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Energy implications of the 21st century agrarian
transition
Lorenzo Rosa 1,2, Maria Cristina Rulli 3, Saleem Ali4,5✉, Davide Danilo Chiarelli 3, Jampel Dell’Angelo6,

Nathaniel D. Mueller7,8, Arnim Scheidel 9, Giuseppina Siciliano10 & Paolo D’Odorico 1

The ongoing agrarian transition from small-holder farming to large-scale commercial

agriculture is reshaping systems of production and human well-being in many regions.

A fundamental part of this global transition is manifested in large-scale land acquisitions

(LSLAs) by agribusinesses. Its energy implications, however, remain poorly understood. Here,

we assess the multi-dimensional changes in fossil-fuel-based energy demand resulting from

this agrarian transition. We focus on LSLAs by comparing two scenarios of low-input and high-

input agricultural practices, exemplifying systems of production in place before and after the

agrarian transition. A shift to high-input crop production requires industrial fertilizer application,

mechanization of farming practices and irrigation, which increases by ~5 times fossil-fuel-based

energy consumption compared to low-input agriculture. Given the high energy and carbon

footprints of LSLAs and concerns over local energy access, our analysis highlights the need for

an approach that prioritizes local resource access and incorporates energy-intensity analyses in

land use governance.
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The historical limits of traditional agriculture, namely, soil
fertility, water, and energy have been overcome by the
process of industrialization implemented through the

green revolution1. The adoption of fossil-fuel-based industrial
fertilizers, new cultivars, and machineries—including motorized
pumps—permitted to remove fundamental limitations associated
with soil nutrients, water resources, and labor. Advances in the
nitrogen fertilizer industry, irrigation, and other technologies
increased land efficiency in agriculture2, but did not necessarily
lead to inputs’ savings3–5. As a result, global crop production
has tripled in the last 50 years, causing strong environmental
impacts3.

A crucial challenge for humanity is to sustainably meet future
food demand6, while limiting agriculture’s environmental
footprint7. Assessments on how to reduce the environmental
footprint of agriculture commonly point to a combination of
measures, including the promotion of dietary shifts, reduction
of food waste, and halting agricultural expansion by closing
yield gaps—the difference between maximum attainable yield
and current yield for specific crops—through agricultural
intensification8.

Increasing yields do not guarantee local hunger alleviation or
reduced pressure on local natural resources3, though evidence
supports benefits to global health9 and land use2. Agricultural
intensification rarely produces win-win situations10; only a few
cases have demonstrated the contribution of agricultural inten-
sification to multiple Sustainable Development Goals (SDGs),
such as ending hunger (SDG2) and sustainable land-use
(SDG15)10. Controversies over the role of agricultural intensifi-
cation for land use and users have intensified with the recent
unprecedented rise in large-scale land acquisitions (LSLAs)
globally11,12. LSLAs refer to long-term and large-scale acquisi-
tions of land property or use rights through domestic and foreign
actors, which have been sparked by—among other factors—food
security concerns and the rediscovery of agriculture as a key
investment sector following the 2008 food, financial, and energy
crises13. According to the Land Matrix—a joint international
initiative collecting data on LSLAs since 2000—90 million hec-
tares of land (about the surface area of Venezuela) have been
acquired globally by investors since 200014.

A few studies have discussed the potential opportunities of
LSLAs for agricultural development, for instance, their potential
to increase yields13 and economic benefits for the country
through large-scale investments into farmland15. However, other
studies have described these land deals as land grabs that entail a
vast range of adverse impacts on local users, including land

dispossession and livelihood loss16–18. There is strong evidence
that large-scale investments in agriculture by agribusiness cor-
porations have been implemented at the cost of smallholders,
traditional users, Indigenous people, and more vulnerable seg-
ments of the rural population12,16. LSLAs could paradoxically
increase crop production, while undermining local food security
through the production of energy-rich but nutrient-poor crops
for export markets14. While this radical transformation of
agrarian systems through LSLAs has been extensively investigated
in relation to its political implications19,20 and its impacts on
property systems21, rural livelihoods22, crop yields14, water use
and redistribution23, food security24–26, environmental impacts27,
and carbon emissions28, however, with few exceptions29, its
energy implications remain poorly understood.

