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Plasma ctDNA is a tumor tissue surrogate and
enables clinical-genomic stratification of metastatic
bladder cancer
Gillian Vandekerkhove 1, Jean-Michel Lavoie2, Matti Annala1,3, Andrew J. Murtha1, Nora Sundahl4,

Simon Walz5, Takeshi Sano1, Sinja Taavitsainen3, Elie Ritch1, Ladan Fazli1, Antonio Hurtado-Coll1, Gang Wang6,

Matti Nykter3, Peter C. Black1, Tilman Todenhöfer7,8, Piet Ost 4, Ewan A. Gibb9, Kim N. Chi1,2,

Bernhard J. Eigl 2,10✉ & Alexander W. Wyatt 1,10✉

Molecular stratification can improve the management of advanced cancers, but requires

relevant tumor samples. Metastatic urothelial carcinoma (mUC) is poised to benefit given a

recent expansion of treatment options and its high genomic heterogeneity. We profile

minimally-invasive plasma circulating tumor DNA (ctDNA) samples from 104 mUC patients,

and compare to same-patient tumor tissue obtained during invasive surgery. Patient ctDNA

abundance is independently prognostic for overall survival in patients initiating first-line

systemic therapy. Importantly, ctDNA analysis reproduces the somatic driver genome as

described from tissue-based cohorts. Furthermore, mutation concordance between ctDNA

and matched tumor tissue is 83.4%, enabling benchmarking of proposed clinical biomarkers.

While 90% of mutations are identified across serial ctDNA samples, concordance for serial

tumor tissue is significantly lower. Overall, our exploratory analysis demonstrates that

genomic profiling of ctDNA in mUC is reliable and practical, and mitigates against disease

undersampling inherent to studying archival primary tumor foci. We urge the incorporation of

cell-free DNA profiling into molecularly-guided clinical trials for mUC.
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B ladder cancer is the tenth most common cancer and the
sixth in men, where incidence and mortality are higher1. At
diagnosis, 25% of patients present with aggressive muscle-

invasive or metastatic urothelial carcinoma (mUC), the latter
being invariably lethal2. Fortunately, there are now several
approved therapies in the metastatic setting, including platinum
chemotherapy, immune checkpoint inhibitors, anti-fibroblast
growth factor receptor (FGFR)-targeted therapy, and an
antibody–drug conjugate targeting Nectin-43–5. However,
response rates are highly variable and treatment side effects can
be significant, so practical biomarkers to predict patient benefit
are urgently required.

Primary muscle-invasive bladder tumors have the third highest
mutation rate of all studied cancers6. Inter-patient heterogeneity
is high, but recurrent gene alterations include mutation to
chromatin modifiers, cell-cycle regulators, members of the
phosphoinositide 3-kinase pathway, and the TERT promoter7. As
such, genome and transcriptome characterization offer opportu-
nities for patient stratification; tumor mutational burden (TMB),
FGFR3 activation, ERCC2 mutation, PD-L1 expression, and RNA
subtyping have shown promise for clinically relevant segmenta-
tion of primary bladder cancer4. However, due to the limited
availability of metastatic tissue, it remains unclear whether sig-
natures derived from primary tumor tissue are representative of
disseminated disease.

In other cancers, somatic alterations detected in plasma cir-
culating tumor DNA (ctDNA) are associated with therapy
resistance and response8,9. We and others have previously shown,
in small patient cohorts, that ctDNA can be detected and char-
acterized in mUC10–13, and may have clinical value14,15. Given
the heterogeneity of primary bladder cancer, and the evolutionary
pressures of intervening therapy, it is plausible that a ctDNA-
based profile better reflects contemporary late-stage mUC than
archival primary tissue. However, tissue remains the gold stan-
dard and no studies have comprehensively evaluated differences
between tumor tissue and ctDNA.

Here, we examine ctDNA and archival tumor tissue from a
large cohort of patients with mUC. We show that ctDNA
abundance is highly prognostic for patient outcomes and that
somatic profiles derived from ctDNA are supported by those
from patient-matched tissue. Our results encourage efforts to
integrate liquid biopsy technology into the management of
patients with mUC.

Results
High ctDNA levels independently predict aggressive disease.
We collected 192 blood samples from 104 patients during their
treatment for mUC (Table 1, Fig. 1a, Supplementary Fig. 1a, and
Supplementary Data 1). Most patients provided samples prior to
first-line platinum-based chemotherapy or immune checkpoint
inhibition (Supplementary Fig. 1b). Plasma cell-free DNA
(cfDNA) was subjected to targeted sequencing using a custom 50
or 60 gene panel, to a median unique read depth of 1040×,
alongside patient-matched germline (leukocyte) DNA (Supple-
mentary Data 1). Utilizing somatic mutations detected exclusively
in the cfDNA, we calculated the proportion of cfDNA that was
tumor-derived (ctDNA). In 85% of patients (88/104), the ctDNA
fraction was >1% in at least one sample, and in 80 patients
protein-altering somatic mutations were identified enabling
genomic characterization of the tumor from the blood (Fig. 1b
and Supplementary Data 2). The median ctDNA fraction across
all 192 samples was 8%, was above 1% in 132 samples (69%; 20%
median in these samples), and ctDNA fraction was correlated
between temporal patient-matched samples (n= 31 pairs, Pear-
son’s r= 0.72, p= 5.8e− 06; Fig. 1c and Supplementary Fig. 2a,

b). Whole-exome sequencing (WES; median depth 213×) was
performed on 49 samples, and independently derived tumor
purity estimates from exome-wide copy number profiling were
consistent with mutation-based estimates from targeted sequen-
cing (n= 30 sample pairs, Pearson’s r= 0.85, p= 2.5e− 09;
Supplementary Fig. 2c, d).

