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Determining international climate mitigation response strategies is a complex task. Integrated

Assessment Models support this process by analysing the interplay of the most relevant

factors, including socio-economic developments, climate system uncertainty, damage esti-

mates, mitigation costs and discount rates. Here, we develop a meta-model that disentangles

the uncertainties of these factors using full literature ranges. This model allows comparing

insights of the cost-minimising and cost-benefit modelling communities. Typically, mitigation

scenarios focus on minimum-cost pathways achieving the Paris Agreement without

accounting for damages; our analysis shows doing so could double the initial carbon price.

In a full cost-benefit setting, we show that the optimal temperature target does not exceed

2.5 °C when considering medium damages and low discount rates, even with high mitigation

costs. With low mitigation costs, optimal temperature change drops to 1.5 °C or less. The

most important factor determining the optimal temperature is the damage function,

accounting for 50% of the uncertainty.
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As part of the United Nations Framework Convention on
Climate Change (UNFCCC), countries have agreed to
prevent ‘dangerous anthropogenic’ climate change. In the

Paris Agreement, this was specified further as the aim to keep the
increase of global mean temperature change well below 2°C and
pursuing efforts to limit it to 1.5°C. Determining a goal for
international climate policy is extremely complex, as it involves
many socio-economic, geophysical and even ethical aspects. To
explore and understand this complexity, researchers have devel-
oped Integrated Assessment Models (IAMs) describing the
interplay of several factors relevant to climate change.

A plethora of IAMs has already been developed, with varying
degrees of complexity and differing in focus. One category of
models focuses on cost-minimising carbon price or emission
pathways to achieve a specific climate target1–5. A second cate-
gory consists of models that determine optimal pathways, which
balance the costs and benefits of climate policy6–10. In this type of
models, the climate target is an outcome rather than determined
exogenously. These two types of models have developed relatively
independently. However, in both types, a (shadow) carbon price
is used as a key indicator of mitigation effort and costs associated
with the transition towards a low-carbon future—and the devel-
opment of carbon prices and emissions forms a key component in
both types of models.

Several studies have analysed the effect of various assumptions
and uncertainties (for instance, related to the discount rate, cli-
mate sensitivity or the damages of climate change) on the optimal
pathway. However, such studies are often limited in scope11,12,
only perform a sensitivity analysis13,14, do not capture the latest
insights (e.g., outdated damage functions)15–17, or perform a
simulation instead of an optimisation17,18. Moreover, no studies
exist that have compared cost-minimising pathways with cost-
benefit pathways using the same model framework—except for
Nordhaus19, who did this for a few selected assumptions
regarding discounting and climate targets. Such a comparison
would provide insight into under which conditions taking into
account climate damages would change the cost-optimal carbon
price and emission pathway, given a fixed climate target.

A comprehensive analysis of cost-benefit versus cost-
minimising pathways, including an uncertainty analysis of the
most important parameters, requires a model that is simple
enough to use mathematical optimal control theory techniques
but complex enough to capture the relevant technological and
socio-economic dynamics. Moreover, the model should easily be
calibrated to the literature ranges. In this paper, we develop a
flexible and transparent model to calculate the optimal carbon
price path under a set of assumptions regarding damage func-
tions, temperature goals, mitigation costs, climate sensitivities,
discount rates and socio-economic developments. With this
model, we directly compare the insights of the two main Inte-
grated Assessment Modelling communities: the cost-minimising
models which focus on how climate targets (e.g., a carbon budget)
can be reached, without taking damages into account, and the
cost-benefit models which compare the marginal mitigation costs
to marginal damages to calculate optimal temperature goals.

With this model, we first analyse each parameter’s effect on the
timing of mitigation in cost-minimising paths (also called cost-
effective paths). We then quantify how these cost-minimising
mitigation paths are impacted if the economic impact of climate
damages is included, and not only mitigation costs. We analyse
how the relative importance of each parameter’s uncertainty
varies over time.

Besides cost-minimising paths with a carbon budget, we ana-
lyse optimal cost-benefit paths (which do not require a preset
carbon budget). In particular, the resulting optimal end-of-
century temperature has been the subject of much research. Here,

we provide a comprehensive analysis of how this optimal tem-
perature depends on the literature ranges of the relevant para-
meters—moving beyond current literature that only considers a
limited range of damages or mitigation costs13—and investigate
under which assumptions the 2°C temperature target set by the
Paris Agreement is optimal.

We move beyond studies presenting sensitivity analysis of the
assessed parameters and conduct a systematic uncertainty ana-
lysis using ranges based on literature. We also analyse the
interaction between parameters and assess to which degree
uncertainty in individual parameters affect total uncertainty in
the optimal carbon price or end-of-century temperature.