Global food systems are major energy users and contributors to
climate change. Food systems consume 15–30% of global primary
energy30 and emit 25–34% of global total greenhouse gas (GHG)
emissions31–33. Although 35% of these emissions are caused by
dairy and meat production, the remaining share is from activities
pertaining to crop production for direct human consumption31.
While, GHG emissions associated with deforestation and land use
change over 40 million hectares of LSLAs have been recently
estimated to 8 gigatons CO2-equivalent in the 2000–2016
period28, the energy and related GHG emissions associated with
the agrarian transition induced by LSLAs and other dynamics
favoring the expansion of commercial farming have often been
overlooked.

Here, we evaluate the energy and fossil-fuel implications of the
agricultural transition that is being globally promoted by LSLAs.
In particular, we focus on the energy-related systematic changes
that happen when moving from traditional low-input, labor-
intensive agricultural systems to intensified systems of crop
production with high-input of fertilizers, pesticides, machineries,
mechanized irrigation, and comparatively less labor associated
with the transition. Using a variety of data34–36, we estimate pre-
and post-LSLA energy inputs in crop production over acquired
lands. In particular, we assess the energy intensity that LSLAs
would have in the case a low-input or a high-input farming were
developed. We also calculate the energy intensity of irrigation
over land deals considering different irrigation technologies.
Finally, we discuss strategies to reduce the energy intensity of
farming, decrease reliance on fossil-fuel-based technologies, and
provide policy recommendations that might help to lower the
carbon emissions. For our analysis, we consider 197 land deals
with size greater than 200 hectares, obtained from the Land
Matrix dataset36 (Fig. 1).

Fig. 1 Geographical distribution of large-scale land acquisitions (LSLAs) considered in this study. We consider 197 land deals for agricultural use for
which the geographic coordinates were available in the Land Matrix database36. These land deals are located in 39 countries and account for 4.07 million
hectares of acquired land across Africa (73 deals, 2.4Mha), Asia (43 deals and 0.58Mha), Europe (33 deals and 0.54Mha), and Latin America (11 deals
and 0.55Mha).
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The energy implications of LSLAs have not yet been
investigated in depth. Given that many existing policy
mechanisms support LSLAs and other pathways to agricultural
intensification37, this study provides a first examination of the
fossil energy and associated energy implications of agricultural
transitions following LSLAs.

Results
Agricultural productivity before LSLAs. To ascertain whether
the development of commercial crop production intended
by the land deals would entail agricultural intensification, we
considered fertilizer application rates in areas prior to land
acquisition, as well as the fertilizer applications needed to reach
maximum attainable yields35. Figure 2a shows that 80% of
the deals involve land that was previously characterized by
low-input agriculture. Only 1% of the deals had high-input
application of synthetic fertilizers before LSLAs. Figure 2b
shows that 85% of the deals occurred on land with low agri-
cultural productivity and high yield gaps. This implies that,
for the purpose of developing large-scale commercial crop
production, additional inputs, such as fertilizers and water, are
needed for most of the land acquired through large-scale land
investments.

Energy usage of low- and high-input agriculture. Figure 3
shows the energy intensity per area for the main crops intended
by LSLAs at the farm level under low- and high-input agriculture
scenarios. Fossil-fuel-based energy inputs are from labor,
machinery, fertilizers, chemicals, fuels, and seeds. The figure also
shows the energy intensity of oil palm and jatropha mills for
biodiesel production. Among the four main staple crops (rice,
wheat, maize, and soybean, which account for 70% of global food
production), high-input rice production is the most energy-
intensive agricultural practice. Because soybean and pulses have
the ability to fix nitrogen directly from the atmosphere—requir-
ing lower amounts of nitrogen fertilizers—their energy intensity is
relatively low compared to other staple crops. Interestingly, low-
input agriculture with sorghum—a widespread crop in Sub-
Saharan Africa—is the least energy-intensive agricultural practice.
We find that a transition from sorghum and millet to cash crops
or staple crops might have profound energy implications. Cotton
has the highest energy-intensity even for low-input options,
which also raises important questions about non-food crop choice
for land use as well as broader consumer options for end-use
materials. Groundnut crops show the largest variation in energy
intensity for low- and high-input cultivation forms.