As a comparator to our metastatic cohort, we performed
targeted sequencing (median unique read depth of 1456×) on
cfDNA from 39 patients initially diagnosed with local or locally
advanced muscle-invasive bladder cancer (MIBC); samples were
collected prior to curative-intent treatment. Twenty-one percent
(8/39) of MIBC patients had ctDNA >1%, significantly lower than
the 83% (59/71) observed in mUC patients with cfDNA collected
prior to first-line systemic treatment for their metastatic disease
(Fisher’s exact p < 0.00001; Supplementary Data 1 and 2 and
Supplementary Fig. 3A, B). Recurrence-free survival was shorter
in the eight MIBC patients with ctDNA >1% (hazard ratio (HR)
3.99, 95% confidence interval (CI) 1.13–14.1, p= 0.032; Supple-
mentary Data 3 and Supplementary Fig. 3C, D), fitting with prior
work suggesting that the presence of ctDNA at MIBC diagnosis is
a poor prognostic factor14.

Pertinent to the design of future clinical efforts leveraging
cfDNA, the abundance of ctDNA in mUC patients was impacted
by collection timing in relation to systemic therapy. Samples
collected after treatment initiation (but prior to clinical progres-
sion) had significantly lower ctDNA than those obtained prior to
therapy or at progression (Kruskal–Wallis p= 2.4e− 07; Fig. 1c).
Reductions in ctDNA levels coincided with the patient response
(Supplementary Fig. 4). Prior surgical resection of the bladder was
not associated with ctDNA fraction in patients with mUC
(Fig. 1c). Importantly, for a biomarker source that must inform
across a range of clinical scenarios, ctDNA abundance did not
differ between patients subgrouped by sex or upper tract
involvement (Fig. 1b). Young age (<60 years, approximately the
25th percentile) was modestly associated with an increased
ctDNA fraction (median 30.5% versus 8.6% (60–75 years) and
7.3% (>75 years, 75th percentile); Kruskal–Wallis p= 0.04;
Fig. 1b).

There are few clinical prognostic factors in mUC16–18.
Encouragingly, we observed a significant relationship between
ctDNA fraction below the first quartile and improved overall
survival (OS) among 71 patients initiating first-line systemic
therapy for metastatic disease (HR 3.15, 95% CI 1.32–7.48, p=
0.01; Fig. 1d and Supplementary Data 3). When evaluated in a
multivariate model incorporating clinical factors (Eastern Coop-
erative Oncology Group performance status ≥ 2 and the presence
of visceral metastases, individually or as a combined score16),
ctDNA fraction was independently associated with OS (n= 65;
HR 3.59, 95% CI 1.47–8.75 and HR 3.51, 95% CI 1.45–8.45,
respectively; Supplementary Data 3).

ctDNA reproduces the tumor tissue driver genome. Remark-
ably, using ctDNA alone, we independently reconstructed the
driver gene landscape of aggressive primary disease, as defined in
The Cancer Genome Atlas (TCGA) analysis of muscle-invasive
tissue7. Gene somatic alteration frequency, type of alteration, and
even mutually exclusive relationships between driver events were
paralleled in our metastatic ctDNA cohort (Fig. 2a, Supplemen-
tary Data 4, Supplementary Fig. 5, and Supplementary Note 1).
Mutagenesis in bladder cancer is mediated, in part, by aberrant
APOBEC activity7,19, and consistent with this, AID/APOBEC-
associated tri-nucleotide mutational signatures 2 and 13 (16.3%
and 20.9%, respectively) were abundant across the 35 cfDNA
samples subjected to WES (Supplementary Data 5 and Supple-
mentary Fig. 6).
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To assess the similarity between genomic profiles derived
from tissue versus ctDNA, we retrieved 94 patient-matched
primary and/or metastatic tumor tissue specimens from 63 of
104 mUC patients and applied the same targeted sequencing
approach (Fig. 1a and Supplementary Fig. 1c). The tissue tumor
fraction, as estimated from targeted sequencing, ranged from 5
to 98.7% across the 95% (89/94) of samples with somatic
mutations detected (Supplementary Data 1 and 2). Six tissue
samples had tumor fractions below our detection thresholds via
targeted sequencing, which was confirmed via WES (Supplemen-
tary Data 1 and Supplementary Fig. 2d). Importantly, patients
with matched tissue did not differ from the remainder of the
cohort in terms of their clinical characteristics, ctDNA
fraction, TMB, or genomic landscape (Table 1 and Supplemen-
tary Fig. 7a).

To limit false-negative mutation calls in low tumor purity
samples, we restricted comparison to 46 patients with
tissue–ctDNA pairs where both samples had a sufficient tumor
fraction to detect protein-altering somatic mutations (Supple-
mentary Data 6 and Supplementary Fig. 7b). For each patient, we
evaluated the highest ctDNA fraction sample and the most recent
tissue sample (when multiple samples were available); 89% of the
most recent tissue samples were from a muscle-invasive or
metastatic lesion (Supplementary Fig. 1c). Across the 46 pairs,

targeted sequencing detected 265 coding somatic mutations;
83.4% (221/265) were independently detected in both tumor
sources, while 7.9% (21/265) and 8.7% (23/265) were detected in
ctDNA and tissue only, respectively (Fig. 2b and Supplementary
Data 7). All tissue–ctDNA pairs shared at least one mutation
(Supplementary Fig. 8). For 43% (19/44) of mutations exclusive to
tissue or ctDNA, at least three unique reads supporting the
mutant allele were observed in the paired sample, indicating that
higher depth sequencing could increase their independent
detection. However, low sequencing coverage did not explain
the majority of exclusive mutation calls (Supplementary Data 7),
suggesting genuine differences in the subclonal composition
between a single primary tumor focus and bulk ctDNA in mUC.
Accordingly, subclonal mutations were less frequently shared
between tissue–ctDNA pairs than clonal mutations (32/50 versus
189/215; Fisher’s exact p= 0.0002).