The model used in this paper is based on a simple economic
growth model (Fig. 1). This model shows some similarities with
the DICE8 and the FAIR15 model. The production function is
combined with estimates on mitigation costs and climate dama-
ges from recent literature. In the model, a global carbon price is
applied such that the discounted utility is maximised. This
transparent model is still solvable using the Bellman equation,
which guarantees mathematical optimal solutions.

The model is calibrated using literature ranges on parameters
relevant for global climate policy (highlighted in colour in Fig. 1).
The socio-economic variables are obtained from the Shared
Socio-economic Pathways (SSPs, blue)20. The damage functions
(green) cover the low range of damage functions (DICE 2016R2-
damage function21), the medium (based on a meta-analysis by
Howard et al.22 of empirical and traditional IAM estimates and
referred to as Howard Total in this article), and the high range
(long-run empirical damage function from Burke, Hsiang and
Miguel23). Both the Transient Climate Response to Emissions
(TCRE, pink), linking temperature to cumulative CO2 emissions,
and the mitigation costs (yellow), are calibrated to IPCC AR5
data24,25 and both span the 5–95th percentile range26. Finally, we
use three values for the pure rate of time preference (purple):
0.1%, 1.5%, and 3% per year. The values used for each parameter
are summarised in Table 1. Although other parameters like dif-
ferent technological growth assumptions, social inertia and wel-
fare are relevant, their impact on this paper’s main policy
outcomes is significantly smaller than the five main parameters
we focus on in this paper (see Discussion).

With our model, we discuss how these parameters affect
optimal carbon price paths and associated emission paths in a
cost-minimising setting, by imposing a carbon budget. When
considering cost-minimising pathways reaching the Paris
Agreement’s temperature target, including medium damages can
double the initial carbon price compared to purely considering
mitigation costs. Moreover, decreasing the pure rate of time
preference from 1.5% to 0.1% also doubles the initial carbon
price. Over the century, the cost-minimising carbon price mostly
rises with per capita GDP growth. The level of mitigation costs
dominates the variance of the carbon price. The discount rate,
damage function and socio-economic scenario contribute in
almost equal part to the remaining variance, with a drop in
absolute variance around 2070. Consequently, the choice of dis-
count rate and how climate damages are valued have a substantial
effect on the carbon price in a cost-minimising setting. To reduce
the uncertainty in climate policy, these choices have to be made as
soon as possible.

In a cost-benefit setting (without carbon budget), even with
high mitigation costs, the optimal end-of-century temperature
with medium damages and a low discount rate does not exceed
2.5°C. For low mitigation costs or with the high damage function,
we find an optimal temperature of 1.5°C or less. The effect of a
different TCRE is negligible for scenarios with an optimal tem-
perature between 1.5 and 2°C. Over 50% of the uncertainty comes
from the damage function, compared to only 2% from the TCRE.
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Many of these results individually are consistent with previous
research. This paper presents a comprehensive overview of the
relative importance of each of these results.

Results
Optimal carbon price paths with a fixed carbon budget. This
section focuses on optimal carbon price paths reaching a fixed
carbon budget in 2100 (cost-minimising setting). The carbon
budget here is 1344 GtCO2, which leads to a 2°C temperature
increase compared to pre-industrial with 67% certainty given the
normal distribution of the TCRE (see SI. 4.1). The effect of
changing various parameters on the shape of the carbon price
and, subsequently, the emission path, is shown in Fig. 2. Each
experiment compares the cost-minimising path without damages
(solid lines) with cost-minimising paths including damage costs,
based on the medium damage function Howard Total (dotted

lines). Moreover, the effect of varying each remaining parameter
individually (mitigation cost level, SSP, TCRE and discount rate)
is analysed (various colours in each subplot). In each of the
experiments, we use the default values of Table 1, unless specified
otherwise.

In each of the experiments, the carbon prices increase over
time, before they start falling again when the imposed minimum
emission level, set to represent restrictions on carbon dioxide
removal technologies (see Methods), is reached (if at all).
Including damages leads to a shift of the mitigation effort from
the end of the century towards the present: the optimisation aims
to reduce the impact of damages on GDP development by
increasing the mitigation effort early on. Consequently, the
carbon price path becomes more linear. This impact depends on
the damage function and is smaller for the DICE damage function
and strongest for the Burke function. In fact, in the latter case, the
optimisation can lead to smaller carbon budgets than the target.

Fig. 1 Schematic representation of the model. The model consists of an economic module (top) with a Cobb-Douglas production function, and an
emission module (bottom). The interactions between these two modules occur through damages and mitigation costs. The coloured boxes represent the
parameters for which we use a representative range from literature. The carbon price path, in black, is the input variable of the model and the control
variable in the optimisation.

