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The analysis of whole-genome sequencing studies is challenging due to the large number of
rare variants in noncoding regions and the lack of natural units for testing. We propose a
statistical method to detect and localize rare and common risk variants in whole-genome
sequencing studies based on a recently developed knockoff framework. It can (1) prioritize
causal variants over associations due to linkage disequilibrium thereby improving interpret-
ability; (2) help distinguish the signal due to rare variants from shadow effects of significant
common variants nearby; (3) integrate multiple knockoffs for improved power, stability, and
reproducibility; and (4) flexibly incorporate state-of-the-art and future association tests to
achieve the benefits proposed here. In applications to whole-genome sequencing data from
the Alzheimer's Disease Sequencing Project (ADSP) and COPDGene samples from NHLBI
Trans-Omics for Precision Medicine (TOPMed) Program we show that our method com-
pared with conventional association tests can lead to substantially more discoveries.
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ARTICLE

he rapid development of whole-genome sequencing tech-

nology allows for a comprehensive characterization of the

genetic variation in the human genome in both coding and
noncoding regions. The noncoding genome covers ~98% of the
human genome, and includes regulatory elements that control
when, where, and to what degree genes will be expressed.
Understanding the role of noncoding variation could provide
important insights into the molecular mechanisms underlying
different traits.

Despite the increasing availability of whole-genome sequencing
datasets including those from moderate to large scale projects
such as the Alzheimer’s Disease Sequencing Project (ADSP), the
Trans-Omics for Precision Medicine (TOPMed) program etc.,
our ability to analyze and extract useful information from these
datasets remains limited at this point and many studies still focus
on the coding regions and regions proximal to genes’>2. The main
challenges for analyzing the noncoding regions include the large
number of rare variants, the limited knowledge of their functional
effects, and the lack of natural units for testing (such as genes in
the coding regions). To date, most studies have relied on asso-
ciation testing methods such as single variant tests for common
variants, gene-based tests for rare variants in coding regions, or a
heuristic sliding window strategy to apply gene-based tests to rare
variants in the noncoding genome>#. Only a few methods have
been developed to systematically analyze both common and rare
variants across the genome, owing to difficulties such as an
increased burden of the multiple testing problem, more complex
correlations, and increased computational cost. Moreover, a
common feature of the existing association tests is that they often
identify proxy variants that are correlated with the causal ones,
rather than the causal variants that directly affect the traits of
interest. Identification of putative causal variants usually requires
a separate fine-mapping step. Fine-mapping methods such as
CAVIAR® and SUSIE® were developed for single, common var-
iant analysis in GWAS studies, and are not directly applicable to
window-based analysis of rare variants in sequencing studies.

Methods that control the family-wise error rate (FWER) have
been commonly used to correct for multiple testing in genetic
associations studies, e.g., a p-value threshold of 5 x 1078 based on
a Bonferroni correction is commonly used for genome-wide
significance in GWAS corresponding to a FWER at 0.05. The
number of genetic variants being considered in the analysis of
whole-genome sequencing data increases substantially to more
than 400 million in TOPMed?, and FWER-controlling methods
become highly conservative’. As more individuals are being
sequenced, the number of variants increases accordingly. The
false discovery rate (FDR), which quantifies the expected pro-
portion of discoveries which are falsely rejected, is an alternative
metric to the FWER in multiple testing control, and can have
greater power to detect true positives while controlling FDR at a
specified level. This metric has been popular in the discovery of
eQTLs and Bayesian association tests for rare variation in autism
spectrum disorder studies®~!!. Given the limited power of con-
ventional association tests for whole-genome sequencing data and
the potential for many true discoveries to be made in studies for
highly polygenic traits, controlling FDR can be a more appealing
strategy. However, the conventional FDR-controlling methods,
such as the Benjamini-Hochberg (BH) procedure!?, often do not
appropriately account for correlations among tests and therefore
cannot guarantee FDR control at the target level, which can limit
the widespread application of FDR control to whole-genome
sequencing data.

The knockoff framework is a recent breakthrough in statistics
to control the FDR under arbitrary correlation structure and to
improve power over methods controlling the FWERI3!4, The
main idea behind it is to first construct synthetic features, i.e.,

knockoff features, that resemble the true features in terms of the
correlation structure but are conditionally independent of the
outcome given the true features. The knockoff features serve as
negative controls and help us select the truly important features,
while controlling the FDR. Compared to the well-known Benja-
mini-Hochberg procedure!?, which controls the FDR under
independence or a type of positive-dependence, the knockoff
framework appropriately accounts for arbitrary correlations
between the original variables while guaranteeing control of the
FDR. Moreover, it is not limited to using calibrated p-values, and
can be flexibly applied to feature importance scores computed
based on a variety of modern machine learning methods, with
rigorous finite-sample statistical guarantees. Several knockoff
constructions have been proposed in the literature including the
second-order knockoff generator proposed by Candés et al.'# and
the knockoff generator for Hidden Markov Models (HMMs)
proposed by Sesia et al.!>16. The HMM construction has been
applied to phased GWAS data in the UK biobank. However, these
constructions can fail for rare variants in whole-genome
sequencing data whose distribution is highly skewed and zero-
inflated, leading to inflated FDR. Romano et al.!” proposed deep
generative models for arbitrary and unspecified data distributions,
but such an approach is computationally intensive, and therefore
not scalable to whole-genome sequencing data.

Our contributions in this paper include a sequential knockoff
generator, a powerful genome-wide screening method, and a
robust inference procedure integrating multiple knockoffs. The
sequential knockoff generator is more than 50 times faster than
state-of-the-art knockoff generation methods, and additionally
allows for the efficient generation of multiple knockoffs. The
genome-wide screening method builds upon our recently pro-
posed scan statistic framework, WGScan!8, to localize association
signals at genome-wide scale. We adopt the same screening
strategy, but incorporate several recent advances for rare-variant
analysis in sequencing studies, including the aggregated Cauchy
association test to combine single variant tests, burden and dis-
persion (SKAT) tests, the saddlepoint approximation for unba-
lanced case-control data, the functional score test that allows
incorporation of functional annotations, and a modified variant
threshold test that accumulates extremely rare variants such as
singletons and doubletons!®-26, We compute statistics measuring
the importance of the original and knockoff features using an
ensemble of these tests. Feature statistics that contrast the original
and knockoff statistics are computed for each feature, and can be
used by the knockoft filter to select the important features, i.e.,
those significant at a fixed FDR threshold. The integration of
multiple knockoffs further helps improve the power, stability, and
reproducibility of the results compared with state-of-the-art
alternatives. Using simulations and applications to two whole-
genome sequencing studies, we show that the proposed method is
powerful in detecting signals across the genome with guaranteed
FDR control.

Our knockoff method can be considered a synthetic alternative
to knockout functional experiments designed to identify func-
tional variation implicated in a trait of interest. For each indivi-
dual in the original cohort, the proposed method generates a
synthetic sequence where each genetic variant is being rando-
mized, making it silent and not directly affecting the trait of
interest while preserving the sequence correlation structure. Then
the proposed method compares the original cohort where the
variants are potentially functional with the synthetic cohort where
the variants are silenced. The randomization utilizes the knockoff
framework that ensures that the original sequence and the syn-
thetic sequence are “exchangeable”. That is, if one replaces any
part of the original sequence with its synthetic, silenced sequence,
the joint distribution of genetic wvariants (the linkage
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disequilibrium structure etc.) remains the same. This leads to an
important feature of our proposed screening procedure that is
similar to real functional experiments, namely the ability to
prioritize causal variants over associations due to linkage dis-
equilibrium and other unadjusted confounding effects (e.g., sha-
dow effects of nearby significant variants and unadjusted
population stratification) as we show below.

In this paper, we present a statistical approach that addresses
the challenges described above, and leads to increased power to
detect and localize common and rare risk variants at genome-
wide scale. The framework appropriately accounts for arbitrary
correlations while guaranteeing FDR control at the desired level,
and therefore has higher power than existing association tests that
control FWER. Furthermore, the proposed method has additional
important advantages over the standard approaches due to some
intrinsic properties of the underlying framework. Specifically, it
allows for the prioritization of causal variants over associations
due to linkage disequilibrium. For analyses specifically focusing
on rare variants, the method naturally distinguishes the signal due
to rare variants from shadow effects of nearby significant (com-
mon or rare) variants. Additionally, it naturally reduces false
positives due to unadjusted population stratification.

Results

Overview of the screening procedure with multiple knockoffs
(KnockoffScreen). We describe here the main ideas behind our
method, KnockoffScreen. We assume a study population of n
subjects, with Y; being the quantitative/dichotomous outcome

T . .
value; X; = (Xil, ...,X;4) being the d covariates which can
include age, gender, principal components of genetic variation

etc; {G,]} being the p genetic variants in the genome. For
1<j<p

each target window @ = { jik< jsl}, we are interested in

determining whether @;; contains any variants associated with

the outcome of interest while adjusting for covariates.

The idea of the proposed method is to augment the original

cohort with a synthetic cohort with genetic variants, {G,—J} ,
1<j<p

referred to as knockoff features. {Et]} are generated by a
1<j<p

data driven algorithm such that they are exchangeable with
{G,-j}l , yet they do not directly affect Y; (ie., are “silenced”,
<j<p

is indepen-
1<j<p

and therefore not causal). More precisely, {éij}

. Note that the knockoff
1<j<p
generation procedure is different from the well-known permuta-
tion procedure which generates control features by permuting the
samples; for such a permutation procedure, the exchangeability
property between the original genetic variants and the synthetic
ones does not hold and hence the FDR control cannot be
guaranteed!314,
The screening procedure examines every target window @y, in
the genome and performs hypothesis testing in both the original
cohort and the synthetic cohort, to test for association of G4, and

dent of Y; conditional on {GU}

éq,kl with Y respectively. As explained below, the knockoff
procedure is amenable to any form of association test within the
window. Let py, , 1~)<1>k1 be the resulting p-values. We define a
feature statistic as

Wd)k, = chk, - T%’ ey

where Tq, = —log,py, and ibkl = —logwﬁ%. Essentially, the
observed p-value for each window is compared to its control

counterpart in the synthetic cohort. A threshold 7 for W, can be
determined by the knockoff filter so that the FDR is controlled at
the nominal level. We select all windows with Wq, >7. We
additionally derived the corresponding Q-value for a window,
9o, that unifies the feature statistic Wq, and the threshold 7.
More details are given in the Methods section.

The knockoff construction ensures exchangeability of features,

namely that {Gi]} and {E}U} are exchangeable. Hence if
1<j<p 1<j<p

one swaps any subset of variants with their synthetic counterpart,
the joint distribution remains the same. For instance, suppose
that G; and G, are two genetic variants, then the knockoff

generator will generate their knockoff counterparts éil and (N?l-z
such that (Gi1:Gi27ai17éi2) ~ (G,—l,éiz,éil,Giz), where “~7

denotes equality in distribution. More generally, for any subset

Sc{L,....p},
(Giv ai)swap(S) ~ (Gi7 ai)» ()

where (Gi, él) s is obtained from (Gi7 é,) by swapping the
swap
variants G; and Gj; for each j € S. This feature exchangeability

implies the exchangeability of the importance scores T, and

T, under the null hypothesis, i.e., (T%’ T%) ~ (T%N Tcpk,) if
@y does not contain any causal variant. Thus T, can be used as
the negative control, and we reject the null when W, =

Tq, — T, is sufficiently large. This exchangeability property
leads to several interesting properties of our proposed screening
procedure relative to conventional association tests as mentioned
in the Introduction, and which will be discussed in detail in later
sections.