Although it is challenging to identify copy number changes
from formalin-fixed paraffin-embedded (FFPE)-derived DNA
and samples with low tumor purity, oncogene amplification was
strongly correlated between tissue and matched ctDNA (n= 38
amplifications across 27 patients, Pearson’s r= 0.83, p= 7.7e−
11; Fig. 2c). No genes were enriched for mutation concordance or
discordance after correction for multiple hypothesis testing
(Supplementary Fig. 9).

Table 1 Clinical characteristics for the metastatic urothelial carcinoma (mUC) patient cohort.

mUC cohort
(n= 104)

Subset with tissue retrieved
(n= 63)

Subset without tissue
retrieved (n= 41)

Fisher’s exact pa

Median age at metastatic diagnosis
(range)

67 (37–88) 67 (37–88) 67 (44–83)

Male (%) 83.7 85.7 80.5 0.59
Smoker (%) 70.7 71.7 68.8 0.81
Upper tract involvement (%) 18.3 15.9 22.0 0.45
Metastatic at diagnosis (%) 18.3 12.7 26.8 0.08
Initial histology of invasive
component (%)

Pure urothelial 50.0 42.9 61.0 0.11
Mixed urothelial with variant 10.6 14.3 4.9 0.19
Pure variant 26.9 27.0 26.8 1.00
Unknown 12.5 15.9 7.3 0.24

Curative-intent treatment (%)
Cystectomy 79.3 72.2 90.9 0.05
Trimodal therapy 9.1 13.0 0.0 0.17
Chemotherapy 43.4 41.2 48.0 0.63

Clinical factors at metastatic
diagnosis (%)

ECOG PS≥ 2 21.1 20.0 22.5 0.80
Visceral metastases 71.2 66.7 78 0.27

First-line treatment for metastatic
disease (%)

None 13.9 19.4 5.1 0.07
Cisplatin-based 35.6 24.2 53.8 0.0031
Carboplatin-based 17.8 19.4 15.4 0.79
PD-1/PD-L1 22.8 27.4 15.4 0.22
PD-1+ CTLA-4 4.0 4.8 2.6 1.00
Taxane 2.0 1.6 2.6 1.00
Other 4.0 3.2 5.1 0.64

Median days from metastatic diagnosis
To initiation of first-line treatmentb 39 43 39
To first cell-free DNA collection 62 75 41

Median months of follow-up (range)
From metastatic diagnosis 13.9 (1.1–76.4) 14.7 (1.3–74.0) 13.5 (1.1–76.4)
From first cell-free DNA collection 8.4 (0.3–33.0) 6.3 (0.8–33.0) 10.7 (0.3–24.7)

Percentages are based on the patients with data available. Source data are provided as a Source Data file.
aBonferroni-corrected threshold for significance: p= 0.0025.
bFor patients who received treatment for their metastatic disease during the follow-up period.
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Mutation detection in ctDNA is consistent despite intra-
patient heterogeneity. Temporal heterogeneity was explored
across serial tumor tissue samples collected over the course of
disease progression in 15 patients (2–4 samples per patient, 42
total). Forty-five percent of mutations were independently
detected across all asynchronous patient-matched tissue samples
(Fig. 3a). Conversely, in 21 patients where serial ctDNA profiles
could be compared (two to four samples per patient, 59 total),
90% of the mutations were independently called in all samples
(Fisher exact p < 0.00001; Fig. 3b). Differences in sequencing
depth (median 1040× in ctDNA versus 370× in tissue) did not
account for the inferior concordance observed in tissue—12%

(12/97) of mutations inconsistently called across serial tissue
samples could be explained by insufficient coverage, versus 54%
(7/13, all below 3% variant allele fraction) in serial ctDNA. Fur-
thermore, although the median interval between ctDNA pairs was
shorter than for tissue pairs (1.6 versus 4.9 months), serial tissue
samples collected within 6 months had fewer shared mutations
than ctDNA pairs within the same interval (50% versus 100%
median concordance, Mann–Whitney U test p= 0.0008; Sup-
plementary Fig. 10a). Tissue to tissue variability is likely partly
explained by somatic clonal shifts that occur during progression
from non-muscle-invasive to muscle-invasive disease20, and
subclonal heterogeneity in multifocal and/or recurrent primary

a

All sequenced cfDNA samplesHighest ctDNA fraction sample per patientb c

d
71/104 patients

High ctDNA (≥4.9%)
54/71 patients

Low ctDNA (<4.9%)
17/71 patients

Low tumor proliferation;
Good prognosis

High tumor proliferation;
Poor prognosis

104 mUC patients

63 cfDNA & tissue 41 cfDNA only

192 cfDNA samples94 tissue samples

Lung metastasis

Metastatic cancer
Tissue and cell-free DNA
collection(s)