We further analyzed the aggregate area of intended crops
to estimate fossil-fuel energy requirements and related carbon

Fig. 2 Nitrogen application rates and yield gap closure levels before large-scale land acquisition (LSLA). a Shows average synthetic nitrogen application
per harvested hectare in each deal (kg N per ha). An application smaller than 30 kg ha−1 is considered low-input agriculture; between 30 and 100 kg ha−1

medium-input agriculture; and greater than 100 kg ha−1 fairly high-input agriculture. b Agricultural productivity levels measured in terms of yield-gap
fraction of major crops before LSLAs. Yield-gap fractions lower than 0.3 show land deals involving lands with high agricultural productivity. Data source:
Mueller et al.35.
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emissions in the context of global land-use change triggered by
LSLAs (Fig. 4). Oil palm is the most frequently proposed crop of
LSLAs, accounting for 25% (1.02 Mha) of the total area of land
deals considered here (Fig. 4a). This raises concerns about high
levels of GHG emissions from palm oil plantations, particularly
when they are associated with forest conversion38, as well as
about the high fossil energy requirements in palm oil milling for
biodiesel production (see Fig. 3). Other important crops intended
by LSLAs are other tree plantations, followed by a range of food
and fodder crops (Fig. 4a).

We assumed that the whole deal area cultivated in low-input
agriculture transitioned to high-input agriculture. Developing
the 4.07 Mha of intended crops under a scenario of low-input
agriculture would require an annual amount of 3 million barrels
of oil equivalent as energy input (Fig. 4b). However, given that
many land deals seek large-scale commercial crop production,
high-input, capital-intensive production can be expected to
prevail in many land deals28,39. Cultivating the intended crops
with high-input agriculture would require ~5 times more fossil-
fuel-based energy (or 15 million barrels of oil equivalent
per year).

We assessed the additional GHG emissions that would be
generated through high-input farming over LSLAs. Assuming
that modern agricultural technologies are all powered with oil
and considering an average GHG emission intensity of oil equal
to 492.6 kg CO2 equivalent per barrel of oil (see “Methods”), we
find that high-input farming over LSLAs would emit an
additional 6 million tons of CO2 per year (approximately the
emission of Uganda or Uruguay in the year 2017).

Under a business-as-usual strategy, large-scale farms are
expected to be established on the entire transacted area and
are expected to be cultivated and used for intensified crop
production28 with high-inputs to maximize agricultural produc-
tivity. This implementation strategy yields the highest potential
energy use and provides an upper-bound estimate. Similarly, an
upper-bound GHG emissions’ estimate is provided assuming that
additional energy demand is met entirely with fossil-fuel-based
energy sources. Different pathways of development can fuel high-
input agriculture through less carbon-intensive energy sources
and therefore reduce carbon emissions. Inclusion of these factors,

as well as lower attainable yields, and agroecological practices
such as crop diversification, natural fertilizer use, biological pest
control, deficit irrigation, and other soft-path water-management
practices are expected to reduce the amount of fertilizers and
irrigation water, and therefore reduce energy usage. We tested the
sensitivity of our results by assuming that 75% of the transacted
deal area is cultivated, and considering an 80% attainable yield.
Moreover, considering global primary energy demand statistics,
we assumed that 80% of energy inputs are powered by fossil
fuels and the remaining fraction by renewable energy40. This
conservative scenario would lower GHG emissions of high-input
farming by 3 million tons of CO2 per year, or half of the GHG
emissions of a business-as-usual strategy.

Energy usage for irrigation on LSLAs. In addition to nutrients,
water is another important input necessary to increase yields and
avoid crop growth under water stress41. The use of irrigation
enables reliable water supply while boosting crop productivity42.
However, in many geographical settings, irrigation practices are
unsustainable because their water requirements exceed local
renewable water availability and irrigation induces the depletion
of environmental flows and groundwater stocks43. Using recent
irrigation sustainability assessments44, we find that 20% of land
deals were located in regions where water resources are insuffi-
cient to sustainably meet irrigation demand.

Meeting crop water requirements has further energy
implications45. Irrigation requires energy to transfer water from
the withdrawal source to the field—unless the local topography
allows for gravity irrigation. We use the WATNEEDS
crop water model46 to assess the energy intensity of irrigation
(i.e., the irrigation energy demand per unit of area) of each land
deal, considering two of the most widespread irrigation systems:
sprinkler and surface irrigation (Fig. 5). Because sprinkler
irrigation has a higher operating pressure than surface
irrigation, our results show that sprinkler irrigation over LSLAs
requires more energy than surface irrigation—though surface
irrigation requires larger volumes of water because of its lower
efficiency (Fig. 5). Furthermore, the combination of crop type
and climate in Eastern Europe, Asia, and Latin America is such