Once the knockoff generation is completed, we apply a genome-
wide screening procedure. Our screening procedure considers
windows with different sizes (1 bp, 1kb, 5kb, 10kb) across the
genome, with half of each window overlapping with adjacent
windows of the same size. To calculate the importance score for
each window @, we incorporate several recent advances for
association tests for sequencing studies to compute Po,-

e For each 1bp window (i.e., single variant): we only consider
common (minor allele frequency (MAF)>0.05) and low
frequency (0.01 < MAF <0.05) variants and compute pg, from
single variant score test. For binary traits, we implement the
saddlepoint approximation for unbalanced case-control data.

e For each 1kb/5kb/10 kb window, we perform:

a. Burden and dispersion tests for common and low frequency
variants with Beta (MAF, 1, 25) weights, where Beta (.) is the
probability density function of the beta distribution with
shape parameters 1 and 2526, These tests aim to detect the
combined effects of common and low frequency variants.

b. Burden and dispersion tests for rare variants (MAF < 0.01 &
minor allele count (MAC) > =15) with Beta (MAF, 1, 25)
weights. These tests aim to detect the combined effects of
rare variants.

c. Burden and dispersion tests for rare variants, weighted by
functional annotations?3. Current implementation includes
CADD?” and tissue/cell type specific GenoNet scores?8,
These tests aim to utilize functional annotations for
improved power.

d. Burden test for aggregation of ultra-rare variants (MAC < 5).
These tests aim to aggregate effects from extremely rare
variants such as singletons, doubletons etc.
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Fig. 1 Overview of KnockoffScreen. a Knockoff generation based on the original genotype matrix. Each row in the matrix corresponds to an individual and
each column corresponds to a genetic variant. Each cell presents the genotype value/dosage. b Calculation of the importance score for each 1bp, 1kb, 5 kb,
or 10 kb window. ¢ Example of genome-wide screening results using conventional association testing (top) and KnockoffScreen (bottom).

e. Single variant score tests for common, low frequency and
rare variants in the window.

f. The aggregated Cauchy association test?® to combine a-e to
compute pq, -

We also extend the single knockoff described above to the
setting with multiple knockoffs to improve the power, stability
and reproducibility of the findings. Let g be the FDR threshold.
The inference based on a single knockoff is limited by a detection
threshold of 1/g, defined as the minimum number of indepen-
dent signals required for making any discovery. It has no power at
the target FDR level q if there are fewer than 1/g discoveries to be
made. The multiple knockoffs improve the detection threshold
from 1/g to 1/(Mgq), where M is the number of knockoffs>. For
example, the detection threshold is 10 when the target FDR = 0.1.
In scenarios where the signal is sparse (<10 independent causal
variants) in the target region or across the genome, inference
based on a single knockoff can have very low power to detect any
of the causal variants. In such a setting, KnockoffScreen with M
knockoffs reduces the detection threshold from 10 to 10/M,
which allows KnockoffScreen to detect sparse signals in a target
region or across the genome. Furthermore, integrating multiple
knockoffs leads to improvements in the stability and reproduci-
bility of the knockoff procedure. Specifically, the results of the
KnockoffScreen procedure depend to some extent on the

sampling of knockoff features {é’j}1<j<p’ which is random.

Therefore, running the analysis twice on the same dataset may
lead to the selection of slightly different subsets of features. In
particular, for weak causal effects, there is a chance that the causal
variant is selected in only one of the analyses. We demonstrate in
the Methods section that our choice of multiple knockoff statistics
helps improve the stability of the results compared with state-of-
the-art alternatives.

In the Methods section, we describe in detail our computa-
tionally efficient method to generate the knockoff features, and
our multiple knockoffs method. A flowchart of our approach is
shown in Fig. 1.

KnockoffScreen improves power and guarantees FDR control
in single-region simulation studies. We performed empirical
power and FDR simulations to evaluate the performance of
KnockoffScreen in a single region. We compared it with existing

alternatives for sequence-based association testing, including the
burden and dispersion (SKAT) tests with Beta(MAF;1,25)
weights. For a fair and simplified comparison, we did not include
additional functional annotations in our method for these
simulations. Note that burden and SKAT are also applied within
the knockoff framework, and therefore we still aim at controlling
the FDR. We also compared state-of-the-art methods for gen-
erating knockoff features, including the second-order knockoff
generator proposed by Candeés et al.!4, referred to as Secon-
dOrder, and the knockoff generator for Hidden Markov Models
(HMMs) proposed by Sesia et al.!>16 with number of states S =
50. For simulating the sequence data, each replicate consists of
10,000 individuals with genetic data on 1000 genetic variants
from a 200 kb region, simulated using the haplotype dataset in the
SKAT package. The SKAT haplotype dataset was generated using
a coalescent model (COSI), mimicking the linkage disequilibrium
structure of European ancestry samples. Simulation details are
provided in the Methods section. We compared the methods in
different scenarios for common and rare variants, quantitative
traits, and dichotomous traits. For each replicate, the empirical
power is defined as the proportion of detected windows among all
causal windows (windows that contain at least one causal var-
iant); the empirical FDR is defined as the proportion of non-
causal windows among all detected windows. We present the
average power and FDR over 1000 replicates in Fig. 2. We
additionally present the distribution of power and the false dis-
covery proportion (FDP) at target FDR level 0.1 over 1000
replicates in Supplementary Fig. 1.

The comparisons of the different knockoff generators show
that KnockoffScreen has significantly improved power with a
better FDR control. For single knockoff generators, SecondOrder
and HMMs have inflated FDR for rare variants. We also observed
that the HMM-based knockoft has inflated FDR for common
variants for the window-based screening procedure considered in
this paper. KnockoffScreen has well-controlled FDR, and
significantly higher power compared with a single knockoff,
especially when the target FDR g is small. This is due to the high
detection threshold (1/q) needed for the single knockoff. Our
multiple knockoff method KnockoffScreen incorporates five
knockoffs, and as a consequence the detection threshold is
reduced from 1/q to 1/(59), which helps improve power. We
note that the power of methods with single knockoff and multiple
knockoffs may be comparable in settings where the detection
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Fig. 2 Power and false discovery rate (FDR) simulation studies in a single region. The four panels show power and FDR base on 500 replicates for
different types of traits (quantitative and dichotomous) and different types of variants (rare and common), with different target FDR varying from O to 0.2.
The different colors indicate different knockoff generators. The different types of lines indicate different tests to define the importance score. Source data

are provided as a Source Data file.

threshold is not a primary factor that limits the power, such as for
higher target FDR values. Furthermore, we observed that the
additional tests included in KnockoftScreen improve its power,
compared to the burden and SKAT tests with the same number of
knockoffs. In summary, the simulation results show that the
screening procedure and multiple knockoffs help improve power
while controlling FDR at the nominal level.

KnockoffScreen improves genome-wide locus discovery for
polygenic traits. We conducted genome-wide empirical FDR and
power simulations using ADSP whole-genome sequencing data to
evaluate the performance of KnockoffScreen in the presence of
multiple causal loci. Specifically, we randomly choose 10 causal
loci and 500 noise loci across the whole genome, each of size 200
kb. Each causal locus contains a 10 kb causal window. For each
replicate, we randomly set 10% variants in each 10kb causal
window to be causal. In total, there are approximately 335 causal
variants on average across the genome. Simulation details are
provided in the Methods section. We compared the proposed
KnockoffScreen method to conventional p-value based methods
including Bonferroni correction for FWER control, and BH
procedure for FDR control. For KnockoffScreen we also evaluated
the effect of different numbers of knockoffs. We evaluated the
empirical power and FDR at target FDR 0.10. For each replicate,
the power is defined as proportion of the 200kb causal loci
detected by each method; the empirical FDR is defined as the
proportion of significant windows £100/75/50 kb away from the

causal windows. We report the average power and FDR over 100
replicates in Fig. 3.

The simulation results show that KnockoffScreen exhibits
substantially higher power than using Bonferroni correction.
Additionally, using the conventional Benjamini-Hochberg FDR
control may have higher power than KnockoffScreen, but fails to
control FDR at higher resolution (e.g., £75kb). Statistically, the
knockoff filter is expected to have similar or higher power for
independent tests compared with the BH procedure!3. For
correlated genetic variants/windows, the higher empirical power of
the BH procedure in our simulation studies is subject to false-
positive inflation. Therefore, we do not recommend directly using
the conventional BH procedure in whole genome sequencing
studies. In the presence of multiple causal loci and at a moderate
target FDR, we observe that the power is similar for different
number of knockoffs because the aforementioned detection thresh-
old is no longer an issue. Thus, multiple knockoffs are particularly
useful when the number of causal loci is small, and the target FDR is
stringent. Regardless of the effect on power, an important advantage
of using multiple knockoffs is that it can significantly improve the
stability and reproducibility of knockoff-based inference. Since the
knockoff sampling is random, each run of the knockoff procedure
may lead to different selected sets of features. In practice, strong
signals will always be selected but weak signals may be missed at
random with a single knockoff. The proposed multiple knockoff
procedure has significantly smaller variation in feature statistic in
our simulation study based on real data from ADSP. We discuss the
details in the Methods section (Fig. 9).
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Fig. 3 Genome-wide power and false discovery rate (FDR) simulations studies in the presence of multiple causal loci. a, ¢ Empirical power for different
types of traits (quantitative and dichotomous), defined as the average proportion of 200 kb causal loci being identified at target FDR 0.1. b, d Empirical FDR
for different types of traits (quantitative and dichotomous) at different resolutions, defined as the proportion of significant windows (target FDR 0.1) 100/
75/50 kb away from the causal windows. The empirical power and FDR have averaged over 100 replicates. Source data are provided as a Source Data file.

KnockoffScreen prioritizes causal variants/loci over associa-
tions due to linkage disequilibrium. The exchangeability prop-
erties for the features help the inference based on the feature

statistic Wq, = T, — T, to prioritize causal variants/loci over
associations due to linkage disequilibrium (LD). For example,
suppose G;; is causal and Gy, is a null variant correlated with G;;;

(éil,GQ) are exchangeable with (G,;,G,), therefore

cor(G,-17 6,-2) ~ cor(Gy;, G,). Thus, the resulting p-values p, ~

P,» and hence W, = —logp, — (—logp,) follows a distribution
that is symmetric around 0. This way, by comparing the p-value
of G;, (a null variant) to that of its control counterpart, the
method no longer identifies the proxy variant G,, as significant.
On the other hand, the knockoff generation minimizes the cor-
relation between feature G;; and its knockoff counterpart G,
such that W, = —logp, — (—logﬁl) takes positive value with
higher probability and therefore can identify the causal variant
G, as significant.

We compared KnockoffScreen with state-of-the-art methods
which perform association tests in each window and apply a hard
threshold (e.g., Bonferroni correction) to control for FWER. For a
fair comparison, for the conventional association testing we
adopted the same combination of tests (i.e., we combined the same
single variant and region-based tests) implemented in Knock-
offScreen to calculate the p-value. As a proof of concept, we show
first the results from an analysis of common and rare variants
within a 200 kb region near the apolipoprotein E (APOE) gene for
Alzheimer’s Disease (AD), using data on 3,894 individuals from

the Alzheimer’s Disease Sequencing Project (ADSP). More details
on the data analysis for ADSP are described in a later section.
APOE is a major genetic determinant of AD risk, containing AD
risk/protective alleles. APOE comes in three forms (APOE
€2/e3/e4). Among them, €2 is the least common and confers
reduced risk to AD, &4 is the most common and increases risk to
AD, while €3 appears neutral. We found that the conventional
association test using a Bonferroni correction identifies a large
number of significant associations (p <0.05/number of tested
windows), but most of these windows are presumably false
positives due to LD since they are no longer significant after
adjusting for the APOE alleles (Fig. 4a). In contrast, Knock-
offScreen filtered out a considerable number of associations that
are likely due to LD, and identified more refined windows that
reside in APOE and APOCI at target FDR = 0.1 (Fig. 4b). A recent
study identified AD risk variants and haplotypes in the APOCI
region, and showed that these signals are independent of the
APOE-¢4 coding change, consistent with our findings3’.

We conducted additional simulation studies to further
investigate this property. We randomly drew a subset of variants
(1000 variants) from the 200 kb region near APOE, set a 5kb
window (similar to the size of APOE) as the causal window, and
then simulated disease phenotypes. More details on these
simulations are provided in the Methods section. With target
FDR =0.1, we evaluated the proportion of selected windows
overlapping the true causal window, and the maximum distance
between the selected windows and the causal window. Figure 4c,
d shows the results over 500 replicates. We found that windows
selected by KnockoffScreen have a significantly better chance to
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Fig. 4 KnockoffScreen prioritizes causal variants/loci and distinguishes the signal due to rare variants from shadow effects of significant common
variants nearby. a, b Results of the data analyses of the APOE £ 100 kb region from the ADSP data. Each dot represents a window. Windows selected by
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overlap with the causal window relative to the conventional
association test. We also found that the maximum distance
between the selected windows and the causal window is
significantly smaller for KnockoffScreen. Particularly, the dis-
tribution of the maximum distance to the causal window is zero-
inflated for KnockoffScreen; these are cases where all windows
detected by KnockoffScreen overlap/cover the causal window.