0 days to >11 years between tissue 
and blood collections

+/- BCG therapy
+/- (neo)adjuvant chemotherapy
+/- systemic therapy

Cell-free DNA

Liquid biopsy biomarker 
benchmarking in 

patient-matched tissue

Bladder cancer

Lymph node

Localized cancer
Archival tissue collection(s) from 
NMIBC and MIBC

Fig. 1 Cohort summary and abundance of circulating tumor DNA (ctDNA). a Cell-free DNA (cfDNA) and tissue samples were collected from 104 metastatic
urothelial carcinoma (mUC) patients. Anatomy diagram obtained from Cancer Research UK/Wikimedia Commons, available under a Creative Commons
Attribution-Share Alike 4.0 International license: https://commons.wikimedia.org/wiki/File:Diagram_showing_advanced_bladder_cancer_CRUK_441.svg. b
Abundance of ctDNA in relation to patient characteristics. Only the highest ctDNA fraction sample from each patient is shown. c Impact of treatment status (at
the time of cfDNA collection) on ctDNA abundance. Prior cfDNA collected pre-treatment initiation, after cfDNA collected post-treatment initiation, and Prog.
cfDNA collected near the time of documented disease progression (see “Methods” section). d Kaplan–Meier survival analysis in 71 mUC patients with cfDNA
collected prior to first-line systemic therapy. The highest ctDNA fraction sample from each patient is represented if multiple pre-treatment samples were
available. Stratification is based on the 25th percentile across the represented samples (4.9%). Statistical significance was measured using Cox proportional
hazards regression analysis. All boxplots in (b) and (c) are centered at the median, with the box spanning the first to third quartile, and minima and maxima
extending to 1.5× IQR. MWU two-sided Mann–Whitney U test, KW Kruskal–Wallis test, and UT upper tract. Source data for (b) and (c) are provided as a
Source Data file.
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Fig. 2 Comparison of circulating tumor DNA (ctDNA) to tumor tissue. a Gene mutation frequency and mutation type in metastatic urothelial carcinoma
(mUC) ctDNA versus The Cancer Genome Atlas (TCGA) localized muscle-invasive bladder cancer (MIBC) cohort, across 50 driver genes on our
targeted panel. TCGA information was obtained via cBioPortal. b Detection of protein-altering somatic mutations in ctDNA and patient-matched tumor
tissue from 46 patients. Variant allele fractions (VAFs) for 265 mutations detected via targeted DNA-sequencing are normalized to tumor fraction
estimates. c Correlation of gene copy number between ctDNA and tissue for seven commonly amplified oncogenes. Linear regression p value calculated
for 38 amplification events across 27 patients (remaining 19/46 patients lacked amplifications in selected oncogenes). Data are presented as the exact
gene copy number estimate (dot), +/− the 95% confidence interval (error bar) as calculated per gene from the coverage log ratio in samples with no
evidence of cancer (tumor fraction= 0). Source data for (a) and (c) are provided as a Source Data file.

a bSerial tissue samples 
from 15 patients

Serial ctDNA samples 
from 21 patients

Fig. 3 Temporal heterogeneity in tumor tissue and circulating tumor DNA (ctDNA). a Mutation detection across same-patient serial tissue samples.
Correlation of somatic mutation variant allele fractions (VAFs) in paired tissue samples, with mutations not detected in one member of the pair (VAF= 0)
shown in gray (left). Kernel density estimates show a peak in mutations detected exclusively in one sample. Each unique mutation detected in serial tissue
is plotted as a row in the heatmap (right), along with their re-detection in ctDNA-positive samples (if available). b Mutation detection across same-patient
serial ctDNA samples. Somatic mutation VAFs are strongly correlated (left), with few mutations not consistently detected (right). In both (a) and (b),
VAFs are normalized to tumor purity, and those >100 (e.g., on amplified genes) are not shown. Source data are provided as a Source Data file.
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lesions. In line with this, mutation concordance of mUC ctDNA
with non-muscle-invasive tissue was significantly lower than with
muscle-invasive and metastatic tissue (50% versus 89% median
concordance, Mann–Whitney U test p= 0.002; Supplementary
Fig. 10b).

Primary MIBC is molecularly heterogeneous, and classifica-
tions based on transcriptome profiling are associated with
differential patient prognosis and distinct classes of driver
alterations21. We performed RNA-sequencing on 79 tissue
samples, in parallel with targeted DNA-sequencing (Supplemen-
tary Data 1), and applied a consensus classification system that
identifies six transcriptome subtypes (Supplementary Fig. 11)22.
We noted a split between samples with luminal versus basal gene
expression signatures, and expression of key genes was consistent
with canonical datasets (muscle-invasive tissue from systemic
treatment-naive patients), despite the classifier not being trained
for use across our heterogeneous cohort that includes post-treated
metastatic tissue and non-muscle-invasive samples (Supplemen-
tary Fig. 12). There was a non-significant trend for stroma-rich
tissue samples to have lower tumor fractions than other
consensus subtypes (55% versus 68% median tissue cancer
fraction, Mann–WhitneyU test p= 0.07; Supplementary Fig. 13a).
Notably, the majority of metastatic tissue samples clustered in the
stroma-rich subtype, and shifts to a stroma-rich subtype, were
frequent among patients with serial tissue samples; post-
treatment subtype shifts are consistent with the development of
a scar-like phenotype23. Together, these data highlight the
challenge of applying existing RNA subtyping models in late-
stage disease where contemporary tissue samples are rarely
treatment-naive (Supplementary Fig. 13b).