Fig. 3 Fossil-fuel-based energy intensity at the farm level of low- and high-input agriculture. Fossil-fuel-based energy inputs are from labor, machinery,
fertilizers, chemicals, fuels, and seeds. See Supplementary Table 1 for data sources.
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that land acquisitions display lower irrigation water require-
ments and therefore smaller specific energy needs (Fig. 5a).
Conversely, Africa has the highest energy requirement for
irrigation purposes, due to the combination of dry climate
conditions and cultivated crops with high water needs (includ-
ing oil palm and sugarcane). Because of the perennial features
of these biofuel crops, results also show that land deals for
biofuel are in general the most energy-intensive land uses in
relation to the energy required for irrigation (Fig. 5b). We
also show that if acquired lands were irrigated with sprinkler
irrigation, an additional 4.3 million barrels of oil equivalent
per year (or 26 million GJ) of fossil-fuel-based energy compared
to non-irrigated conditions would be required to meet
full crop water demand (Fig. 5c). Improving crop water
management, by applying farming practices that reduce soil
evaporation, retaining more rainwater in the soil, growing more
water-saving crops, or applying deficit irrigation41 can reduce

irrigation water requirements and consequently energy demand
for water pumping47,48.

Discussion
Our research focuses on the neglected connection between the
fossil energy requirements of intensive agriculture and a fun-
damental component of the global agrarian transition, the
one produced by LSLAs. With particular reference to fertilizer
usage and irrigation in low- and middle-income countries, we
find that a transition to high-input agriculture produced by
LSLAs would require 5 times more fossil energy than low-input
agriculture. The higher energy-intensity of high-input agri-
culture over the considered LSLAs (4.07 million hectares or
~0.27% of global croplands extent) would translate into 15
million barrel of oil equivalent per year (~0.04% of global
annual oil consumption) and increase GHG emissions by 6
million tons of CO2 per year (or 0.04% of global total GHG

Fig. 4 Intended crops for agricultural use over large-scale land acquisitions (LSLAs) and their aggregate fossil energy footprint under low- and high-
input agriculture scenarios. a Area (Mha) of intended crops for the sample of 197 land deals intended for agricultural use with size greater than 200
hectares, obtained from the Land Matrix dataset36. b Aggregated fossil-fuel-based energy input (million GJ yr−1) for the intended crop area under low- and
high-input agricultural scenarios. c Aggregated fossil energy intensity of low- and high-input agriculture over LSLAs. Energy inputs from oil palm and
jatropha milling were not accounted for in this assessment. Source: Estimates based on data from Supplementary Table 1 and Land Matrix36). Note: one
barrel of oil equivalent is equal to 6.1 GJ.
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emissions from agriculture). While here we assessed agri-
cultural energy-related GHG emissions needed to close crop-
yield gaps, non-energy-related activities, such as land use
change, are estimated to have a GHG emission intensity of 14.1
tons CO2-equivalent yr−1 ha−1 and therefore might be the
main drivers of GHG emissions over LSLAs (Table 1).

The global agrarian transition is a broader global phenomenon
that far exceeds the footprint of LSLAs considered in this study.
Driven by economies of scale, the ongoing industrialization of
agriculture is promoting a transition from smallholder to large-
scale commercial farming in low- and middle-income countries.
Globally, small farms (under 2 hectares) produce 30% of food
supply over 24% of agricultural areas (~360 million hectares)49

and have an important role in supporting food security of local
populations50. Assuming that 360 million hectares of global small
farms will make a transition from low-input to high-input
farming, an additional 0.6 gigatons CO2-equivalent per year
would be emitted, or 4% of current global total GHG emissions
from agriculture31.

The Haber-Bosch process to manufacture synthetic fertilizers is
estimated to use ~1.2% of energy production and carbon emission
worldwide51. Many of the major LSLAs will utilize ammonia
produced from the energy-intensive Haber-Bosch process.
Moreover, after farmers apply synthetic fertilizers to crops, che-
mical reactions lead to the formation and emission of nitrous
oxide, a potent GHG with 265 times more global warming

Fig. 5 Energy demand from irrigation over large-scale land acquisitions (LSLAs). a, b Average irrigation energy-intensity per region and per crop,
respectively. c Aggregated irrigation energy requirements (million GJ yr−1) for the intended crop area to biofuels and food crop plantations. Irrigation
scenarios consider one with sprinkler irrigation systems and one with surface irrigation systems.

Table 1 Comparison of energy- and greenhouse gas (GHG)-intensities over large-scale land acquisitions (LSLAs).