Overall, the real data example and these simulation results
demonstrate that KnockoffScreen is able to prioritize causal
variants over associations due to linkage disequilibrium and
produces more accurate results in detecting disease risk variants/
loci, thereby improving interpretation of the findings.

KnockoffScreen distinguishes the signal due to rare variants
from shadow effects of significant common variants nearby.
Conventional sequence-based association tests focused on rare
variants (MAF below a certain threshold, e.g., 0.01) can lead to
false positive findings by identifying rare variants that are not
causal but instead correlated with a known causal common var-
iant at the same locus; this is referred to as the shadow effects32.
For illustration, we conducted simulation studies based on the
same 200 kb region near the APOE gene as described above. We
adopted the same simulation setting but set the causal variants to
be common (MAF >0.01) and apply the methods to rare variants
only (MAF <0.01). More details on these simulations are pro-
vided in the Methods section. Since all causal variants are com-
mon, all detected windows (focusing on rare variants) are false
positives due to the shadow effect. We compared KnockoffScreen
with conventional association testing by counting the number of
false positives and show the distribution over 500 replicates in

Fig. 4e. For a fair comparison, for the conventional association
testing we adopted the same ensemble of tests implemented in
KnockoffScreen to calculate the p-value. We observed that the
conventional tests tend to identify a large number of false posi-
tives due to the shadow effect. In contrast, KnockoffScreen has a
significantly reduced number of false positives, demonstrating
that it is able to distinguish the effect of rare variants from that of
common variants nearby. This feature is particularly appealing in
detecting novel rare association signals in whole-genome
sequencing studies. The same argument also holds if instead
rare variants were causal; by construction, KnockoffScreen
applied to common variants only can distinguish effects attribu-
table to common causal variants from those due to rare causal
variants nearby.

Empirical evaluation of KnockoffScreen in the presence of
population stratification. Population structure is an important
confounder in genetic association studies. Standard methods to
adjust for population stratification, including principal compo-
nent analysis or mixed effect models, help control for global
ancestry in conventional sequencing association tests. We per-
formed an empirical evaluation of KnockoffScreen in the pre-
sence of population stratification using sequencing data from the
ADSP project. We also evaluated whether, by regressing out the
top principal components when computing the association sta-
tistics (p-values), KnockoffScreen is able to control FDR. Speci-
fically, we randomly drew a subset of variants (1000 variants)
from the 200 kb region near the APOE region in the ADSP study.
The ADSP includes three ethnic groups: African American (AA),
Non-Hispanic White (NHW), and Others (of which, 98% are
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Source data are provided as a Source Data file.

Caribbean Hispanic) (see genome-wide PCA results in Fig. 5a).
We set the mean/prevalence for the quantitative/dichotomous
trait to be a function of the subpopulation, but not directly
affected by any genetic variants. More details on these simulations
are provided in the Methods section. We compared Knock-
offScreen with the conventional association test with no adjust-
ment for population stratification. We also included a modified
version of KnockoffScreen that adjusts for the top 10 global PCs
when computing the p-values used to compute the window fea-
ture statistic, referred to as KnockoffScreen+10PCs. For com-
parison, we also included the conventional association test based
on Bonferroni correction, which defines significant associations
by p-value < 0.05/number of tests.

Since in these simulations none of the genetic variants are
causal, all detected windows are false positives due to the
confounding effects of population structure. With a target FDR =
0.1, we calculated the observed FDR, defined as the proportion of
replicates where any window is detected, and present the results
in Fig. 5b, c. We observed that both PC-adjusted KnockoffScreen
and the conventional PC-adjusted association test are able to
control FDR at the target level. This is further illustrated by our
real data analysis of ADSP where despite the combined analysis of
three ethnicities there is no apparent inflation in false positive
signals. Interestingly, KnockoffScreen exhibits lower FDR than
association test when they are both unadjusted, indicating that
the use of knockoffs naturally helps to prioritize causal variants
over association due to population stratifications. We additionally
performed simulation studies to mimic population stratification
driven by rare variants and present the results in Supplementary
Table 1. As before, we found that both PC-adjusted Knock-
offScreen and association test are able to control FDR in the
scenarios considered here, and KnockoffScreen exhibits a lower
FDR than the conventional association test for an unadjusted
model. Since the reduction of false positives for KnockoffScreen
does not require observing/estimating the underlying ancestry,
the knockoff procedure can potentially complement existing tools
for ancestry adjustment to better reduce false positive findings
due to population substructure. However, we clarify that Knock-
offScreen itself does not completely eliminate the confounding
due to population stratification (Supplementary Table 1) because
the current knockoff generator assumes the same LD structure
across individuals and it only accounts for local LD structure.
Therefore, it does not capture heterogeneous LD structure across
populations and strong long-range LD due to population

stratification. Development of new knockoff generators that
explicitly account for population structure will be of interest33.

KnockoffScreen enables computationally efficient screening of
whole-genome sequencing data. One obstacle for the widespread
application of knockoffs to genetic data, particularly whole-
genome sequencing data, is their computational cost. The
knockoff generation can be computationally intensive when the
number of genetic variants p is large; depending on the method, it
may require the calculation of the eigen values of a px p covar-
iance matrix, or iteratively fitting a prediction model for every
variant. The whole-genome sequencing data from ADSP (~4000
individuals) contains ~85 million variants in total, much larger
than the number of variants in GWAS datasets. Similarly, in
53,581 TOPMed samples, more than 400 million single-
nucleotide and insertion/deletion variants were detected?. As
more individuals are being sequenced, the number of variants will
increase accordingly. We demonstrate that the proposed
sequential model to simultaneously generate multiple knockoffs is
significantly more computationally efficient than existing
knockoff generation methods, making it scalable to whole-
genome sequencing data. We compared the computing time of
our proposed knockoff generator with two existing alternatives:
the second-order knockoff generator proposed by Candés et al.14,
referred to as SecondOrder; and knockoffs for Hidden Markov
Models (HMMs) proposed by Sesia et al.!>l6 with varying
number of states (S =12 and S = 50). We estimate the complexity
of our proposed method as O(np), where n is the sample size and
p is the number of genetic variants. The details of this calculation
are described in the Methods section. The complexity of the
HMM method is also O(np), as discussed in Sesia et al.l°.
However, it is significantly less efficient than the proposed
method for unphased genotype data as we show below. We note
that the computing time of the SecondOrder method is of order
O(np* + p*) because it requires calculating the eigen values of a
px p covariance matrix. Therefore, it is not a feasible approach for
whole-genome analysis with a large number of variants.

We performed simulations to empirically evaluate the
computational time for the different methods. We note that the
proposed method focuses on the analysis of whole-genome
sequencing data, and thus the computational cost is reported on
unphased genotype data, which is the usual format for sequencing
data. Since the HMM model assumes the availability of phased
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Table 1 Computing time of different knockoff generators.
n p MSK (5 knockoffs) SK SecondOrder HMM with S =12 HMM with S =50

Phasing Sampling Phasing Sampling
1000 500 21 0.86 8.9 37.86 6.02 580.87 93.88
1000 1000 3.99 1.92 57.01 76 12.01 147.66 188.74
1000 2000 8.89 4.06 49119 161.94 24.76 2336.83 376.93
5000 500 4.66 1.63 8.51 188.5 30.45 2878.43 485.34
5000 1000 1n.76 3.95 52.63 380.06 60.28 5914.19 996.11
5000 2000 31.58 11.09 479.01 811.61 129.6 N734.66 1865.11
10000 500 7.42 2.34 9.29 377.07 58.8 5784.24 957.49
10000 1000 20.57 6.59 54.66 757.49 123.94 1744.68 1936.85
10000 2000 52.86 16.92 445.05 157119 253.46 23584.8 3870.07
Each cell shows the computing time in seconds to generate knockoffs based on unphased genotype data. The multiple sequential knockoffs approach generates five knockoffs. The computing time was
measured on unphased genotype data using a single CPU (Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz). Since the HMM model was mainly proposed for phased data, we report the computing time
separately for phasing with fastPhase, and sampling with SNPknock.

data, we report the computing time separately for phasing with
fastPhase and sampling with SNPknock as described in Sesia
et al.1>. We simulated genetic data using the SKAT package, with
varying sample sizes and number of genetic variants (Table 1).
The computing time was evaluated on a single CPU (Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60 GHz). For the simulation
scenario considered in the previous section with 10,000
individuals and 1,000 genetic variants, we observed that the
proposed method takes 6.59 s to generate a single set of knockoff
features, which is ~130 times faster than the HMM model with S
=12 states (881.43 s). The application of the HMM model with
the recommended S =50 states to unphased sequencing data
(13681.53 s for 10,000 individuals and 1000 genetic variants) is
currently not practical at genome-wide scale. As shown, a
substantial fraction of the total computing time is taken by the
phasing step, and therefore using more computationally efficient
phasing algorithms can further improve the computational cost of
the HMM-based knockoff generation.

KnockoffScreen detects more independent disease risk loci
across the genome in two whole-genome sequencing studies.
Here we show results from the application of KnockoftScreen to
two whole-genome sequencing datasets from two different stu-
dies, namely the Alzheimer’s Disease Sequencing Project (ADSP),
and the COPDGene study from the NHLBI Trans-Omics for
Precision Medicine (TOPMed) Program. For each study, we
considered windows with sizes (1 bp, 1 kb, 5kb, 10 kb) across the
genome as described before. In addition to the different weighting
and thresholding strategies, we include several functional scores
to improve the power of detecting rare functional variants. The
functional scores include non-tissue specific CADD scores and 10
tissue/cell type specific GenoNet scores. The GenoNet scores were
trained using epigenetic annotations from the Roadmap Epige-
nomics Project across 127 tissues/cell types. We partition the
tissues/cell types into 10 groups (including Stem Cells, Blood,
Connective Tissue, Brain, Internal Organs, Fetal Brain, Muscle,
Fetal Tissues, and Gastrointestinal; Supplementary Table 2 has
more details on these tissue groupings) and we use the maximum
GenoNet score per group.

We show results from conventional association tests (using the
same combination of single variant and region-based tests as
implemented in KnockoffScreen) and using Bonferroni correc-
tion (p <0.05/number of tested windows) to control the family-
wise error rate. QQ-plots of all tests (Supplementary Fig. 5) show
that the type I error rate is well controlled. We also report results
from KnockoffScreen at an FDR threshold of 0.1. We assigned
each significant window to its overlapping locus (gene or

intergenic region). If the locus is a gene, we report the
gene’s name; if the locus is intergenic, we report the upstream
and downstream genes (enclosed within parentheses and
separated by “-”). To assess the degree of overlap with previously
described associations, we additionally searched if the loci have
known associations with Alzheimer’s disease and lung related
traits in the NHGRI-EBI GWAS Catalog4, acknowledging that
some of the studies in the GWAS catalog included ADSP and
COPDGene data. The details on gene annotations are described
in the Methods section.

Application to ADSP. We first applied KnockoffScreen to the
whole-genome sequencing data from the Alzheimer’s Disease
Sequencing Project (ADSP) for a genome-wide scan. The data
includes 3,085 whole genomes from the ADSP Discovery
Extension Study and 809 whole genomes from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), for a total of 3,894
whole genomes. More details on the ADSP data are provided in
the Methods section. We adjusted for age, age/2, gender, ethnic
group, sequencing center, and the leading 10 principal compo-
nents of ancestry. We present the results in Fig. 6.