Table 1 Values for the main parameters of the model.

Parameter SSP Damage function TCRE Mitigation cost level Pure rate of time
preference

Values SSP1, SSP2*, SSP3,
SSP4, SSP5

No damage**, DICE 2016R2 (low),
Howard Total (middle)*, Burke
(LR) (high)

0.42, 0.62*, 0.82 °
C/1000 GtCO2

From IPCC AR5 consumption
losses: low, medium* and high

0.1%/yr, 1.5%/yr*,
3.0%/yr

*Default parameter value if not specified.
**Only used in cost-minimising scenarios with a fixed carbon budget.
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Unsurprisingly, higher marginal abatement costs lead to higher
carbon prices to reach the given carbon budget (Fig. 2a). In the
no-damage scenario, the carbon price path is linearly dependent
on the height of the MAC and so there is no impact on timing
(Supplementary Figure 6.1). Interestingly, when including
damages, the initial carbon price (in 2025 to avoid initial inertia

constraints) depends on the interaction between damages and
mitigation costs. For high mitigation costs, the medium damage
function implies an initial price that is 32% higher than without
taking damages into account, whereas for low mitigation costs,
this is 282% higher. When using the higher (Burke) and lower
(DICE) damage functions, this effect also exists but is larger or

Fig. 2 Optimal carbon price paths (left) with corresponding emission path (right) for different scenarios with a 1344 GtCO2 carbon budget (cost-
minimising setting). For each scenario, the default parameters (see main text) are used, with one parameter changed (a mitigation cost level, b SSP, c
TCRE, d pure rate of time preference). The solid lines correspond to purely cost-minimising paths (no damages), the dotted lines take into account the
medium damage function Howard Total.
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smaller, respectively. When assuming medium damages, taking
into account damages to determine the optimal emission pathway
only leads to a substantially different optimal emission pathway if
low mitigation costs are assumed, with very early reductions and
hardly any net negative CO2 emissions.

The SSP substantially impacts the optimal carbon price
(Fig. 2b) (see also20). First of all, the difference in baseline
emissions (e.g., between SSP1 and SSP5) explains that the SSP5
carbon price path grows earlier and more rapidly. Despite this
higher carbon price, the minimum emission level is reached
before the end of the century in SSP5. Second, since utility is
derived from per capita consumption, a high population growth
combined with a low GDP, as in SSP3 (Supplementary Figure 1.2),
means that end-of-century costs have a larger impact on total
cumulative utility. Therefore, the mitigation effort is more linear
in SSP3: a much higher initial carbon price is followed by lower
carbon prices towards 2100 compared to the SSP1 and SSP5
paths. In other words, cost-minimising paths without damages
lead to initially exponentially increasing price paths, unless one
assumes that our future society will not be much richer than
today, confirming previous findings27.

The TCRE dependence (Fig. 2c) is relatively straightforward:
the higher the TCRE, the higher the impact of damages on the
carbon price and emission pathway (thus leading to a stronger
preference for early mitigation). In fact, the initial carbon price
increases almost linearly with the TCRE (Supplementary
Figure 6.3).

Higher discount rates shift mitigation efforts towards the future
(Fig. 2d). In a cost-minimising setting without damages,
decreasing the pure rate of time preference from 3% to 1.5%
almost doubles the initial carbon price. Moving from 1.5% to
0.1% almost doubles the initial price again.

Subsequently, we analyse the combined effect of all parameters
on the optimal carbon price and determine each parameter’s
contribution to the total variance. This is quantified by Sobol
indices, calculated with a Monte Carlo simulation using each
combination of parameter values of Table 1 (see Methods): the
total variance is split in partial variances attributed to each

parameter, along with interactions between them. As we consider
scenarios with a fixed carbon budget here, we focus on the
determinants for the optimal carbon price only. The top panel of
Fig. 3 shows the standard deviation of the optimal carbon price
and its determinants over time. The standard deviation remains
relatively constant until the mid-2060s, after which it increases
strongly, as a result of the increasing mean values of all carbon
prices over time. The dip in variance in the first decade comes
from the constraining effect of inertia to reduce initial emissions.
The main contribution to the variance is by far the mitigation cost
level, especially in the longer term. However, the initial carbon
price is also strongly influenced by future socio-economic
developments (through the SSPs, see also Supplementary
Figure 2.4). To better analyse the contribution of the remaining
parameters, we perform the same analysis but by fixing the cost
level at low, medium and high mitigation costs (bottom three
panels of Fig. 3).

The variance of the optimal carbon price due to other
determinants is the highest towards the end of the century.
Interestingly, for all cases presented there is very little variance
around 2070. This can be explained by the fact that most changes
in parameter values induce a shift in mitigation effort either
towards the present or towards the end of the century. They
therefore increase (or decrease) the initial carbon price, and
decrease (or increase) the final carbon price—leading to similar
carbon prices by 2070.