ctDNA has advantages over tumor tissue for real-time genomic
biomarker evaluation. In some cancers, tissue TMB is a bio-
marker for immunotherapy response. In mUC, tissue TMB alone
does not appear to robustly associate with patient benefit,
although it may still have utility as part of a biomarker suite24.
We extrapolated somatic mutation counts from targeted
sequencing of ctDNA to obtain estimates of genome-wide TMB
ranging from 0.75 to 57.4 mutations/Mb, with a median TMB of
10.6 (Supplementary Data 1). Median TMB for muscle-invasive
and metastatic tissue together was 11.1 (interquartile range (IQR)
7–19), comparable to muscle-invasive tissue analyzed with a
similarly sized commercial panel25. TMB was similar between
tissue–ctDNA pairs (n= 46, Pearson’s r= 0.88, p= 3.7e− 16;
Fig. 4a and Supplementary Data 1). However, there were two
cases with relatively high TMB in mUC ctDNA, but low in pri-
mary tissue (Fig. 4a). TMB correlation was also lower when
comparing ctDNA to older tissue samples (n= 14, Pearson’s r=
0.53, p= 0.05). In exploratory biomarker analyses, we did not
observe a relationship between ctDNA TMB and duration of
response to immune checkpoint inhibition or platinum che-
motherapy (Fig. 4b, Supplementary Data 3, and Supplementary
Fig. 14a).

The pan-FGFR inhibitor erdafitinib recently received regula-
tory approval based on a 40% response rate in advanced patients
with FGFR alterations detected by tissue profiling3. We detected
somatic FGFR3 mutations in ctDNA from eight patients with
mUC (Fig. 4c). Importantly, these mutations were independently
detected in all ctDNA-positive samples and patient-matched
tissue. All FGFR3 mutations had VAFs suggestive of truncal
status (Supplementary Data 8). FGFR3 mutations are enriched in
non-muscle-invasive lesions relative to adjacent muscle-invasive
disease26, and consistent with this, in three patients we observed
FGFR3 p.S249C mutations in non-muscle-invasive tissue that
were not detected in later muscle-invasive tissue or mUC ctDNA

samples (Fig. 4c). In a further three patients, breakpoints in
ctDNA indicated the presence of activating FGFR3 gene fusions
(Fig. 4c, Supplementary Data 9, and Supplementary Fig. 14b). In
total, 13.8% of the ctDNA-evaluable mUC cohort (11/80)
exhibited FGFR3 alterations likely to sensitize their tumors to
erdafitinib. Tissue samples with activating FGFR3 alterations
demonstrated elevated FGFR3 expression (Fig. 4d). Surprisingly,
one FGFR3-TACC3 fusion identified in ctDNA was not identified
in earlier TURBT tissue (despite other shared genomic altera-
tions); consistent with this, tissue FGFR3 RNA expression was
below the 25th percentile. In an exploratory subgroup analysis,
we observed a modest association between FGFR3 alteration and
shorter progression-free survival (PFS) for patients receiving
immunotherapy (n= 58; PD-1/PD-L1/CTLA-4, single agent or in
combination) (Fig. 4e).

A subset of primary bladder cancers demonstrate somatic
alterations and/or protein overexpression of ERBB2 (HER2).
Clinical trials of HER2-targeted agents have been unsuccessful in
mUC, highlighting the difficulty of optimal patient selection27.
ERBB2 mutations were detected in 13.8% of the ctDNA-evaluable
mUC cohort (11/80), and gene amplification was detected in
ctDNA from seven patients, two of whom harbored simultaneous
ERBB2 mutation (Fig. 5a). The absolute ERBB2 copy number was
≥50 in three cases, enabling detection despite low ctDNA
fractions (Supplementary Fig. 14c). Several tissue samples with
activating ERBB2 alterations detected by DNA-sequencing also
exhibited elevated ERBB2 expression (Fig. 5b). In two patients
with ERBB2 amplification detected in ctDNA, we confirmed gene
amplification and protein overexpression via clinical-grade
fluorescence in situ hybridization (FISH) and immunohistochem-
istry (IHC) in patient-matched primary tissue (Fig. 5c). For three
patients, ERBB2 amplification was identified in tissue but not in
later ctDNA despite shared mutations; correspondingly, ERBB2
intra-patient heterogeneity has been reported between primary
tumors and lymph node metastases28. We considered the
possibility of false-negative variant calls, but for both FGFR3
and ERBB2 alterations the majority of discordances did not
appear to be due to insufficient tumor fraction or sequencing
depth; in these samples, other alterations were identified in both
tissue and ctDNA, and sequencing depth across the genes was
generally sufficient to detect truncal variants given the corre-
sponding tumor purity (Supplementary Data 8).

Mutations in the DNA damage repair gene ERCC2 are
associated with sensitivity to neoadjuvant cisplatin chemother-
apy29. Somatic ERCC2 mutations were detected in 8.8% of
ctDNA-evaluable mUC patients (7/80), and in the platinum-
treated subset (n= 60; adjuvant or palliative cisplatin/carboplatin
in first or second line) were associated with improved PFS
(Fig. 5d and Supplementary Data 3). Among the patients where
homologous recombination repair (HRR) and mismatch repair
genes were assessed in ctDNA (sequenced on the 60 gene panel),
protein-altering mutations were common. However, deleterious
truncating mutations were not accompanied by a second somatic
alteration, suggesting passenger status in accordance with
urothelial carcinoma as a non-BRCA-associated cancer (Supple-
mentary Fig. 15a)30. In one patient, we detected biallelic BRCA2
deletion via targeted and WES of ctDNA (Supplementary
Fig. 15b); tri-nucleotide mutational signature analysis revealed
HRR-defect-associated signature 3 as one of the predominant
signatures in this patient (12%; Supplementary Data 5), similar to
BRCA2-deficient metastatic prostate cancer.