The conventional association test with Bonferroni correction
identified a region (~50kb long) at the known APOE locus,
containing a large number of significant associations (Fig. 6), but,
as discussed before, most of them are presumably due to LD with
the known APOE risk variants since they are no longer
significant after adjusting for the APOE alleles. Within the
APOE region, KnockoffScreen identified fewer windows that
overlap with known AD genes, namely APOE, APOCI,
APOCIPI, and TOMM40 at FDR<O0.1, while removing a
considerable number of associations that are likely due to LD.
Beyond the APOE locus, KnockoffScreen identified several other
loci that potentially affect AD risk, including KAT8 and an
intergenic region on chromosome 18q22 between DSEL and
TMX3. KAT8 (lysine acetyltransferase 8) has been recently
identified in two large scale GWAS focused on clinically
diagnosed AD and AD-by-proxy individuals’>3°, It is a
promising candidate gene that affects multiple brain regions
including the hippocampus and plays a putative role in
neurodegeneration in both AD and Parkinson’s disease?”. The
intergenic region identified by KnockoffScreen resides in a
known linkage region for AD and bipolar disorder on
chromosome 18q22.13839, DSEL (dermatan sulfate epimerase-
like) is implicated in D-glucuronic acid metabolism and tumor
rejection. A recent study has shown that glucuronic acid levels
increase with age and predict future healthspan-related
outcomes*. Furthermore, DSEL is highly expressed in the brain
and has been found associated with AD in an imaging-wide
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Fig. 6 KnockoffScreen application to the Alzheimer's Disease Sequencing Project (ADSP) data to identify variants associated with the Alzheimer's
Disease. a Manhattan plot of p-values (truncated at 1072° for clear visualization) from the conventional association testing with Bonferroni adjustment
(p<0.05/number of tested windows) for FWER control. b Manhattan plot of KnockoffScreen with target FDR at 0.1. ¢ heatmap that shows stratified p-
values (truncated at 107" for clear visualization) of all loci passing the FDR = 0.1 threshold, and the corresponding Q-values that already incorporate
correction for multiple testing. The loci are shown in descending order of the knockoff statistics. For each locus, the p-values of the top associated single
variant and/or window are shown indicating whether the signal comes from a single variant, a combined effect of common variants or a combined effect of
rare variants. The names of those genes previously implicated by GWAS studies are shown in bold (names were just used to label the region and may not
represent causative gene in the region). Source data are provided as a Source Data file.

association study*!. SNPs upstream of DSEL have also been
associated with recurrent early-onset major depressive
disorder*2. Two other intergenic loci, ANKRD18A-FAM240B
and TAFA5-BRD1 were reported in the GWAS catalog to have
suggestive associations (5x 1078 <p<1x107°) with late-onset
Alzheimer’s disease*>. We additionally present results when
applying the Benjamini-Hochberg procedure for FDR control in
Supplementary Fig. 6; we observed that the associations
identified by KnockoffScreen are largely replicated in the GWAS
catalog, while the new discoveries uniquely identified using the
conventional BH procedure do not overlap with previous GWAS
findings, suggesting they may be false positives.

Application to COPDGene study in TOPMed. The Genetic Epi-
demiology of COPD (COPDGene) study includes current and
former cigarette smokers aged >45. All subjects underwent
spirometry to measure lung function. Cases were identified as
those with moderate-to-severe chronic obstructive pulmonary
disease (COPD), controls were those with normal lung function,
and a third set were neither cases nor controls. These individuals
have been whole-genome sequenced as part of the larger
TOPMed project at an average ~30X coverage depth, with joint-
sample variant calling and variant level quality control in
TOPMed samples?#4. The COPDGene Freeze 5b dataset used for
this analysis includes a total of 8,444 individuals, of which 5,713
are Non Hispanic White and 2,731 are African American. We
tested lung function measurements on all individuals: forced
expiratory volume in one second (FEV,), forced vital capacity
(FVC) and their ratio (FEV/FVC), as well as for case-control

10

COPD status on a subset (NHW: 2366 cases/2084 controls, AA:
702 cases/1409 controls).

We applied KnockoffScreen separately to the two ethnic
groups, and four phenotypes, while adjusting for covariates as
follows. In all analyses we adjusted for sequencing center, and the
10 leading principal components of ancestry. Additionally, for
FEV, and FEV,/FVC ratio, we adjusted for age, age?, gender,
height, height?, pack-years of smoking, and current smoking. For
FVC, we adjusted for age, age?, gender, height, height?, weight,
pack-years of smoking, and current smoking. For COPD case/
control status, we adjusted for age, gender, and pack-years of
smoking. Results for the NHW group for FEV, are shown in
Fig. 7 and those for FEV,/FVC are shown in Supplementary
Fig. 4.

Note that for FEV,; and FEV,/FVC, KnockoffScreen has been
able to identify many more significant associations compared
with the application to Alzheimer’s disease, a reflection of the
larger sample size but also the higher degree of polygenicity for
lung function phenotypes relative to AD. Compared with the
conventional association test with Bonferroni correction, Knock-
offScreen detected several known signals for FEV, including the
PSMA4/CHRNA5/CHRNA3 locus on chromosome 15, the
INTS12/GSTCD locus on chromosome 4, and the EEFSEC/
RUVBLI locus on chromosome 3. Overall, the majority of the
single variant signals that were found significant at FDR 0.1 have
been associated with COPD-related phenotypes in the GWAS
catalog (81.8% for FEV; and 69.2% for FEV,/FVC) (Figs. 7 and
S4) supporting the ability of KnockoffScreen to identify
previously discovered loci in GWAS studies with sample sizes
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Fig. 7 KnockoffScreen application to the COPDGene study in TOPMed to identify variants associated with FEV; in Non Hispanic White (NHW). a
Manhattan plot of p-values from the conventional association testing with Bonferroni adjustment (p < 0.05/number of tested windows) for FWER control.
b Manhattan plot of KnockoffScreen with target FDR at 0.1. ¢ Heatmap that shows stratified p-values of all loci passing the FDR = 0.1 threshold, and the
corresponding Q-values that already incorporate correction for multiple testing. The loci are shown in descending order of the knockoff statistics. For each
locus, the p-values of the top associated single variant and/or window are shown indicating whether the signal comes from a single variant, a combined
effect of common variants, or a combined effect of rare variants. The names of those genes previously implicated by GWAS studies are shown in bold
(names were just used to label the region and may not represent causative gene in the region). Source data are provided as a Source Data file.

much larger than used here. KnockoffScreen additionally
identified new loci by aggregating common/rare variants.
Although the new loci identified by KnockoffScreen, particularly
those identified by rare variant methods, will need to be validated
in larger datasets, and the effector genes are not known, some of
the genes in these regions may be of interest. For FVC and
COPD, as well as all traits for the African-Americans, we did not
identify any significant associations at FDR 0.1, likely a reflection
of low power due to the smaller sample size and possibly non-
genetic covariates that might be associated with risk in AA and
unaccounted for in these analyses.

It is interesting to note that the significant loci identified by
KnockoffScreen are markedly enriched for windows (single bp or
larger) overlapping protein coding genes despite an unbiased
screen of the entire genome. In particular, 40%, 80%, and 56.4%
of the loci significant for AD, FEV,, and FEV,/FVC respectively
overlap protein coding genes. Given the modest sample size of the
datasets analyzed here, this is perhaps expected; KnockoffScreen
is able to identify the stronger effects closer to genes (e.g., coding
and promoter regions). As sample sizes for whole-genome
sequencing studies continue to increase, we can expect additional
loci in noncoding regions to be identified.

In summary, these empirical results suggest that Knock-
offScreen can identify additional signals that are missed by
conventional Bonferroni correction, while filtering out proxy
associations that are likely due to LD. Scatter plots comparing
genome-wide W statistics vs. —logl0(p-values) further illustrate
this point (Fig. 8).

a. Alzheimer’s disease b.
Bonferroni 4+ FDR = 0.1

FEV1 in Non Hispanic White (NHW)
Bonferroni =+ FDR = 0.1

W statistic

60 80 0 2

40 4
-log10(P-value) -log10(P-value)

Fig. 8 Scatter plot of genome-wide W statistic vs. —log10 (p-value). Each
dot represents one variant/window. The dashed lines show the significance
thresholds defined by Bonferroni correction (for p-values) and by false
discovery rate (FDR; for W statistic). The p-values are from the
conventional association testing described in the main text. Source data are
provided as a Source Data file.

Discussion

In summary, we propose a computationally efficient algorithm,
KnockoffScreen, for the identification of putative causal loci in
whole-genome sequencing studies based on the knockoff frame-
work. This framework guarantees the FDR control at the desired
level under general dependence structure, and has appealing
properties relative to conventional association tests, including a
reduction in LD-contaminated associations and false positive
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associations due to unadjusted population stratification. Through
applications to two whole-genome sequencing studies for Alz-
heimer’s disease, COPD and lung function phenotypes we
demonstrate the ability of the approach to identify more sig-
nificant associations, many of which have been identified in
previous GWAS studies, with sample sizes orders of magnitude
larger than the ones considered here. As sample sizes for whole-
genome sequencing studies continue to increase, KnockoffScreen
can help discover more risk loci with even more stringent FDR
thresholds.

In KnockoffScreen, we choose to control FDR at the nominal
level. Our analyses of data from ADSP and COPDGene show that
our method compared with conventional association tests leads to
significantly more discoveries. The majority of the single variant
signals that were found significant at FDR 0.1 have been asso-
ciated with AD or COPD-related phenotypes respectively in the
GWAS catalog (87.5% for AD, 81.8% for FEV1 and 69.2% for
FEV1/FVC), supporting our claim that the FDR control in
KnockoffScreen is able to replicate previously discovered loci in
GWAS studies with sample sizes much larger than those used
here. Furthermore, KnockoffScreen identified a set of new dis-
coveries driven by the combined effects of multiple common/rare
variants. The results demonstrate that controlling FDR is an
appealing strategy when there are potentially many discoveries to
be made as in genetic association studies for highly polygenic
traits, the dependence structure is local, and the investigators are
willing to accept a rigorously defined small fraction of false
positives in order to substantially increase the total number of
true discoveries. We note that the choice of target FDR should be
defined rigorously and interpreted appropriately. For example,
loci identified at a liberal FDR threshold (e.g., 0.3 as in Iossifoy
et al.9) can be useful for enrichment and pathway analyses; our
analyses of data from ADSP and COPDGene used FDR = 0.1 for
identifying putative causal loci. As large-scale whole-genome
sequencing data become increasingly available, one will be able to
apply KnockoftScreen with a lower, more stringent FDR thresh-
old (e.g., 0.01 or 0.05).

The model-X knockoff framework underlying KnockoffScreen
makes our approach robust to violations of model assumptions.
Specifically, by imposing a model on genetic variants (G;) instead
of on the conditional distribution of the outcome given the var-
iants (distribution of Y;|G;), the FDR control is guaranteed even
when the model for Y;|G; is mis-specified. We do however need
to construct a valid synthetic cohort G;’s such that the exchan-
geability conditions are satisfied, and define a test statistic with
the sign-flip property (i.e., the effect of swapping a variant with its
knockoff is only a sign flip of the corresponding test statistic).
This robustness feature is particularly useful for genetic studies of
complex traits, as the underlying genetic model is unknown, and
it is difficult to evaluate whether a model is appropriate for
describing the relationship between the trait and the variants.

There is some limited work on controlling the FWER within
the knockoff framework using a single knockoff*>. One obstacle
for its application is that it only allows controlling for k-FWER at
significance level « (the probability of making at least k false
rejections) where k or « has to be relatively large in order to detect
any association. Therefore, it cannot be directly applied to control
the conventional FWER (k=1, « = 0.05) without further
modifications. Although our proposed multiple knockoffs
method has the potential to be extended to control the FWER, we
estimated that about 20 knockoffs are necessary to achieve the
conventional FWER control. This leads to additional computa-
tional burden that will need to be overcome in order to become
scalable to the large-scale genetic data.