The SSP, discount rate and damage function contribute equally
to the total variance for medium mitigation cost levels. For low
mitigation costs, the damages become more important. In contrast,
the SSP becomes more dominant for high mitigation cost levels,
where the marginal mitigation costs become substantially larger
than the marginal damages. The contribution of the uncertainty in
TCRE is negligible, accounting for <0.5% of the variance. This
confirms previous findings26, which state that the socio-economic
uncertainty is far more important than the geophysical uncertainty
in scenarios with stringent temperature targets.

For all the cost-minimising 2°C pathways, it can be determined
whether the monetary benefits (damages avoided compared to a

Fig. 3 Contribution to the variance of each parameter as a function of time using Sobol Indices (cost-minimising setting). In the top row, all parameters
are considered. In contrast, in the bottom row, the same analysis is performed while fixing the mitigation costs at three distinct levels: low, medium and
high costs. Note that for clarity, the square root of the variance—the standard deviation—has been shown: the unit then becomes US$ instead of the square
of it. The decomposition with variances is shown in Supplementary Figure 2.2.
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baseline scenario) outweigh the costs (net present value of
abatement costs). Although this does not imply that the pathways
are optimal in a cost-benefit setting, at least the pathways lead to
net benefits compared to baseline if this is the case. This
comparison is very similar to the comparison of the Stern
Review28, in which a stringent scenario was compared to no
mitigation at all. Of all parameter combinations with either
medium or high damages, 95% lead to avoided damages
exceeding mitigation costs (Fig. 4). The remaining 5% consists
mostly of high mitigation cost scenarios. For the DICE damage
function, only 40% of all parameter combinations lead to higher
benefits than costs. The magnitude of the damages, and much less
the magnitude of the mitigation costs or the discount rate,
therefore largely determines whether the benefits of 2°C outweigh
the costs. The optimal balance between avoided losses and
mitigation costs—the cost-benefit setting—is another question,
however, and is discussed in the next section.

Cost-benefit paths (without a carbon budget). This section
considers purely cost-benefit scenarios, without carbon budget or
temperature target: the optimal price path results from an optimal
balance between mitigation costs and damages. We discuss the
optimal temperature in 2100 for different parameter combina-
tions and subsequently, we analyse the contribution to the var-
iance of the optimal temperature resulting from each parameter.
Finally, we briefly discuss the resulting shape of the optimal
carbon price path in a cost-benefit setting.

Figure 5 shows the optimal temperature in 2100 for all
combinations of the discount rate, damage function, mitigation
cost level, and SSP. A 2°C temperature target or lower is found to be
optimal in most parameter combinations in cost-benefit settings
with high damages or with a low discount rate, the latter with the
exception when combined with DICE damages. Low discounting
does not always lead to optimal temperatures below 2°C, especially
if high mitigation costs and medium to low damages are assumed.
However, in most cases, the optimal temperature is 3°C or
significantly less with low discounting, except for SSP5 socio-
economic developments. The optimal temperature in SSP5 is
consistently higher than in other SSPs: between 3°C and 4.5°C. On
the other hand, SSP1 and SSP4 have consistently lower optimal
temperatures (between 1°C and 3°C), directly correlated with the

baseline emissions of these SSPs. In fact, with a high discount rate
or low damages, the influence of the SSP becomes much more
important. This is discussed in more detail below.

The effect of assuming a low or high TCRE instead of the
median value is mostly linear with the optimal temperature
(Supplementary Figure 3.4): the higher the optimal temperature
with median TCRE, the higher the effect. A lower TCRE leads to a
lower optimal temperature. Conversely, a high TCRE leads to a
higher optimal temperature, but this effect is dampened by an
increased abatement effort to counter the increased damages.
Scenarios with an optimal temperature around 2°C hardly see any
impact of a change in TCRE.

To assess the contribution to the variance of each model
parameter on the optimal temperature, we perform a Sobol
variance decomposition using the same method as for the
variance decomposition of the carbon price in a cost-minimising
setting. The difference here is that we focus on the optimal
temperature in 2100 instead of the carbon price over time. The
total variance is split into percentages attributed to each
parameter. When considering all combinations of parameter
values, the damages are responsible for the highest variance
(58%), followed by the discount rate (15%) and the mitigation
cost level (14%). This is shown as the central node in the
conditional variance tree of Fig. 6. We split on the variable with
the highest variance (damages) and perform the same analysis,
conditional on each value of this parameter. By repeating this
process, we fix the parameters’ values with the highest conditional
variance and obtain a tree structure.