Discussion
Our study in a large mUC cohort benchmarks a blood-based
“liquid” biopsy against patient-matched tumor tissue for
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identifying somatic alterations. We demonstrate that a liquid
biopsy is sufficient to resolve contemporary driver gene events in
ctDNA-positive patients, suggesting that future biomarker-driven
protocols can leverage clinically practical blood draws for patient
stratification. Importantly, the analysis of cfDNA in blood and
urine has already promised utility in the context of early bladder
cancer diagnosis and detection of metastatic relapse following
cystectomy14,31. Therefore, considering our hypothesis-generating
study, we posit that cfDNA profiling is poised for near-term
clinical impact across the spectrum of aggressive bladder cancer.

In samples with sufficient ctDNA to detect protein-altering
somatic mutations, driver gene status was highly consistent with
metastatic lesions and primary muscle-invasive disease. However,
there were notable discordances when comparing mUC ctDNA to
older primary tissue specimens, particularly non-muscle-invasive
foci. Furthermore, while bulk metastatic driver genotype in serial
ctDNA was typically invariable, we observed frequent temporal
heterogeneity in serial primary site tissues. Several prior tissue
studies in bladder cancer have revealed intra-patient clonal het-
erogeneity and somatic evolution during disease progression20,32.
Clonal shifts are well documented during localized bladder cancer
invasion into the muscle-bed; for example, the common loss of
FGFR3 hotspot mutations26. Therefore, our data suggest that

ctDNA provides a more representative snapshot of mUC disease
genomics than a single archival primary tumor focus.

Primary bladder cancer has a high mutation rate and shows
genome scars of aberrant APOBEC enzymatic activity7,19,33.
Indeed, APOBEC-related mutational signatures were detectable
here in mUC ctDNA. Mutation rates are elevated in late versus
early-stage disease34, suggesting that mutational processes remain
active during progression. As such, some intra-patient and intra-
tumor heterogeneity is inevitable, and serial ctDNA-based surveys
of the genome will reveal genetic drift and variable passenger
events. However, genomic events that confer fitness advantages
(such as driver mutations) are less likely to vary, which may
explain the high consistency between serial ctDNA samples in our
study (targeted sequencing), compared to a study of 32 patients
where broader exome profiling suggested extensive intra-patient
heterogeneity in advanced post-chemotherapy disease32. This
concept is supported by a rapid autopsy study (seven patients)
where clinically informative alterations tended to be shared
between metastatic lesions regardless of exome-wide hetero-
geneity35. Driver events arising late in tumorigenesis, or those
that confer context-dependent survival advantages, will be the
exception; fitting this model, in our exploratory analysis we
identified several examples where FGFR3 or ERBB2 alterations
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were absent from mUC ctDNA, despite their presence in primary
lesions prior to clinical metastatic progression.

In this study, 15% of mUC patients had an estimated ctDNA
fraction below 1% of total cfDNA. Low ctDNA did not appear to
associate with distinct genome or transcriptome patterns in
matched archival tissue (although, notably, no mUC patient with
the luminal-papillary tissue subtype had a ctDNA fraction >30%,
as this subtype is reported to be the least clinically aggressive22).
Furthermore, while ctDNA fractions in other metastatic cancers
are linked to patterns of disease burden such as visceral
spread9,36, ctDNA abundance appeared independent of the pre-
sence of visceral metastases in mUC. Future studies should
examine whether the burden of metastatic disease, as reflected by
the number and size of measurable lesions, is associated with
ctDNA fraction. Potential links between ctDNA fraction and
transcriptomic subtype should also be further explored, especially
since spatial and temporal heterogeneity in gene expression pat-
terns are well documented23. Despite these vagaries, low or
undetectable ctDNA should not constitute a complete “test fail”
in mUC, since this patient subgroup had the best OS from
initiation of first-line systemic therapy. Two prior studies (of 16
and 27 mUC patients, respectively) also noted prognostic trends
for ctDNA abundance37,38, indicating potential value across a
range of clinical scenarios and treatment regimens. Clearly,
ctDNA fraction as a prognostic biomarker now requires pro-
spective validation in mUC. However, given the relative lack of
available prognostic factors in mUC, and the fact that ctDNA
abundance was independent of known clinical prognosticators,

we anticipate that cfDNA profiling could augment existing
models for estimating patient life expectancy39. Such models are
of particular importance given the recent expansion of ther-
apeutic options for mUC3,4,40.

Several patients with low ctDNA had clinically relevant
alterations identified by matched tissue analysis, suggesting that
complete reliance on a liquid biopsy may miss opportunities for
genomics-driven care. It is possible to consider a model where
tumor tissue DNA profiling could be considered as a fallback in
these patients, especially given that their relatively good prognosis
provides time to source archival blocks or perform a fresh
metastatic biopsy. Of course, tissue-based analyses have an
associated failure rate since not all biopsies or surgical resections
yield tumor-derived DNA of sufficient quality for sequencing. In
tissue landscape studies, it is uncommon to report the broader
denominator of patients without available tumor tissue or with
“test fails.” We note that only 57% of muscle-invasive bladder
cancer cystectomy cases passed quality control for inclusion in
TCGA 2014 data freeze41.