In addition to controlling FDR, our approach contrasts to
conventional association testing methods in that it naturally helps

prioritize the underlying causal variants, a property that usually
requires a second stage conditional analysis or statistical fine
mapping?0. It also helps separate causal effects from shadow
effects of significant variants nearby. This property can help
distinguish effects due to common causal variants or rare causal
variants at the same locus due to LD, by applying KnockoffScreen
to common/rare variants separately. Overall, KnockoffScreen
serves as a powerful and efficient method that attempts to unify
association testing and statistical fine mapping. However, similar
to statistical fine-mapping methods that only leverage LD to fine-
map a complex trait, it remains challenging to fully distinguish
highly correlated variants. As we discussed in the Methods sec-
tion, KnockoffScreen currently detects clusters of tightly linked
variants, without removing any variants that are potentially
causal. In the future, we may consider using functional genomics
data to further improve the ability of KnockoffScreen to identify
causal variants among highly correlated ones.

Unlike existing knockoff methods for genetic data that define
coefficients in a LASSO regression as the importance score!>1,
KnockoffScreen directly uses transformed p-values as importance
score. This leads to another appealing property of Knock-
offScreen, namely it can serve as a wrapper method that can
flexibly utilize p-values from any existing or future association
testing methods to achieve the benefits proposed here. For
example, the current implementation of KnockoffScreen calcu-
lates importance score using an ACAT type test to aggregate
several recent advances for rare-variant analysis. To extend its
application to studies with large unbalanced case-control ratios or
sample relatedness, one can apply methods like SAIGE#’ to cal-
culate p-values for the original cohort and the synthetic cohort
generated by KnockoffScreen, and then apply the same knockoff
filter for variable selection. Moreover, recent studies have
demonstrated that multivariate models have many advantages
over marginal association testing, including improved power by
reducing the residual variation and better control of population
stratification!®. KnockoffScreen is able to integrate tests from
multivariate models (e.g,, BOLT-LMM and its extension to
window-based analysis of sequencing data).

Meta-analyses are important in allowing the integration of
results from multiple whole-genome sequencing studies without
sharing individual level data. Several methods have been pro-
posed for meta-analysis of single variant tests for common var-
iants or “set” based (e.g., window based) tests for rare
variants*8->0, Those methods integrate summary statistics from
each individual cohort, such as p-values or score statistics, and
then compute a combined p-value for each genetic variant or each
window for a meta-analysis. As we discussed, KnockoffScreen can
also directly utilize p-values from existing methods for meta-
analysis. We have discussed the detailed procedure in the
Methods section.

Variable selection based on knockoff procedure depends on the
random sampling of knockoff features {G’j}1<'< . Although FDR
control is guaranteed, the randomness may léail to slightly dif-
ferent feature statistics and selection of slightly different subsets
of variants. We propose a stable inference procedure integrating
multiple knockoffs that significantly improves the stability and
reproducibility of the results compared with state-of-the-art
knockoff methods as discussed in the Method section.

We have demonstrated that the proposed sequential knockoff
generator is significantly faster than existing alternatives. Besides
the generation of knockoff features, another source of computa-
tional burden is the calculation of the importance score (p-value
for a window). The total CPU time is 7,616 h for the ADSP data
analysis (15.2 h with 500 cores) and 14,274 h for the COPDGene
data analysis (28.5 h with 500 cores). The calculation of p-values
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in the current analysis is time consuming because of the com-
prehensive inclusion of many different functional annotations.
Specifically, for each window, there are in total 29 tests being
implemented for the original genetic variants and each of their
five knockoffs, leading to a total of 29%6 =174 p-value calcula-
tions per window. If computational resources are limited, using a
limited number of functional annotations can substantially
reduce the computing time. In addition, several methods have
been proposed in recent years to use state-of-the-art optimization
strategies for scalable association testing for large scale datasets
with thousands of phenotypes in large biobanks.”!=>3 By directly
utilizing p-values from those association testing methods,
KnockoffScreen can scale up to biobank sized datasets at a
comparable computational efficiency.

Despite the aforementioned advantages, KnockoffScreen has
some limitations related to underlying modeling assumptions
needed to improve the computational efficiency of the multiple
knockoff generation and calculation of the feature importance
scores. In particular, the implemented feature importance scores
rely on computing p-values from a marginal model (e.g., single
variant score test, burden test or SKAT) or a partly multivariate
model (BOLT-LMM and its extension to window-based analysis
of sequencing data). We made this choice of feature importance
score due to its flexibility to integrate state-of-the-art tests for
sequencing studies, but we recognize that a fully multivariate
model as implemented in Sesia et al.1> can be more powerful. In
addition, the knockoff generator used in KnockoffScreen assumes
a linear approximation model based on unphased genotype
dosage data. This model is well motivated based on the sequential
model to generate knockoff features, and the approximate mul-
tivariate normal model for the genotype data commonly used in
the genetic literature. Additionally, it is computationally efficient
relative to existing knockoff generation methods. We acknowl-
edge that relative to a generative model like HMM it is less
interpretable. More complex models for discrete genotype values
that can also account for non-linear effects among genetic var-
iants could be of interest in future work.

Methods
Sequential model to generate model-X knockoff features. We propose a
computationally efficient sequential model to generate knockoff features G that
leverages local linkage disequilibrium structure. Our method is an extension of the
general sequential conditional independent pairs (SCIP) approach in Candes et al.
(2018)14,

Algorithm 1 Sequential Conditional Independent Pairs (Single Knockoff)

j=1

while j<p do

Sample E;j independently from K(GJ\G_j, (~;1:(j4)>

j=j+1

end

where G_; denotes all genetic variants except for the j-th variant;
E(Gle,}-, GL_(].?,)) is the conditional distribution of G; given G_; and Gr(-1)
Candes et al. showed that knockoffs generated by this algorithm satisfy the
exchangeability condition, and they lead to a guaranteed FDR control!4. Intuitively,
the exchangeability condition can be described as follows: if one swaps any subset
of variants and their synthetic counterpart, the joint distribution (LD structure etc.)
does not change. They also noted that the ordering in which knockoffs are created
does not affect the exchangeability property and equally valid constructions may be
obtained by looping through an arbitrary ordering of the variants. Although the
SCIP method represents a general knockoff generator, the conditional distribution
at each iteration depends on all genetic variants in the study, which can be very
difficult or impossible to compute in practice. We draw inspiration from Markov
models for sequence data to consider the genetic sequence as a Markov chain with
memory, such that

£(616.,) = £(G1Gep ). 3
where the index set B; defines a subset of genetic variants “near” the j-th variant,

which we will define later. Furthermore, by noting that the correlation among
genetic variables approximately exhibits a block diagonal structure®*, under certain

model assumptions which will be specified in the Appendix, we have

L (Gj IG_;, Gl:j—l) =L (Gﬂersj ) Glsksj—l.kEBj> . 4)

To generate knockoff features from L(GlekEBj7 Giekej ,‘kij), we assume a

semiparametric model
G = g(erij GlSij—l,keB]> +¢, (5)

where ¢; is a random error term, E(s]’erBj, Glskgj,,‘kEBj) = 0. We consider g(e)

to be parametric as follows,

G|Giep, Grepei ) = G,
g ( i1 Oken,» Grck<j—1kep, | = ¢+ kﬁ%@ﬁk i« T kgj;l;ke%

%Gt (6)

and will explain in detail when such a linear form is an appropriate model in the
Appendix. We estimate (a, B, y) by minimizing the mean squared loss. Let

Gj =a+ Zk;tj,keBJ/}ka + stj—l.keBJ Gy We calculate the residual & =G;— Gj
and its permutation &;, and then define the knockoff feature for G; to be

G, = G‘j + &;. This permutation-based algorithm is particularly designed to generate
knockoff features for rare genetic variants in sequencing studies, whose distribution
is highly skewed and zero-inflated. We note that the algorithm does not generate
categorical variables in {0, 1, 2}. Instead, it generates continuous variables to mimic
genotype dosage value, making it more robust for rare variants. In addition, we
evaluated a multinomial logistic regression model for generating categorical
knockoffs. We found that the conditional mean of a rare variant can be extremely
small, and it is very likely to generate knockoffs with all 0 values where statistical
inference cannot be applied. We show in simulation studies that existing knockoff
generators, such as the second-order model-X knockoffs proposed by Candes et al.14
and knockoffs for HMM proposed by Sesia et al.1>16, do not control FDR for rare
variant analysis based on the feature score considered in this paper (Fig. 2). In
Figs. S7 and S8, we present an additional comparison between the proposed method
and HMM-based knockoff generators (S =12 and S = 50), stratified by allele
frequency. As shown, the proposed method generates knockoff versions for rare
variants with better exchangeability with the original variants compared with the
HMM model. That is, the correlation coefficients are closer to those for the original
variants for KnockoffScreen compared to HMM (bottom panel, the dots are mostly
above the diagonal line). One plausible explanation is that the application of HMM
to whole genome sequencing data requires accurate phased data for rare variants,
which itself is a challenging task and also an active research area.

We discuss now in detail how we define B; while taking into account the linkage
disequilibrium (LD) structure in the neighborhood of j. Let r; be the sample
correlation coefficient between variants j and k. We define B; to include
“K-nearest” genetic variants within a 200 kb window (+100 kb from the target
variant)®” using 7| as a similarity measure. The choice of the window size aims to
balance accurate modeling of local LD structure and computational efficiency. The

choice of K is to ensure that P(Gj | erB]_ .G, Skéj—l.kij) accurately mimics the joint
distribution P(Gj\G,j,
result for regression analysis with diverging number of covariates and choose to
include top K variants with |r;| >0.05 up to K = n'/%, which ensures that the
coefficient estimations achieve asymptotic normality®°.

We note that the sequential model is flexible enough and we could consider
other supervised learning techniques like Lasso, support vector regression and
artificial neural networks. However, since the auto-regressive model is fitted
iteratively for every variant in the genome, these methods require cross-validation
at each variant level which is computationally not applicable at genome-wide scale.

&,:j, ,) and to avoid overfitting. We adopt the theoretical

Multiple sequential knockoffs to improve power and stability. Inference based
on single knockoff is limited by the detection threshold [é], which is the minimum

number of independent rejections needed in order to detect any association. For
example, in scenarios where the signal is sparse (<10 independent true associa-
tions) in the target region or across the genome, inference based on a single
knockoff has very low power to detect any association with target FDR 0.1. Another
limitation of the single knockoff is its instability. Since the knockoff sample is
random, running the knockoff procedure multiple times may lead to different
selected sets of features. The idea of constructing multiple knockoffs was first
discussed by Barber and Candés'? and Candés et al.!4, and further studied in detail
by Gimenez and Zou’?. However, current methods are not applicable to rare
variants and not scalable to whole genome sequencing data.

We extend the above SCIP based knockoff generator procedure to multiple
knockoffs (M is the total number of knockoffs), as follows.

Algorithm 2 Sequential Conditional Independent Tuples (Multiple Knockoffs)

j=1

while j<p do

~1 M, ~1 ~M

Sample G;, - -, G; independently from L(Gj\G,j,Gl,.j,p’Gl:jfl)

j=j+1

End
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Gimenez and Zou3? proposed this general algorithm and proved that the
knockoffs generated by this algorithm satisfy the extended exchangeability
condition (see Appendix for precise definition and proof). Based on this general
algorithm, we extend our previous sequential model to this setting to estimate
Gj =0+ Dpken PG + Licmenm | 2

k<j—1keB;
G; — Gj and its M permutations é} ,,é';w »and then define the knockoff feature for G;

M N akm
to be G; = G;+&™.

s (N?;" We calculate the residual & =

Knockoff filter to define the threshold T for FDR control. For single knockoff, we
follow the result derived by Candés et al.# to define the feature statistic as Wo, =

To, — To, where T, = —log,,ps, and Ty, = —log,yp,, and
1+#{<1>k, i Wa, < —t}
#{ 0 Wo, = r}

where “#” denote the number of elements in the set; g is the target FDR level. We
select all windows with W, > 7. For multiple knockoffs, we modify the result in
Gimenez and Zou?? and define

T=min{ t>0:

<q,, 7)

— _ B m
Wq’k’ B <T®k’ I]ngegg&l Td)k[ > IT% = R T:Ekl ’ (8)
and
1.1 . >
_ bt O, 2 1,7, 2t}
T = min{ t>0: <q,, 9)
#{CD,(,:KQ,M =0,7q,2 t}
m m . . P . o
where Ty, = logp%, I, is an indicator function, I Toy 2 max, ooy T, = 1if

T, 2 max, <<y T, and 0 otherwise; kg, = argmax, ., <y T, denote the
index of the original (denoted as 0) or knockoff feature that has the largest
importance score; T, = Tg:’ — median; ., < Tg:”) denote the difference between
the largest importance score and the median of the remaini ng importance scores.
It reduces to the knockoff filter for single knockoff when M = 1. Essentially,
W, >7 selects windows where the original feature has higher importance score
than any of the M knockoffs (i.e., xq,, = 0), and the gap with the median of
knockoff importance score is above some threshold.

