
NHANES study (HR= 1.43) used for training of the risk model and in the
independent UKB study (HR= 1.35; Supplementary Table 2), which was used as a
validation dataset.

All data analyses were carried out in python 3.8 scripts using libraries NumPy
(version 1.18.5), SciPy (version 1.5.2) and Lifelines (version 0.25.1).

The most prevalent chronic diseases and health status. We quantified the
health status of individuals using the sum of major age-related medical conditions
(MCQ) that they were diagnosed with, which we termed the CMI. The CMI is
similar in spirit to the frailty index suggested for NHANES33. We were not able to
use the frailty index because it was based on Questionnaire and Examination data
that were not consistent between all NHANES surveys. Also, we did not have
enough corresponding data for the UKB dataset. For CMI determination, we
followed61 and selected the top 11 morbidities strongly associated with age after the
age of 40. The list of health conditions included cancer (any kind), cardiovascular
conditions (angina pectoris, coronary heart disease, heart attack, heart failure,
stroke, or hypertension), diabetes, arthritis, and emphysema. Notably, we did not
include dementia in the list of diseases since it occurs late in life and hence is
severely underrepresented in the UKB cohort due to its limited age range. We
categorized participants who had more than 6 of those conditions as the “most
frail” (CMI > 0.6), and those with CMI < 0.1 as the “non-frail”. NHANES data for
diagnosis with a health condition and age at diagnosis is available in the ques-
tionnaire category “MCQ”. Data on diabetes and hypertension was retrieved
additionally from questionnaire categories “Diabetes” (DIQ) and “Blood Pressure
& Cholesterol”, respectively.

UK Biobank does not provide aggregated data on these MCQ. Rather, it
provides self-reported questionnaire data (UKB, Category 100074) and diagnoses
made during hospital in-patient stay according to ICD10 codes (UKB, Category
2002). We aggregated self-reported and ICD10 (block level) data to match that of
NHANES for transferability of the results between populations and datasets. We
used the following ICD10 codes to cover the health conditions in UK Biobank:
hypertension (I10-I15), arthritis (M00-M25), cancer (C00-C99), diabetes (E10-
E14), coronary heart disease (I20-I25), myocardial infarction (I21, I22), angina
pectoris (I20), stroke (I60-I64), emphysema (J43, J44), and congestive heart
failure (I50).

Consistently with our previous observations in the NHANES and UKB cohorts,
DOSI also increased with age in the longitudinal GEROLONG cohort. The average
DOSI level as well as its population variance at any given age were, however,
considerably larger than those in the reference “non-frail” groups from the
NHANES and UKB studies (see Supplementary Fig. 1a). This difference likely
reflects an enrollment bias: many of the GEROLONG blood samples were obtained
from patients visiting clinic centers, presumably due to health issues. This could
explain why the GEROLONG population appeared generally more frail in terms of
DOSI than the reference cohorts of the same age from other studies
(Supplementary Fig. 1a, compare the relative positions of the solid blue line and the
two dashed lines representing the GEROLONG cohort and the frail cohorts of the
NHANES and UKB studies, respectively).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at the NHANES web-site
https://www.cdc.gov/nchs/nhanes, at UK Biobank data access procedure described at
https://www.ukbiobank.ac.uk/enable-your-research. Additional data are available from
the corresponding authors on reasonable request.
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