We set a high threshold for ctDNA characterization, several
fold above the theoretical limit of ctDNA detection42. In low
ctDNA samples, we frequently observed rare reads supporting
mutations identified in matched tissue, suggesting that
deeper sequencing approaches would increase detection sensi-
tivity. However, ultra-deep sequencing is prohibitively expensive
when performed across large portions of the genome. Further-
more, elderly and sick individuals often have somatic clones
present in their circulation that are independent of their primary
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cancer diagnoses43–45. These clones will compromise specificity
for ctDNA detection unless focusing solely on disease-restricted
hotspot mutations (e.g., in FGFR3) or mutations defined from
prior tumor tissue testing. As such, different commercial tests
show poor concordance for mutations with allele fractions below
1% when comparing patient-matched samples46–49.

We have demonstrated that ctDNA profiling can identify
previously proposed biomarkers for therapy response in bladder
cancer, including alterations in FGFR3, ERCC2, and ERBB2, and
TMB. A cost-effective and minimally invasive method for their
identification will enable patient stratification in biomarker-
driven clinical trials, as well as real-world implementation of
precision oncology. However, the intricate relationship between
the driver genome, RNA subtype, and clinical history in bladder
cancer means that comprehensive studies are still required to
dissect the underlying biology of tumor aggression and treatment
response4. The prediction of response to checkpoint inhibitors is
a notable example; TMB in isolation is a poor biomarker50–52.
Furthermore, while FGFR3 alteration is strongly associated with
response to FGFR inhibitors, there are conflicting reports of links
to checkpoint inhibitor resistance53. In our exploratory analysis,
we observed a weak association between FGFR3 alteration and
shorter PFS in mUC patients receiving checkpoint inhibitors, but
this is unlikely to be clinically useful in isolation. Likewise, the
genomic context must be taken into account; despite harboring
activating alterations, in many tumors ERBB2 is probably not a
relevant therapeutic target (e.g., subclonal mutations in hyper-
mutated tumors).

Monitoring ctDNA serially can reveal treatment-related
alterations to the somatic genome, aiding in optimizing the
sequencing of therapies. Moreover, change in ctDNA abundance
may be useful as a biomarker of response38,54; fitting with this, we
found that ctDNA fractions were decreased in patients receiving
treatment, relative to pre-therapy initiation or progression sam-
ples. Across same-patient metastatic samples, we observed
minimal temporal heterogeneity, suggesting that historical treat-
ments for mUC (platinum chemotherapy and immunotherapy)
do not drastically re-shape the driver genome. Likewise, the
genomic landscape in the metastatic setting is highly similar to
localized, muscle-invasive primary tissue7, suggesting that these
aggressive primary tumors may reflect metastatic disease in situ.
This lack of evolution is in contrast with other cancers where
driver alterations become enriched during metastatic progression,
and in bladder cancer, treatment may alternatively impact
mutation signatures, immune markers, and RNA subtypes.
Emerging targeted therapies (anti-FGFR and Nectin-4) are likely
to change this paradigm, since treatment resistance will require
the tumor to alter or lose the target.

Our study is limited by the heterogeneous (real-world) nature
of the cohort and lack of pre-specified sample collection time
points. Tissue samples represent those available from routine
clinical practice, much like the tissue profiled in recent trials of
targeted therapies in mUC. Despite at times small subgroup
numbers, our retrospective analyses provide compelling results
that warrant validation in future studies of mUC ctDNA
genomics.

Methods
Patient cohort. Between December 2014 and November 2018, 192 whole blood
samples were collected from 104 patients. Our retrospective cohort included
patients with cancer of the urinary bladder and/or upper urinary tract (any his-
tologic variant) with at least one distant metastatic lesion (M1). Blood was collected
from patients at any stage of their treatment for metastatic disease. Samples were
categorized as “prior to treatment initiation” if blood was drawn from patients
prior to receipt of systemic therapy (any line) for their metastatic disease. If the
patient had received ≥1 day of systemic therapy at the time of collection, the
sample was categorized as “after treatment initiation”; this included blood collected

after a patient had completed a course of treatment (e.g., post six cycles of platinum
chemotherapy), but prior to disease progression. Finally, samples collected at the
time of documented progression (clinical or radiological) were categorized as
“progression.” Note that since the date of disease progression was determined by
the treating physician, and often back-dated to the day of imaging results, pro-
gression blood samples were not always collected on the same day (range relative to
documented progression: 0–15 days, median 5 days). Common systemic therapies
received included platinum chemotherapy and anti-PD-1/PD-L1 agents, although
treatment was not exclusive to these and trial patients were not excluded. Patient
clinical records were reviewed for the availability of archival tissue specimens.
Where possible, tissue was retrieved and submitted for pathology review to identify
tumor-rich foci. The sampling method (e.g., single core, multiple cores, scrolls) was
dependent on the tissue available and pathologist preference. In total, 94 patient-
matched tissue specimens were retrieved from 63 of the 104 patients. The majority
of tissue samples were FFPE archival specimens (90/94), while the remaining four
were fresh frozen tissue. We also identified pre-treatment cfDNA samples from 40
patients with localized MIBC, collected consecutively to our liquid biobanking
program between June 2017 and March 2020. Study approval was granted by the
University of British Columbia Clinical Research Ethics Board, the Ethics Com-
mittee of Ghent University Hospital, and the Ethics Commission of the Medical
Faculty of the Eberhard-Karls-University Tübingen and University Hospital
Tübingen. The study was conducted in accordance with the Declaration of Hel-
sinki, and written informed consent was obtained from all participants prior to
enrollment.