We note that this definition of feature statistic and knockoff filter is a modified
version of that proposed by Gimenez and Zou3(, where they considered the
maximum instead of the median of the knockoff importance scores, i.e.,

— m _ 70 (m)
Ko, = argmaxo o T, > To, = To, — max <, <y To, and

W, = (To, — maxiguey To, )11, . To improve stability and

0 = MK < e T
e i g
reproducibility of knockoff based inference, we change Toy from TEDZ’ B

Max; .,y Tg':]) to Tg)):l — median, _,, . TE;'Z} . The modified method reduces the
randomness coming from sampling knockoff features given the fact that sample
median has much smaller variation than each individual sample or the sample
maximum.

Knockoff Q-value. The Q-value in statistics is similar to the well-known p-value,
except that it measures significance in terms of the FDR®7 rather than the FWER
and already incorporates correction for multiple testing. For multiple hypothesis

testing, a general mathematical definition of the Q-value for a null hypothesis is the
minimum FDR that can be attained when all tests showing evidence against the

null hypothesis at least as strong as the current one are declared as significants.

For example, the Q-value for usual FDR control based on ordered p-values can be
estimated by,

g =minFDR(), (10)

where p is the p-value of the hypothesis under consideration and FDR(?) is the
estimated FDR if we are to reject all tests with p-values less than ¢. In order to
introduce a more informative and interpretable measure of significance for the top
signals, we extend the Q-value framework for the usual FDR control to the
knockoffs based case. The proposed Q-value combines the information from both
feature importance statistics Wy, and the threshold 7. It also makes results
comparable even we choose different feature importance statistics across multiple
runs. By definition, we shall see that selecting windows with g, < g, where g is the
target FDR, is equivalent to the aforementioned knockoff filter which selects those
with Wy, > 1.

For single knockoff, we define the Q-value for window ® with feature statistic
W¢ >0 as,

1+ #{cbk,:wq)“ < - t}

Hlogwg ) o

= min
9o =T Wo

{0y W, <1}

# d)k,:ka' =t
are to select all windows with feature statistic greater than t >0, referred to as the
knockoff estimate of FDR!3. For window @ with feature statistic W, <0, we define
qe = 1 and the window will never be selected. For multiple knockoffs, we define
the Q-value for window @ with statistics x, = 0 and 7, as

where is an estimate of the proportion of false discoveries if we

) $+$#{®k1:7c¢“21,r®k12t}
qp = min

1<ty #{q) o =01 >t} 5 (12)
Kl %oy Py =
ﬁJrﬁ#{mk,:x@M 217q, 2 t}
Dyyiky, =07, >t
we are to select all windows with feature statistic xp, = 0,74, 21, which is our
extension of the knockoff estimate of FDR to multiple knockoffs. For window @
with xg, #0, we again define g, = 1 and the window will never be selected.

where is an estimate of the proportion of false discoveries if

Choice of windows for genome-wide screening. KnockoffScreen considers
windows with different sizes (1 bp, 1kb, 5kb, 10 kb) across the genome, with half
of each window overlapping with adjacent windows at the same window size. This
choice of windows is similar to the scan statistic framework, WGScan, for whole-
genome sequencing data!8. It is also similar to that in KnockoffZoom proposed by
Sesia et al.!> for GWAS data where they also consider windows of different sizes;
for each fixed window size the windows are non-overlapping but smaller windows
are fully nested within larger windows. We theoretically prove the FDR control
using the proposed statistic in the Appendix for nonoverlapping windows; how-
ever, the theoretical justification for the more general setting of overlapping win-
dows remains an open question. For the proposed choice of overlapping windows,
we demonstrate via empirical simulation studies that the FDR is well controlled
(Fig. 2) as window overlapping is a local phenomenon.

KnockoffScreen improves stability and reproducibility of knockoff-based
inference. We conducted simulation studies to compare KnockoffScreen with
single knockoff approach, and the multiple knockoffs approach proposed by
Gimenez and Zou, referred to as MK-Maximum?’.

We designed these simulations to mimic the real data analysis of ADSP. For
each replicate, we randomly drew 1,000 variants, including both common and rare
variants, from the 200 kb region near gene APOE (chr19: 44905796-44909393). We
set 1.25% variants to be causal, all within a 5kb signal window (similar to the size
of APOE) and then simulated a dichotomous trait as follows

8u) =By + X +Big1 + - + B
where g(x) = log(;%;) and y; is the conditional mean of Y;; B, is chosen such that
the prevalence is 10%. We set the effect ; = 0.7‘10g10mj‘, where m; is the MAF for

the j-th variant. Given the same genotype and phenotype data, we first generated
100 knockoffs. Then we repeatedly drew five knockoffs randomly among them for
100 replicates. For each replicate, we scanned the regions with candidate window
sizes (1 bp, 1kb, 5kb, 1kb) using KnockoffScreen, the multiple knockoffs feature
statistic based on sample maximum by Gimenez and Zou®’, and the single
knockoff method. For a fair comparison, we adopted the same tests implemented in
KnockoffScreen to calculate the p-value for all comparison methods. We calculated
the variation of feature statistic W, for each window (stability) and the frequency
with which each causal window is selected (reproducibility) over 100 replicates. We
present the results in Fig. 9.

In the left panel, we observed that KnockoffScreen has significantly smaller
variation in feature statistic W, than the other two comparison methods. We note
that the method based on sample maximum, MK-Maximum, exhibits comparable
and sometimes even larger variation than the method based on single knockoff. In
the mid panel, we observed that KnockoffScreen has a higher chance (~0.94) to
replicate findings across different knockoff replicates compared to MK-Maximum
(~0.74-0.83) and single knockoff (~0.43). This improvement is further
demonstrated in the right panel, where we show that KnockoffScreen exhibits
smaller variation in feature statistics for the causal windows, resulting in higher
reproducibility. The significantly lower reproducibility rate for single knockoffs
relative to MK-Maximum is presumably due to its higher detection threshold
because it exhibits similar level of variation as MK-Maximum for the causal
windows.

Practical strategy for tightly linked variants. Variants residing in short genetic
regions can be in moderate to high LD. Although the knockoff method helps to
prioritize causal variants over associations due to low/moderate LD, strong cor-
relations can make it difficult or impossible to distinguish the causal genetic var-
iants from their highly correlated variants (see also Sesia et al.!®). In fact, the
knockoff method will rank all those highly correlated variants lower, which
diminishes the power if causal variants exist (see below for a concrete example).
We are primarily interested in the identification of relevant clusters of tightly
linked variants, rather than individual variants. To address this issue, we propose a
practical solution by slightly modifying B;. The resulting algorithm improves the
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power to detect clusters of tightly linked variants, without removing any variants
that are potentially causal.

Specifically, we create a hierarchical clustering dendrogram using [r;| as a
similarity measure and define clusters by |r;| >0.75, such that variants from two
different clusters do not have a correlation greater than 0.75. To generate the
knockoff feature for the j-th variant, we exclude variants from B; that are in the
same cluster. For example, let G;, G, and G; be three genetic variants; G, and G,
are tightly linked with |r},| >0.75. The standard knockoff procedure will generate
61 based on P(G,|G,, G3), 6’2 based on P(G,|G;, G;, E}l). Since G, and G, are
highly correlated, 61 ~ G, 62 ~ G, and there will be no power to detect G, or G,
even if one of them is causal. To improve the power, our modified algorithm
simultaneously generates G, and G, based on a joint distribution P(G,, G,|G;) by
first estimating the conditional means and then permuting the residuals jointly.
This avoids the situation of 61 and éz being identical to G, and G, because G,(G,)
is excluded from the generation of G,(G,). Thus both G, and G, can be detected as
a cluster. The idea is similar to that of group-wise exchangeable knockoffs proposed
by Sesia et al.!>. We further discuss limitations and some alternative approaches in
the Discussion section.

Computational efficiency of the knockoff generator. We estimate the compu-
tational complexity of our proposed method for each variant j as

O(nL) + O(LlogL) + O(n(K + MK) + (K + MK)?) = O (n), where n is the
sample size; L is a predefined constant for the length of the nearby region; K is the
number of variants in the defined set B;, which is bounded by the predefined
constant L; M is a predetermined constant for the number of knockoffs. O(nL) is
for calculating the correlation between variant j and variants in the nearby region;
O(LlOgL) is for the hierarchical clustering; O (n(K + MK)? + (K + MK)3) is for
fitting the conditional auto-regressive model. Since we iteratively generate the
knockoff for every variant, we estimate the complexity of our proposed method for
all variants as O(np), where p is the number of genetic variants. We note that the
genotype matrix G is sparse for rare variants. Therefore, the cost for calculation of
correlation and hierarchical clustering can be drastically reduced. In addition, the
approach that we proposed to define B; ensures that K is relatively small and this
further reduces the computational cost.

KnockoffScreen allows meta-analysis of multiple cohorts. Meta-analysis is a
powerful approach that enables integration of multiple cohorts for a larger sample
size without sharing individual level data. Several methods have been proposed for
meta-analysis of single variant tests for common variants or set-based (e.g., window
based) tests for rare variants*8->0. Those methods integrate summary statistics
from each individual cohort, such as p-values or score statistics, and then compute
a combined p-value for each genetic variant or each window for a meta-analysis.
Since KnockoffScreen directly uses p-value as importance score, it can flexibly
incorporate the aforementioned methods for a meta-analysis. The meta-analysis
procedure is described as follows:

1. Generate knockoff features for each individual cohort.

2. Calculate summary statistics within each individual cohort for original data
and knockoff data.

3. Apply existing meta-analysis methods to aggregate summary statistics to
compute combined p-values po,  ompinea and ﬁq,“.mmhmed, for original data
and knockoff data respectively.

4. Define Wy, =Tq, —Tg, where To =—logopo compinea 2nd
T, = —10810Pq,, compinea» 2nd apply KnockoffScreen to select putative
causal variants. It naturally extends to multiple knockoffs as

described above.

Single-region empirical power and FDR simulations. We conducted empirical
FDR and power simulations. Each replicate consists of 10,000 individuals with
genetic data on 1,000 genetic variants from a 200 kb region, simulated using the
SKAT package. The SKAT haplotype dataset was generated using a coalescent
model (COSI), mimicking the linkage disequilibrium structure of European
ancestry samples. The simulations focus on both rare and common variants with
minor allele frequency (MAF) <0.01 and >0.01 respectively. It has been discussed
in Sesia et al.1® that the false discovery proportion is difficult to define if the
method identifies a variant that is tightly linked with the causal variant. The
analysis of sequencing data targets different test units (set-based vs. single variant-
based), further complicating the FDR comparisons. We note that the simulations
here focus on method comparison for locus discovery to identify relevant clusters
of tightly linked variants. Therefore, we simplify the simulation design in this
particular section to avoid difficulties in defining the FDR in the presence of strong
correlations by keeping one representative variant from each tightly linked cluster.
Specifically, we applied hierarchical clustering such that no two clusters have cross-
correlations above a threshold value of 0.75 and then randomly choose one
representative variant from each cluster to be included in the simulation study.