Activity Fossil-fuel-based energy
intensity (GJ ha−1)

GHG intensity (tons CO2-
eq yr−1 ha−1)

GHG emission over 197 considered
LSLAs (Mtons CO2-eq yr−1)

Reference

Low-input 4.1 0.3 1.5 This study
High-input 19.1 1.6 7.2 This study
N2O emissions from high-input
synthetic fertilizers

– 0.3 1.3 This study

Irrigation 3.2 0.3 2.1 This study
Land use change – 14.1 – Ref. 28

Low-input and high-input show fossil-fuel-based energy use from labor, machinery, fertilizers, chemicals, fuels, and seeds. Land use change shows GHG intensity from deforestation and loss of soil
carbon28. N2O emissions show GHG emission intensity from synthetic N fertilizer application in high-input farming.
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potential than carbon dioxide52,53. Over the considered LSLAs,
we estimate that synthetic fertilizer application in high-input
farming would release 1.3 million tons CO2-equivalent per year,
with a GHG intensity of 0.3 tons CO2-equivalent yr−1 ha−1

(Table 1). However, less carbon-intensive options to industrial
fertilizers are available, such as using recycled organic matter,
nutrients recovered from wastewater-treatment plants or manure,
a more efficient application of fertilizers53, or the deployment of
cover crops like soy and other legumes that fix atmospheric
nitrogen. Even though these less carbon-intensive agroecological
alternatives to industrial fertilizers are available, they might be
technically and economically difficult to adopt over large farms.
The production of fossil-fuel-free ammonia to supplement ferti-
lizers derived from organic materials54 is also an option to lower
the carbon emissions in industrial fertilizer production55,56.

In terms of the energy associated with irrigation, it is clear that
LSLAs are often established on land where the closure of the yield
gap of specific crops for commercial agriculture would require
irrigation in addition to fertilizer applications. Except for the
cases of land suitable for gravity-based irrigation, the withdrawal
and delivery of irrigation water from streams, aquifers, or other
water bodies to cultivated land typically requires substantial
amounts of energy. While energy for fertilizer usage may be
employed in supply chains distant from land acquisition, the fuel
needed for water delivery must be sourced from the local agrarian
economy, where it might compete with demand from other
livelihood uses.

The LSLA component of the global agrarian transition has
clear implications on multiple dimensions and scales. Focusing
on the energy side of transnational land investments provides
analytical insight into a series of interdependencies and
tradeoffs that emerge from the integrated perspective of the
energy–water–food nexus. For example, synergies and tradeoffs
between land use for food crops, water use, and energy infra-
structure should be considered. The additional energy required by
a transition to high-input farming might have direct impact on
energy poverty and fairness in access to local energy resources by
marginalized rural communities, especially for those communities
relying on the collection of local scarce natural resources for
energy production57. These processes of agrarian transformation
can be highly energy-intensive and should be evaluated to avoid
further competition with scarce local energy resources. It is
fundamental to apply a nexus approach when assessing the sus-
tainability and distribution of benefits of rural transitions, and to
understand who are the winners and losers in such transforma-
tions. For instance, under suitable environmental and social
conditions, small-scale energy infrastructures such as renewable
mini-grid58 can be used by local farmers to access water through,
for instance, solar water pumps, thereby allowing for improved
energy security with limited land competition with food crops,
and at the same time reduce the use of fossil fuel for agricultural
production and water use59. In this context, the development of
small renewable-energy infrastructures at the community level for
agricultural production, including energy infrastructure for irri-
gation purposes, has been proven to be a viable solution to
support the livelihood of smallholder farmers, mitigate climate
change, reduce energy poverty, and improve local energy access,
with positive effects on social justice, such as better distribution of
benefits and improved gender equality60. For example, small-scale
and community agrivoltaics—combining agriculture with solar
photovoltaics—can increase crop productivity, while at the same
time generating renewable energy for local populations61.

The energy footprint of LSLAs and their implication for cli-
mate change have not received sufficient attention in the scholarly
literature and in public assessments of their potential benefits and
perils13,15, nor are they considered in national policies promoting

large-scale agricultural investments or in specific land-deal deci-
sions. Specifically, LSLAs have impacts on the energy security of
local communities which have not been carefully addressed and
which should be considered. Given the high energy demand of
fertilizer production and the associated GHG emissions, there is a
plausible case for more integrated monitoring of the changes in
embedded energy resulting from crop choices and LSLAs. In
order to evaluate future directions and options of land-use policy
and rural development, the energy-budgeting approach should be
integrated to give a more comprehensive account of the impli-
cations and tradeoffs, and inform decisions for longer term
sustainability.