Interestingly, the parameters with the highest variance within
each level of this tree (large grey circles in Fig. 6) are not identical.
For instance, with a medium or high damage function (Howard
Total and Burke), the discount rate and mitigation cost level
dominate the variance since the mitigation effort level is then
mainly determined by how much weight is given to costs for
future generations. When considering a low damage function
(DICE) with a high discount rate, where the optimal emission
path is closer to the baseline emissions, the next parameter with
the highest variance is the SSP. The mitigation costs in this case
only play a significant role in SSP5 (with its higher baseline
emissions), whereas, for the other SSPs, the geophysical
uncertainty in TCRE dominates the variance.

Fig. 4 Costs versus benefits (cost-minimising setting). The costs are calculated as the net present value (NPV) of abatement costs as a share of GDP,
whereas the benefits are the NPV of avoided damages as a share of GDP compared to the baseline SSP scenario, for each scenario reaching the carbon
budget of 1344 GtCO2, and for each combination of parameters of Table 1.
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The interaction terms, represented in grey in Fig. 6, can be
further decomposed. As shown in Supplementary Fig. 3.8, the two
highest interaction terms are between SSP and the damage
function (owing to the large differences in baseline between SSPs,
where some SSPs are much more sensitive to climate damages)
and between the TCRE and the damage function (since the TCRE
has a direct influence on the temperature and therefore the
damages). This shows that although the first-order variances of
SSP and TCRE are small, their total variance is larger when
including interaction terms.

The timing of mitigation is obviously at least as important as the
optimal temperature. The optimal carbon price paths in a purely
cost-benefit setting increase almost linearly (Supplementary Fig-
ure 3.3), consistent with simpler settings in earlier studies27.
Although greater damages lead to slightly steeper carbon price
paths, most factors influence mainly the initial carbon price. The
exception here is the SSP (panel b, Supp. Fig. 3.3): the SSP
determines mostly the steepness of the carbon price path. Similar to
cost-minimising paths, the SSP3 path is much flatter than the other
SSPs. The uncertainty in carbon prices in the cost-benefit setting
(sometimes called the social cost of carbon) can be directly
compared to the carbon price’s corresponding uncertainty in the
cost-minimising setting (cf Fig. 3 and Suppl. Fig 3.4b). Interestingly,
uncertainty in mitigation costs has a much smaller impact on the
level of the cost-benefit carbon price (Supplementary Figure 3.4 a
and b): it explains ~10% of the total variance. The damage function
(45–60%) dominates the variance instead. The discount rate is the
most important factor for low damages, whereas conditional on high
damages, the mitigation cost level contributes most to the variance.

Discussion
This paper focuses on the economic aspects of climate policy by
discussing cost-minimising paths and optimal temperatures in a

cost-benefit setting. The approach provides insight into the cri-
tical factors that determine the attractiveness of various mitiga-
tion pathways. Moreover, it allows extending on current literature
research on cost-benefit analysis.

This paper also adds some nuance to the claims of recent
literature12,13 stating that the 2°C temperature goal, as set in the
Paris agreement, is indeed optimal. Glanemann et al. (2020) focus
on the Burke baseline damage functions (short run). This damage
function corresponds roughly to the Howard Total damage: in
our analysis, the optimal temperature in 2100 using Burke (short
run) divided by the results using Howard Total damages has a
mean of 0.97 (standard deviation of 0.07). Although the optimal
temperature using medium mitigation costs and a small discount
rate is indeed very close to 2°C, different mitigation cost levels or
discount rates have a strong impact, leading to optimal tem-
peratures between 1.1 and 3.5°C. This confirms the importance of
considering the full literature range for these parameters. On the
other hand, Glanemann et al. observe a larger impact of using
different climate sensitivities (moving the optimal temperature
from 2°C to 1.5 or 2.5°C for different climate sensitivities). This
difference is likely owing to DICE’s different climate module:
whereas we use the instantaneous TCRE relation, DICE uses a
two-box model with much longer lag times. Similarly, our results
are in line with Hänsel et al.12, considering that they used a
similar range in social discounting parameters, but only our
medium estimates for climate damage and mitigation costs. Our
full range of optimal climate targets is much larger. Whereas
Drouet et al.17 use emission pathways generated using more
detailed IAMs, the damages were only added afterwards. Con-
sidering the climate damages in the optimisation leads to sig-
nificant differences in carbon prices, as shown in Fig. 2.
Moreover, the optimal carbon budget candidates selected in ref. 17

are higher than our optimal carbon budgets, mainly due to the
much lower, now outdated, damage functions employed in their

Fig. 5 Optimal temperature in 2100 (cost-benefit setting). The optimal end-of-century temperature is shown for three different pure rate of time
preference rates (columns), three damage functions (rows) and mitigation cost levels (colours). The median value of the TCRE is used for each scenario
here. Therefore, the end-of-century temperature corresponds linearly to the cumulative CO2 emissions from 2020 to 2100.
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paper. Finally, our uncertainty decomposition contrasts with
Lamontagne et al.18, as we show a much larger uncertainty from
damage function and mitigation costs. This difference is directly
attributable to the use of full literature ranges instead of much
smaller damage and abatement cost sensitivity ranges in ref. 18.