We set 0.5% variants in the 200 kb region to be causal, all within a 10 kb signal
window. Then we generated the quantitative/dichotomous trait as follows:

Quantitative trait: Y; = X;; +fB,¢, + ... +Bg +¢&;

Dichotomous trait: g(4;) = By + X,y + 1&gy + --- +Bg.,

where X;; ~ N(0,1), & ~ N(0,3) and they are all independent; (g, ... ,g,) are
selected risk variants; g(x) = log(;%;) and y; is the conditional mean of Y;; for
dichotomous trait, 3, is chosen such that the prevalence is 10%. We set the effect

= \/ﬁ, where m; is the MAF for the j-th variant. We define a such that the

variance due to the risk variants, ﬁfvar(gl) + ...+ [vaar( ;) is 0.05 for the
simulations focusing on common variants and 0.1 for the simulations focusing on
rare variants. We scan the regions with candidate window sizes (1 bp, 1kb, 5kb, 10
kb), and we consider several tests including the burden test, dispersion test, and
Cauchy combination test to aggregate burden, dispersion, and individual variant test
results (as discussed in the main text). This combined test is the method implemented
in the KnockoftScreen method. A window is considered causal if it contains at least
one causal variant. For each replicate, the empirical power is defined as the proportion
of detected windows among all causal windows; the empirical FDR is defined as the
proportion of non-causal windows among all detected windows. We simulated 500
replicates and calculated the average empirical power and FDR.

Genome-wide empirical power and FDR simulations in the presence of mul-
tiple causal loci. We conducted empirical FDR and power simulations using
ADSP whole genome sequencing data, and compared the proposed method with
state-of-the-art tests for sequencing data analysis adjusted by Bonferroni correction
and Benjamini-Hochberg procedure for FDR control. We randomly choose 10
causal loci and 500 noise loci across the genome, each spanning 200 kb. Each causal
locus contains a 10 kb causal window. For each replicate, we randomly set 10%
variants in each 10 kb causal window to be causal. In total, there are approximately
335 causal variants on average across the genome. We generated the quantitative/
dichotomous trait as follows:

10
Quantitative trait: Y; = X;; + kZ (/Bklgkl + oo+ B ik ) +¢
=1 R

10
Dichotomous trait: g(.”i) =B+ Xy + kz (ﬁklgkl + ...+ :Bk,k 8.k, ) + &
=1 S

where X;; ~ N(0,1), & ~ N(0, 3) and they are all independent; (g, ... ,g,) are
selected risk variants; g(x) = log(;*;) and y; is the conditional mean of Y;; for
dichotomous trait, B, is chosen such that the prevalence is 10%. We set the effect

_ a - - L .
By = Tty where my; is the MAF for the j-th variant in causal window k. We

define a; such that the phenotypic variance due to the risk variants for each causal
locus, By gk + -+ + Brk 8kx,» is 1. We scan the regions with candidate window sizes
(1bp, 1kb, 5kb, 10 kb), and we consider several tests including the burden test,
dispersion test, and Cauchy combination test to aggregate burden, dispersion, and
individual variant test results (as discussed in the main text). This combined test is the
method implemented in the KnockoffScreen method. For each replicate, the empirical
power is defined as the proportion of causal loci (the 200 kb regions) being identified;
the empirical FDR is defined as the proportion of detected windows not overlapping
with the causal window + 50 kb/75 kb/100 kb, which evaluates FDR at different
resolutions. The empirical power and FDR have averaged over 100 replicates.

Simulations for investigating various properties of the KnockoffScreen
method (the prioritization of causal variants, the influence of shadow effects
from common variants, and robustness to population stratification). We
design these simulations to mimic the real data analysis of ADSP. For each
replicate, we randomly drew 1000 variants, including both common and rare
variants, from the 200 kb region near gene APOE (chr19: 44905796-44909393). We
scanned the regions with candidate window sizes (1 bp, 1 kb, 5kb, 1 kb) using the
conventional association test and KnockoffScreen. For a fair comparison, we
adopted the same tests implemented in KnockoffScreen to calculate the p-value for
the conventional association testing method.

Prioritization of causal variants. We set 0.25% variants to be causal, all within a 5kb
signal window (similar to the size of APOE), and then simulated a dichotomous trait
by

g(ﬂi) =By +Xa + P&+ - +B&

where g(x) = log(%;) and ; is the conditional mean of Y;; for dichotomous trait, 8,

, where m;

is the MAF for the j-th variant. We defined a = 1.4 such that the risk variant has a
similar odds ratio as APOE-e4 (~3.1) given a similar MAF (~0.137)>%0. For each
replicate, we compared the two methods in terms of (1) the proportion of selected
windows that overlaps with the causal window; and (2) the maximum distance
between selected windows and the causal window.

is chosen such that the prevalence is 10%. We set the effect §; = a)logwmj
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Shadow effect. We adopted the same simulation setting but set the causal variants
to be common (MAF > 0.01) and apply the methods to rare variants only (MAF <
0.01). Since all causal variants are common, all detected windows are false positives
due to the shadow effect. We counted the number of false positives and show the
distribution over 500 replicates.

Population stratification. The ADSP includes three ethnic groups: African Amer-
ican (AA), Non Hispanic White (NHW), and Others (98% of which are Caribbean
Hispanic). Let Z; denote the ethnic group (Z; = 0: AA; Z; = 1: NHW; Z, = 2:
Others). We simulated quantitative and dichotomous traits by

Quantitative trait: Y, = X;; + Z; + ¢;

Dichotomous trait: g(y;) = B, + X;; + Z;

where X;; ~ N(0,1), & ~ N(0, 3) and they are all independent; g(x) = log(;%;) and
y; is the conditional mean of Y; for dichotomous trait, f3, is chosen such that the
prevalence is 10%. This way, the mean/prevalence for the quantitative/dichot-
omous trait is a function of the subpopulation, but not directly affected by the
genetic variants. We counted the number of false positives and show the dis-
tribution over 500 replicates. We also calculated an estimate of the FDR, defined as
the proportion of replicates where any window is detected.

Population stratification driven by rare variants. We carried out additional simu-
lation studies to simulate population stratification driven by rare variants using the
ADSP data. Specifically, we randomly choose 100 regions across the whole genome
but outside chromosome 19 with each region of size 200 kb. Each region contains a
10 kb causal window. We randomly set 10% rare variants (MAF < 0.01; MAC > 10)
in each causal window to exhibit small effects on the trait of interest, Thus the allele
frequency differences across ethnic groups will lead to different disease prevalence,
reflecting a population stratification driven by rare variants. Then we evaluate the
FDR for the selected 200 kb region near gene APOE (chr19: 44905796-44909393).
Since the causal variants are independent of the target region, the confounding
effect will be due to population stratification. Specifically, we generated the
quantitative/dichotomous trait as follows:

100
Quantitative trait: Y, = X;; + ykZ (ﬁklgkl + oo B Sk ) +¢;
—1 O

100
Dichotomous trait: g(y;) = B, + X;; + ykZ (ﬁklgkl + o+ B Sik ) +¢;
=] sk

where X;; ~ N(0,1), & ~ N(0,3) and they are all independent; (g,, ... ,g,) are

selected risk variants;g (x) = log(;%;) and y; is the conditional mean of Y;; for

dichotomous trait, 3, is chosen such that the prevalence is 10%. We set the effect
_ @ . N S .

By = N where my; is the MAF for the j-th variant in causal window k.

We define a; such that the variance due to the risk variants for each causal locus,
B + -+ + Brx 8k is 0.01; we set y = 0,0.25,0.5,0.75 which quantifies the

magnitude of population stratification.

The Alzheimer's disease sequencing project. We first applied KnockoffScreen to
whole-genome sequencing (WGS) data from the Alzheimer’s Disease Sequencing
Project (ADSP)®L. The data include 3,085 whole genomes from the ADSP Dis-
covery Extension Study including 1,096 Non-Hispanic White (NHW), 977 African
American (AA) descent and 1,012 Caribbean Hispanic (CH). Sequencing for these
samples was conducted through three National Human Genome Research Institute
(NHGRI) funded Large Scale Sequencing and Analysis Centers (LSACs): Baylor
College of Medicine Human Genome Sequencing Center, the Broad Institute, the
McDonnell Genome Institute at Washington University. The samples were
sequenced on the Illumina HiSeq X Ten platform with 150 bp paired-end reads.
Additionally, the dataset includes 809 whole genomes from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) with 756 NHW, 28 AA, and 25 others. The
samples were sequenced on the Illumina HiSeq 2000 platform with 100 bp paired-
end reads. Whole-genome sequence data on 809 ADNI subjects (cases, mild
cognitive impairment, and controls) have been harmonized using the ADSP
pipeline for joint analysis. The ADSP Quality Control Work Group performs QC
and concordance checks into an overall ADSP VCF file.

COPDGene from the TOPMed project. Eligible subjects in COPDGene Study
(NCT00608764, www.copdgene.org) were of non-Hispanic white (NHW) or
African-American (AA) ancestry, aged 45-80 years old, with at least 10 pack-years
of smoking and no diagnosed lung disease other than COPD or asthma®2. IRB
approval was obtained at all study centers, and all study participants provided
written informed consent. All subjects underwent a baseline survey, including
demographics, smoking history, and symptoms; pre- and post-bronchodilator lung
function testing; and chest CT scans. Samples from COPDGene were sequenced at
the Broad Institute and at the Northwest Genomics Center at the University of
Washington. Variants for all TOPMed samples were jointly called by the Infor-
matics Research Center at the University of Michigan. For details on sequencing
and variant calling methods, see https://www.nhlbiwgs.org/topmed-whole-

genome-sequencing-project-freeze-5b-phases-1-and-2. QC included comparison of
annotated and genetic sex and comparison of genotypes from prior SNP array data
with genotypes called from sequencing. Samples with questionable identity from
either of these checks were excluded from analysis.

Gene annotation of the identified windows. The windows (single bp or larger)
identified as significant at a target FDR threshold are mapped to genes or
intergenic regions using the human genome assembly GRCh38.p13 from the
Ensembl Release 9993, We assign each significant window to its overlapping
locus (gene or intergenic region). If the locus is a gene, we report the gene’s
name; if the locus is intergenic, we report the upstream and downstream genes
(enclosed within parentheses and separated by “-”). We also check if the assigned
locus has known associations with Alzheimer’s disease and lung related traits in
the NHGRI-EBI GWAS Catalog*. Specifically, we look up associations with the
following seven traits for the ADSP: Alzheimer’s disease, late-onset Alzheimer’s
disease, family history of Alzheimer’s disease, t-tau measurement, p-tau mea-
surement, amyloid-beta measurement, and beta-amyloid 1-42 measurement;
and associations with the following 20 traits for the COPDGene: FEV1/FEC
ratio, FEV1, FVC, PEF (peak expiratory flow), COPD, response to bronchodi-
lator, asthma, chronic bronchitis, lung carcinoma, lung adenocarcinoma, pul-
monary artery enlargement, FEV change measurement, pulmonary function
measurement, carbon monoxide exhalation measurement, airway responsiveness
measurement, serum IgE measurement, smoking behavior measurement,
smoking status measurement, smoking behaviour, and smoking initiation. These
annotations are shown in Supplemental Tables.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The manuscript used data from existing studies from COPDGene (TopMED, dbGaP
phs000951.v4.p4) and the Alzheimer’s Disease Sequencing Project (dbGaP phs000572.v8.
p4). Source data are provided with this paper.

Code availability

We have implemented KnockoffScreen in a computationally efficient R package that can
be applied generally to the analysis of other whole-genome sequencing studies. The
package can be accessed at: https://cran.r-project.org/web/packages/KnockoffScreen/
index.html.

Received: 26 July 2020; Accepted: 26 March 2021;
Published online: 25 May 2021

References

1. RK, C.Y.etal. Whole genome sequencing resource identifies 18 new candidate
genes for autism spectrum disorder. Nat. Neurosci. 20, 602-611 (2017).

2. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI
TOPMed Program. bioRxiv, 563866 (2019).

3. Morrison, A. C. et al. Practical approaches for whole-genome sequence
analysis of heart- and blood-related traits. Am. J. Hum. Genet. 100, 205-215
(2017).

4. Sazonovs, A. & Barrett, J. C. Rare-variant studies to complement genome-wide
association studies. Annu Rev. Genomics Hum. Genet. 19, 97-112 (2018).

5.  Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying
causal variants at loci with multiple signals of association. Genetics 198,
497-508 (2014).

6. Wang, G, Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach
to variable selection in regression, with application to genetic fine mapping. J.
R. Stat. Soc.: Ser. B (Stat. Methodol.) 82, 1273-1300 (2020).

7. Korthauer, K. et al. A practical guide to methods controlling false discoveries
in computational biology. Genome Biol. 20, 118 (2019).