The speed with which LSLAs and agrarian transitions are
taking shape globally may have profound and lasting con-
sequences. While LSLAs might intensify agricultural production,
achieve economies of scale, provide infrastructures, and increase
agricultural productivity for specific crops, its impacts on socio-
environmental sustainability and the distribution of potential
benefits between agricultural corporations and local farmers
remains highly questionable16. There is consolidated knowledge
of the long-term unsustainability of energy-intensive agricultural
practices because of the massive reliance on fossil-fuel-based
energy. Especially for non-industrialized countries, fossil-fuel-
based agricultural transitions have been usually funded through
public subsidies, and historically suffered from high vulnerability
because of their sensitivity to energy crises and volatility of fossil-
fuel prices62,63. Lack of energy security is still a structural
condition in large parts of the rural areas in low- and middle-
income countries, where there is little and inconsistent access to
affordable and reliable energy for agricultural production64.
Both fertilizer and irrigation energy usage should be evaluated
for transnational and localized impacts, respectively, and LSLA
expansion needs to be placed under scrutiny following an
integrated food–energy–water approach that prioritizes issues of
local resource access and justice. The energy variable in this
conversation is therefore not only limited to issues of fossil fuel
consumption and its implications for climate change, but it also
directly relates to issues of energy access and justice, the
food–water–energy nexus, livelihood choices, property rights, and
quality of life in the context of smallholder farmers.

Methods
In this paper, we consider the energy investment of moving from a range of
existing land-uses to the intended uses of LSLAs. Using estimates of annual energy
input per area of crops from a range of sources (Fig. 3 and Supplementary Table 1),
we compare the energy investment for some of the largest crop plantations being
proposed for LSLAs based on the Land Matrix dataset36. We consider a sample of
197 land deals from the Land Matrix dataset36 and covering an area of about 4.07
million hectares across 39 countries (Fig. 1). The Land Matrix is a joint interna-
tional initiative collecting data on transnational land acquisitions since 2000. This
dataset reports only land investments with areas greater than 200 ha. Following
Müller et al.14, we selected land deals: (1) having their status updated to “con-
tracted”, “in start-up phase”, or “in production”; (2) intended for agricultural use;
(3) for which the coordinates of the deal location were reported in the Land Matrix
database.

Energy usage of low- and high-input agriculture. To our knowledge, this is the
first systematic evaluation of the energy requirements of agricultural intensification
through LSLAs. We use large-scale agricultural land-deals as a case study of the
energy implication of a new green revolution across LSLAs in low- and middle-
income countries. We estimated nitrogen application rates and yield gap-closure
levels before LSLAs using the seminal work of Mueller et al.35. We consider low-
input versus high-input agricultural practices and use the seminal work from
Pimentel and Pimentel34, as well as our new large-scale estimates of energy con-
sumption by irrigation to draw energy comparison estimates (Supplementary
Materials). Energy inputs are at the farm level and consider fossil-fuel-based energy
from labor, machinery, fertilizers, chemicals, fuels, and seeds. Irrigation water
energy inputs were assessed considering irrigation water demand volume46 and
energy requirements for pumping (Supplementary Materials). There are, of course,
practical limitations to energy calculations in life cycle assessment methods65. For
oil palm and jatropha we also show the fossil-fuel-based energy required in the mill
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to produce biodiesel (Fig. 3). We then calculate the aggregate energy investment for
the crops proposed by current major LSLA investments globally (Figs. 4 and 5) in
terms of their energy investment and present potential shifts that could be con-
sidered from low-input to high-input agricultural land-use practices.

Assessment of GHG emissions. GHG emissions from high-input LSLAs were
assessed considering emissions from oil combustion and upstream emissions
during crude oil production. According to the US Environmental Protection
Agency, average emissions during oil combustion are 429.61 kg CO2 per 42-gallon
barrel of oil66. Average global emissions from upstream crude oil production
processes are 63.03 kg CO2 per 42-gallon barrel of oil emitted in upstream crude
oil67. Therefore, we assume a GHG emission intensity of oil equal to 492.6 kg CO2

equivalent per barrel of oil. GHG emissions from N2O from synthetic nitrogen
application in high-input farming were assessed considering the Food and Agri-
culture Organization emissions factor of 0.0132 kg N2O per kg synthetic N, and
assuming a global warming potential from N2O equal to 265. Nitrogen application
rates (kg N per hectare) were taken from the corresponding data source used to
determine energy intensities of high-input farming (See Supplementary Table 1).

Data availability
Data used to support findings of the study are available in the reference list and
Supplementary Materials.
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