Sensitivity runs. Moving from a quadratic MAC to a cubic MAC
has a small effect on the optimal temperatures (Suppl. Figure 5.2):
more cheap mitigation options are available with a cubic MAC,
but options become quickly expensive after these cheap options
have been implemented. This leads to a smaller spread in optimal
temperatures. In the cost-benefit setting, using a cubic MAC only
significantly affects the carbon price in the low mitigation cost
scenario (Supplementary Figure 5.3), where the carbon price is
increased by ~20%, necessary to reach the more expensive high
mitigation options of the cubic MAC. On the other hand, the
cubic MAC only has a significant effect on the carbon prices in a
cost-minimising setting when assuming high mitigation costs: to
reach the 2°C target, very high carbon prices are warranted with

high mitigation costs, where the difference between the MACs is
highest (Supplementary Figure 5.1).

As an alternative welfare formulation, we have performed the
same analysis with the PRTP and elasticity of marginal utility
(elasmu) values from a recent expert elicitation29. Using 172
combinations of these parameter values, the 5th, 50th and 95th
percentile values can be calculated (see SI.7), giving a significantly
wider range in the social discount rate. In fact, instead of using
the PRTP values of 0.1%, 1.5% and 3% with a fixed elasmu of
1.001, the Drupp et al. (2018) survey yields 0% and 0.5, 0% and
1.5 and 2% and 2.5 for the PRTP and elasmu values, respectively.
However, as these values can not be considered to be uniformly
distributed (as in our main analysis), the effect on the uncertainty
is very small (Supplementary Figure 7.3 and 7.6). For the main
analysis, we have chosen to use the literature range of PRTP
values instead of focusing on single expert elicitation.

Changing the minimum emission level from −20 GtCO2 to 0
(therefore, avoiding an emission/temperature overshoot) influ-
ences the results in varying ways (SI 5.2). In the carbon budget
setting, the mitigation effort is shifted towards the first half of the

Fig. 6 Conditional variance tree for the temperature in 2100 (cost-benefit setting). At the central node, a Sobol variance decomposition is performed on
the whole set of parameter values. The pie chart represents the percentage each parameter contributes to the total variance. The outer colour is the
parameter with highest variance. The node is split in each of this parameter value, and the variance decomposition is repeated with this parameter value
fixed. By repeating this process, a conditional variance tree is created. The grey colour in each node represents the interaction terms in the Sobol
decomposition.
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century owing to the extra constraint. With medium assumptions
and no damages, this leads to an 18% higher carbon price.
Assuming greater damages reduces this difference since these
scenarios already used less net negative emissions. In the cost-
benefit setting, the impact of avoiding overshoot is negligible for
scenarios ending up above 2°C, since the optimal emission paths
leading to these temperatures hardly use net negative emissions in
the first place. For lower optimal temperatures, the constraint
leads to an increase in end-of-century temperature up to 0.2°C in
SSP2 and up to 0.3°C in SSP5.

Many factors are not captured in the current model and
therefore insights in general outcomes are more interesting than
the absolute numbers. Key factors not included are, for instance,
heterogenous impacts (for different societal groups) and the
possibility of environmental feedbacks and tipping points,
possibly with stochastic behaviour. We have chosen the Howard
Total damage function to account for the missing tipping point
modelling, which includes catastrophic damages through a proxy
for tipping points in a traditional IAM damage function. Other
factors like inequality and regional heterogeneity cannot be
addressed with our global model—moving to a regional model
would provide further insights.

In this research, we have considered a large range of damage
functions, implicitly considering a wide array of assumptions on
climate impacts. In future work, it would be interesting to
disentangle this uncertainty. For example, recent work has shown
that the role of biodiversity and ecosystem services and the
associated scarcity of environmental goods is relevant for cost-
benefit work30. Including natural capital in the production
function would be a first step towards decomposing the damage
uncertainty. Using bottom–up sectoral climate damages could
decompose this further.

Parameter validity. The Burke damage function (Supplementary
Figure 1.4) as calculated using our calibration reports end-of-
century damages that are significantly lower than the damage
function shown in Burke et al. (Extended Data Fig. 6)23. This
difference is due to a combination of three factors: (1) damages to
the GDP also affect future GDP growth due to a loss in capital,
(2) Burke et al. assume a linear increase in temperature instead of
the baseline SSP temperature increase and (3) the global estimates
are slightly lower than the sum of local estimates owing to
downscaling factors and the non-linearity of the temperature-
growth impact relationship.