8. He, X. et al. Integrated model of de novo and inherited genetic variants yields
greater power to identify risk genes. PLoS Genet. 9 (2013).

9. Iossifov, 1. et al. The contribution of de novo coding mutations to autism
spectrum disorder. Nature 515, 216-221 (2014).

10. Consortium, G. Genetic effects on gene expression across human tissues.
Nature 550, 204-213 (2017).

11. Liu, Y. et al. A statistical framework for mapping risk genes from de novo
mutations in whole-genome-sequencing studies. Am. J. Hum. Genet. 102,
1031-1047 (2018).

12. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc.: Ser. B (Methodol.)
57, 289-300 (1995).

16 | (2021)12:3152 | https://doi.org/10.1038/s41467-021-22889-4 | www.nature.com/naturecommunications


http://www.copdgene.org
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000951.v4.p4
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000572.v8.p4
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000572.v8.p4
https://cran.r-project.org/web/packages/KnockoffScreen/index.html
https://cran.r-project.org/web/packages/KnockoffScreen/index.html
www.nature.com/naturecommunications

ARTICLE

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Barber, R. F. & Candgs, E. J. Controlling the false discovery rate via knockoffs.
Ann. Stat. 43, 2055-2085 (2015).

Candes, E., Fan, Y., Janson, L. & Lv, J. Panning for gold:‘model-X’knockoffs
for high dimensional controlled variable selection. J. R. Stat. Soc.: Ser. B (Stat.
Methodol.) 80, 551-577 (2018).

Sesia, M., Katsevich, E., Bates, S., Candés, E. & Sabatti, C. Multi-resolution
localization of causal variants across the genome. Nat. Commun. 11, 1093 (2020).
Sesia, M., Sabatti, C. & Candgs, E. J. Rejoinder: ‘Gene hunting with hidden
Markov model knockoffs’. Biometrika 106, 35-45 (2019).

Romano, Y., Sesia, M. & Candes, E. Deep knockoffs. Journal of the American
Statistical Association, 1-12 (2019).

He, Z., Xu, B, Buxbaum, J. & Ionita-Laza, I. A genome-wide scan statistic
framework for whole-genome sequence data analysis. Nat. Commun. 10, 1-11
(2019).

Liu, Y. & Xie, J. Cauchy combination test: a powerful test with analytic p-value
calculation under arbitrary dependency structures. Journal of the American
Statistical Association, 1-18 (2019).

Hernandez, R. D. et al. Ultra-rare variants drive substantial cis-heritability of
human gene expression. bioRxiv, 219238 (2019).

Zhou, W. et al. Efficiently controlling for case-control imbalance and sample
relatedness in large-scale genetic association studies. Nat. Genet. 50,
1335-1341 (2018).

Chen, Z. et al. Threshold for neural tube defect risk by accumulated singleton
loss-of-function variants. Cell Res. 28, 1039-1041 (2018).

He, Z., Xu, B, Lee, S. & Ionita-Laza, I. Unified sequence-based association tests
allowing for multiple functional annotations and meta-analysis of noncoding
variation in metabochip data. Am. J. Hum. Genet. 101, 340-352 (2017).

Li, B. & Leal, S. M. Methods for detecting associations with rare variants for
common diseases: application to analysis of sequence data. Am. J. Hum. Genet.
83, 311-321 (2008).

Madsen, B. E. & Browning, S. R. A groupwise association test for rare
mutations using a weighted sum statistic. PLoS Genetics 5, €1000384 (2009).
Wu, M. C. et al. Rare-variant association testing for sequencing data with the
sequence kernel association test. Am. J. Hum. Genet. 89, 82-93 (2011).
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD:
predicting the deleteriousness of variants throughout the human genome.
Nucleic Acids Res. 47, D886-D894 (2019).

He, Z., Liu, L., Wang, K. & Ionita-Laza, I. A semi-supervised approach for
predicting cell-type specific functional consequences of non-coding variation
using MPRAs. Nat. Commun. 9, 1-12 (2018).

Liu, Y. et al. Acat: A fast and powerful p value combination method for rare-
variant analysis in sequencing studies. Am. J. Hum. Genet. 104, 410-421 (2019).
Gimenez, J. R. & Zou, J. Improving the Stability of the Knockoff Procedure:
Multiple Simultaneous Knockoffs and Entropy Maximization. arXiv preprint
arXiv:1810.11378 (2018).

Zhou, X. et al. Non-coding variability at the APOE locus contributes to the
Alzheimer’s risk. Nat. Commun. 10, 1-16 (2019).

Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X. Rare-variant association analysis:
study designs and statistical tests. Am. J. Hum. Genet. 95, 5-23 (2014).

Sesia, M., Bates, S., Candés, E., Marchini, J. & Sabatti, C. Controlling the false
discovery rate in GWAS with population structure. bioRxiv (2020).

Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide
association studies, targeted arrays and summary statistics 2019. Nucleic acids
Res. 47, D1005-D1012 (2019).

Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and
functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51,
404-413 (2019).

Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl.
Psychiatry 8, 1-7 (2018).

Dumitriu, A. et al. Integrative analyses of proteomics and RNA
transcriptomics implicate mitochondrial processes, protein folding pathways
and GWAS loci in Parkinson disease. BMC Med. Genomics 9, 5 (2015).

Lee, J. H. et al. Fine mapping of 10q and 18q for familial Alzheimer’s disease
in Caribbean Hispanics. Mol. Psychiatry 9, 1042-1051 (2004).

Mclnnes, L. A. et al. A complete genome screen for genes predisposing to
severe bipolar disorder in two Costa Rican pedigrees. Proc. Natl Acad. Sci.
USA 93, 13060-13065 (1996).

Ho, A. et al. Circulating glucuronic acid predicts healthspan and longevity in
humans and mice. Aging (Albany NY) 11, 7694 (2019).

Xu, Z., Wu, C. & Pan, W. & Initiative, A.s.D.N. Imaging-wide association
study: Integrating imaging endophenotypes in GWAS. Neuroimage 159,
159-169 (2017).

Shi, J. et al. Genome-wide association study of recurrent early-onset major
depressive disorder. Mol. Psychiatry 16, 193-201 (2011).

Mez, J. et al. Two novel loci, COBL and SLC10A2, for Alzheimer’s disease in
African Americans. Alzheimer’s Dement. 13, 119-129 (2017).

NHLBI Trans-Omics for Precision Medicine. TOPMed Whole Genome
Sequencing Project - Freeze 5b, Phases 1 and 2. Vol. 2020 (https://www.

nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-
and-2).

45. Janson, L. & Su, W. Familywise error rate control via knockoffs. Electron. J.
Stat. 10, 960975 (2016).

46. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to
candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19,
491-504 (2018).

47. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample
relatedness in large-scale genetic association studies. Nat. Genet. 50,
1335-1341 (2018).

48. Liu, D. J. et al. Meta-analysis of gene-level tests for rare variant association.
Nat. Genet. 46, 200 (2014).

49. Feng, S, Liu, D,, Zhan, X., Wing, M. K. & Abecasis, G. R. RAREMETAL: fast and
powerful meta-analysis for rare variants. Bioinformatics 30, 2828-2829 (2014).

50. Lee, S., Teslovich, T. M., Boehnke, M. & Lin, X. General framework for meta-
analysis of rare variants in sequencing association studies. Am. J. Hum. Genet.
93, 42-53 (2013).

51. Chen, H. et al. Efficient variant set mixed model association tests for
continuous and binary traits in large-scale whole-genome sequencing studies.
Am. J. Hum. Genet 104, 260-274 (2019).

52. Zhou, W. et al. Scalable generalized linear mixed model for region-based
association tests in large biobanks and cohorts. (Nature Publishing Group,
2020).

53. Zhao, Z. et al. UK Biobank whole-exome sequence binary phenome analysis with
robust region-based rare-variant test. Am. J. Hum. Genet. 106, 3-12 (2020).

54. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome.
Science 296, 2225-2229 (2002).

55. Anderson, E. C. & Novembre, J. Finding haplotype block boundaries by using
the minimum-description-length principle. Am. J. Hum. Genet. 73, 336-354
(2003).

56. Wang, L. GEE analysis of clustered binary data with diverging number of
covariates. Ann. Stat. 39, 389-417 (2011).

57. Storey, ]. D. The positive false discovery rate: a Bayesian interpretation and the
q-value. Ann. Stat. 31, 2013-2035 (2003).

58. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies.
Proc. Natl Acad. Sci. USA 100, 9440-9445 (2003).

59. Liu, C.-C,, Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer
disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106 (2013).

60. Kukull, W. A. et al. Apolipoprotein E in Alzheimer’s disease risk and case
detection: a case-control study. J. Clin. Epidemiol. 49, 1143-1148 (1996).

61. Beecham, G. W. et al. The Alzheimer’s disease sequencing project: study
design and sample selection. Neurol. Genet. 3, €194 (2017).

62. Regan, E. A. et al. Genetic epidemiology of COPD (COPDGene) study design.
COPD: ]. Chronic Obstr. Pulm. Dis. 7, 32-43 (2011).

63. Yates, A. D. et al. Ensembl 2020. Nucleic acids Res. 48, D682-D688 (2020).

Acknowledgements

This research is supported by NIH/NIA award AG066206 (Z.H.) and NIH/NIMH
awards MH106910 and MH095797 (LL-L.). We gratefully acknowledge the studies and
participants who provided biological samples and data for ADSP and TOPMed. The full
study-specific acknowledgements are detailed in the Supplementary Note.

Author contributions

ZH., LL, and LIL-L. developed the concepts for the manuscript and proposed the
method. ZH., LL., SM,, HT., M.G,, and LL-L. designed the analyses and applications
and discussed results. Z.H., CW., Y.L, J.L,, and F.L. conducted the analyses. EK.S., S.G.,
and M.H.C. helped interpret the results of the TOPMed analyses. Z.H., LL., and LL-L.
prepared the manuscript and all authors contributed to editing the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-22889-4.

Correspondence and requests for materials should be addressed to Z.H. or LI-L.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

| (2021)12:3152 | https://doi.org/10.1038/s41467-021-22889-4 | www.nature.com/naturecommunications 17


https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://doi.org/10.1038/s41467-021-22889-4
http://www.nature.com/reprints
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22889-4

Open Access This article is licensed under a Creative Commons
By

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

18 NATURE COMMUNICATIONS | (2021)12:3152 | https://doi.org/10.1038/s41467-021-22889-4 | www.nature.com/naturecommunications


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Identification of putative causal loci in whole-genome sequencing data via knockoff statistics
	Results
	Overview of the screening procedure with multiple knockoffs (KnockoffScreen)
	KnockoffScreen improves power and guarantees FDR control in single-region simulation studies
	KnockoffScreen improves genome-wide locus discovery for polygenic traits
	KnockoffScreen prioritizes causal variants/loci over associations due to linkage disequilibrium
	KnockoffScreen distinguishes the signal due to rare variants from shadow effects of significant common variants nearby
	Empirical evaluation of KnockoffScreen in the presence of population stratification
	KnockoffScreen enables computationally efficient screening of whole-genome sequencing data
	KnockoffScreen detects more independent disease risk loci across the genome in two whole-genome sequencing studies
	Application to ADSP
	Application to COPDGene study in TOPMed

	Discussion
	Methods
	Sequential model to generate model-X knockoff features
	Multiple sequential knockoffs to improve power and stability
	Knockoff filter to define the threshold  τ for FDR control
	Knockoff Q-value
	Choice of windows for genome-wide screening
	KnockoffScreen improves stability and reproducibility of knockoff-based inference
	Practical strategy for tightly linked variants
	Computational efficiency of the knockoff generator
	KnockoffScreen allows meta-analysis of multiple cohorts
	Single-region empirical power and FDR simulations
	Genome-wide empirical power and FDR simulations in the presence of multiple causal loci
	Simulations for investigating various properties of the KnockoffScreen method (the prioritization of causal variants, the influence of shadow effects from common variants, and robustness to population stratification)
	Prioritization of causal variants
	Shadow effect
	Population stratification
	Population stratification driven by rare variants
	The Alzheimer’s disease sequencing project
	COPDGene from the TOPMed project
	Gene annotation of the identified windows

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