Uncertainty. Throughout this paper, we have considered the
extensive range of key parameter values as the source of uncer-
tainty. However, these represent the fact that these parameter’s
precise values are unknown—and not the uncertainty in a sto-
chastic sense. Adding stochasticity to the model would allow for a
more comprehensive investigation of the impact of tipping
points. Previous work on stochastic IAMs31,32 could be extended
to include the literature ranges of the parameters provided in this
paper, and possibly be extended with data on socio-economic
tipping points33. This would effectively widen the range of pos-
sible damages.

Suitability of the model. The use of IAMs, in general, has been
criticised both for cost-benefit analysis (for models like DICE)16

and cost-minimising analysis, but this general critique has been
discussed elsewhere34. Our analysis’ added value is that it allows
us to investigate the effect of critical, normative assumptions on
policy-relevant quantities, like the magnitude of the carbon price
or the optimal temperature. The simple model allows for more
transparency in how our results are obtained and our parameters

are calibrated. Moreover, some of the criticisms, such as ad hoc
input parameters and damages16, are addressed using the full
literature ranges of key parameters.

Given the extensive range of optimal temperatures, one can ask
how to use the results. It should be noted, however, that dealing
with uncertainty and normative choices is part of climate policy
decision-making, with or without insights of different models.
This will include deciding on acceptable risk levels and normative
choices like the discount rate. From our analysis, the risk of high
damages appears to be higher than the risk of high mitigation
costs. If this is combined with the suggestion of Stern and, more
recently, Emmerling et al.35 that low discount rates are warranted
for long-term climate policy, our results confirm that for low
discount rates and medium to high damages, cost-optimal
temperatures are in line with the long-term objectives of the
Paris Agreement. Moreover, the research could possibly reduce
some of the uncertainties over time.

Methods
The model. A schematic overview of the model is shown in Fig. 1. The economic
module (top grey box) consists of a Cobb-Douglas production function, which
calculates GDP using exogenous population and total factor productivity20. The
GDP is divided between a fixed share to investments and the remaining share to
consumption. The investments are added to the global capital stock, which forms
together with labour the two production factors for GDP in the next time step. The
development of labour is set equal to population developments. The goal is to
maximise discounted utility, where utility is an increasing function of
consumption.

The next component of the model is the emissions module. CO2 emissions are
calculated based on GDP and an emission factor representing the carbon intensity
of the energy system (bottom grey box in Fig. 1). The interactions between the
emission module and the economic module occur through two mechanisms:
damages from climate change, and mitigation costs. Unlike the DICE model, which
uses a two-box climate module (which has recently been shown not to be able to
reach a 2°C target36), the cumulative CO2 emissions in our model are translated
into global mean temperature (GMT) through the linear and instantaneous TCRE
relation. This simple climate model is shown to provide more realistic outcomes
than the DICE climate module37. The TCRE includes the effect of non-CO2

emissions, which are therefore implicitly coupled to the CO2 emissions. As
suggested in previous research26, the non-CO2 emissions are correlated with CO2

emissions, making this a reasonable assumption.
The increase in GMT causes GDP loss, quantified through damage functions.

To counter these damages, a global carbon price is used at every time period, which
causes a reduction of emissions as defined through a quadratic Marginal
Abatement Cost (MAC) curve with technological learning (learning-by-doing).
The MAC also quantifies the mitigation costs, which are deducted from the GDP,
similarly to DICE and FAIR8,15. To model the limited availability of negative
emission technologies38, we impose a minimum emission level of −20 GtCO2/yr.
This value is based on the minimum emission levels of the scenarios in the scenario
explorer for 1.5°C pathways39 underpinning the IPCC Special Report on Global
Warming of 1.5°C40. Inertia is modelled by applying a constraint on the difference
in CO2 emissions between 2 consecutive years of 2.2 GtCO2/year (based on the
maximum reduction speed of the IPCC 1.5°C database39). In every experiment, the
time horizon is the year 2100, but the optimisation runs throughout the 22nd
century to counter end-of-horizon problems.

The optimal carbon price is calculated using the Bellman Equation with as state
variables the cumulative emissions and the capital stock, as control variable the
carbon price at each time period and as objective function the discounted utility.
This methodology is detailed in SI.4.2.

We distinguish between two cases: scenarios with a fixed carbon budget (or
temperature target), and scenarios without target. The first case represents a cost-
minimising setting while the second constitutes a traditional cost-benefit analysis.
In the literature, cost-minimising analysis is typically performed using relatively
detailed process models, for instance, to look into the role of specific technologies
or determine regional costs. In this approach, it is assumed that climate targets are
chosen by policy-makers in international negotiations (based on both monetary
and non-monetary information). Cost-benefit models, in contrast, are typically
more stylised models that determine an optimal target based on cost-optimisation
(which means that all damages need to be expressed in monetary terms). The
model here can be used for both types of analysis. It is also able to account for the
impact of damages in cost-minimising analysis (which is typically not done).

The full mathematical formulation of the model is available in SI.4.
Although there are some modelling differences between our model and DICE

(e.g., different climate module, fixed investment savings rate, endogenous
technological change, inclusion of inertia), the main differences reside in the
calibration of the parameters.
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Model parameters. This model allows using literature ranges on parameters
relevant for global climate policy. These parameters are highlighted in colour in
Fig. 1.

First, the socio-economic variables like population, total factor productivity and
baseline emissions intensity are obtained from the SSPs (blue)20.

The damage functions (green) cover the current literature range by choosing a
low, medium and high damage function (see SI.1.3):

● The DICE 2016R2-damage function, representing low damages,
● The medium damage function resulting from a meta-analysis by Howard

et al., which they refer to as ‘the preferred model for total (non-catastrophic
plus catastrophic) damages’. This function is based on empirical damages and
traditional estimates like DICE and FUND. We refer to this damage as
‘Howard Total’.

● The empirical damage function from Burke, Hsiang and Miguel (2015)23. To
cover the high end of damages, we use their Long Run (LR) version, which
takes into account damages to the GDP growth rate based on the temperature
of the 5 previous years. The GDP per capita growth losses are converted to a
GDP damage function using an iterative calibration method13 (see SI.1.3).

The effect of CO2 emissions on global temperature is assumed to be linear and
instantaneous through the TCRE relation37. Based on the IPCC AR5 Working
Group 124 relationship, we derive a value of the TCRE between 0.42 and 0.82°C per
1000 GtCO2 (5–95th percentile), with median of 0.62, equal to the range used in
van Vuuren et al.26.

The MAC curve is calibrated to three levels of mitigation costs, using the
consumption loss range from the IPCC AR5 Working Group 3, Fig. 6.2325. This
calibration is performed using quantile regression at the 5th, 50th and 95th
percentiles to give a MAC with low, middle and high mitigation costs respectively.
More information on the calibration is available in SI.1.

Finally, the utility is discounted at three pure rate of time preference values (also
called utility discount rates): the low bound of 0.1%, as used in the Stern review28,
1.5% and 3%. The latter two values correspond with the values used in DICE-1999
and DICE-2007 (and following versions)19,41, respectively. These values span a
similar range as a recent expert elicitation of social discount rates, where the 5th
and 95th percentiles of the PRTP values are 0% and 3.5%/year12,29, with an average
reported value of 1.1%/year.

The effect of using a cubic, instead of a quadratic, MAC is discussed in SI.5.1, as
well as the effect of using the full range of PRTP/elasticity of marginal utility
combinations from the aforementioned expert elicitation (SI.7).

Analysing the variance using Sobol decomposition. Owing to the relative sim-
plicity of this model, we are able to calculate the optimal carbon price path (both with
and without carbon budget) for every combination of parameter values shown in
Table 1 (405 scenarios). This allows us to analyse the relative importance of each
parameter. We quantify the contribution to the variance of each parameter with the
Sobol indices42,43. These are calculated using a Monte Carlo method. This method
requires a distribution for each parameter. However, sampling from a continuous
distribution for each parameter would require thousands or millions of runs, which is
computationally infeasible. For this reason, we approximate the distribution of each
parameter by a discrete distribution best matching the normal distribution of the
underlying distribution using only the parameter values available in Table 1. Since the
values for the mitigation costs and the TCRE represent the 5th, 50th and 95th per-
centiles, the discrete distribution with equal mean and variance is a weighted dis-
tribution where the median value is 3.4 times more likely to be chosen (see
Supplementary Information 4.3). A problem with this method is that the SSP, damage
function and discount rate do not have an underlying distribution. To still be able to
quantify the relative importance of each parameter, we associate a uniform discrete
distribution to these parameters. More details of this method are available in SI.4.3.

Code availability
The full model code is available at https://github.com/kvanderwijst/
DamagesAndCarbonPrice (https://doi.org/10.5281/zenodo.455542344).

Data availability
The data used for the SSP-related quantities (baseline GDP and population) are available
at the IIASA SSP-database: https://tntcat.iiasa.ac.at/SspDb/. The data for each figure and
underlying model runs are available at https://github.com/kvanderwijst/
DamagesAndCarbonPrice (https://doi.org/10.5281/zenodo.455542344).
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