Sample processing, library preparation, and sequencing. Whole blood was
collected in 4 × 6mL EDTA or 2 × 9mL Streck Cell-Free DNA BCT® tubes. Blood
in EDTA tubes was centrifuged at 1600 r.c.f. and 4 °C for 2 × 10 min within 1–2 h
of collection. For Streck BCT tubes, the time from blood collection to processing
was 0–5 days, with a median of two. Blood collected in Streck tubes was kept at
room temperature prior to and during processing where samples were centrifuged
at 1600 r.c.f for 15 min, after which plasma was transferred to a new tube and spun
for an additional 10 min at 3200 r.c.f. Aliquots of buffy coat (leukocytes for
germline DNA; gDNA) and plasma were obtained simultaneously and stored at
−80 °C prior to DNA extraction. For samples collected at Ghent University
Hospital, Bimetra Biobank protocols were followed for sample processing with
plasma obtained during peripheral blood mononuclear cell (PBMC) isolation55.

Plasma cfDNA was extracted from up to 6 mL of input with the QIAGEN
Circulating Nucleic Acids Kit, and quantified with the Quantus Fluorometer and
QuantiFluor ONE dsDNA system or Qubit 2.0 Fluorometer and Qubit dsDNA HS
Assay Kit. Matched gDNA was extracted from the buffy coat fraction/PBMC using
the QIAGEN DNeasy Blood and Tissue Kit, or the Promega Maxwell® RSC Blood
DNA Kit and Promega Maxwell® RSC Instrument. Extracted gDNA was quantified
with a NanoDrop spectrophotometer. For archival FFPE tissue samples, DNA was
extracted from cores or sections with the Covaris truXTRAC FFPE DNA Kit, or the
Promega Maxwell RSC DNA FFPE Kit and Maxwell RSC system. DNA isolated
from tissue was quantified as per cfDNA. RNA was extracted from FFPE tissue
cores or sections with the Maxwell® RSC RNA FFPE Kit, and the Qubit™ HS Assay
Kit and Agilent Bioanalyzer RNA Nano were utilized for quantity and integrity
determination.

For all samples (cfDNA, gDNA, and tissue), we applied an established targeted
DNA-sequencing strategy utilizing custom Roche NimbleGen SeqCap EZ Choice
capture panels, modified by the inclusion of 4-bp molecular barcodes to the index
sequence for some cfDNA libraries13,54. Both capture panels covered the exonic
regions of a shared set of bladder cancer driver genes, chosen such that 98% of
TCGA primary muscle-invasive tumors would have a nonsynonymous somatic
mutation in at least one of the included genes. Final enriched library pools were
sequenced on Illumina MiSeq (2 × 300 bp), NextSeq (2 × 150 bp), or HiSeq 2500
(2 × 125 bp) instruments. Select cfDNA samples with ctDNA fractions exceeding
25% (as determined from analysis of targeted sequencing data) subsequently
underwent WES, together with matched gDNA. WES was performed using
libraries previously prepared for targeted sequencing and following the identical
protocols described for custom targeted sequencing, but instead utilizing the Roche
Nimblegen SeqCap EZ MedExome Kit. For tissue-derived RNA, strand-specific
ribo-depleted libraries were prepared and sequenced on a HiSeq 2500 (2 × 75 bp)
by the BC Cancer Genome Sciences Centre (Vancouver, Canada).

Analysis of sequencing data. Alignment and analysis of DNA-sequencing data
were performed utilizing an established pipeline9,13,54,56. Somatic mutations were
required to be supported by a minimum of eight mutant allele reads, with a
minimum VAF of 1% in ctDNA and 8% in tissue. All somatic mutation calls were
filtered against patient-matched gDNA, as well as the background error rate, in
addition to meeting thresholds for mapping quality and read-end proximity. Our
filters automatically remove putative tumor mutations that have significant read
support in matched gDNA (i.e., the white blood cell compartment): we require
mutations to have a VAF >3× that of the matched gDNA. This strategy serves to
remove germline variants, and somatic variants related to hematopoietic stem cell
clonal expansion. However, due to higher sequencing depth in cfDNA compared to
matched gDNA, some low VAF mutations related to clonal hematopoiesis may not
be filtered. Therefore, we manually reviewed all mutations and excluded three
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variants in genes linked to hematopoietic stem cell clonal expansion57 based on
elevated gDNA VAF (Supplementary Data 4). For identification of silent mutations
in the WES data, we required a 10% VAF at minimum, and that the VAF was at
least 50× higher than the same-loci background rate and 10× higher than in the
matched normal sample. We also required an average mapping quality >30 for
reads supporting the mutation, and a read-end proximity score >25 (calculated as
the average distance of the mutant allele from the nearest read end, among reads
that support the mutation).

Comparison of gene alteration type and frequency to TCGA analysis of muscle-
invasive bladder cancer tissue7 was performed using data obtained via cBioPortal.
For mutual exclusivity analysis (Supplementary Note 1), TCGA data were
downloaded from FireBrowse.

Tri-nucleotide signature weights were derived from WES data using a Python
implementation of the deconstructSigs algorithm (v1.47), and COSMIC mutational
signatures (v2)33,58. A minimum of 50 somatic mutations per sample was required
for mutational signature analysis.

Gene expression levels were quantified using Kallisto 0.45.059 with Ensembl v95
gene annotations and bias correction enabled. Transcript- and gene-level
abundances were calculated using Tximport 1.10.1. Estimated counts were scaled
using the average transcript length over samples and then to the library size.
Normalized gene counts were calculated using DESeq2 1.22.2 using the median
ratio method. The consensus molecular classification described by the Bladder
Cancer Molecular Taxonomy Group was used to assign tumors in our cohort into
six consensus messenger RNA (mRNA) subtypes: basal/squamous, luminal
papillary, luminal non-specified, luminal unstable, stroma-rich, and
neuroendocrine-like22. Likewise, we classified tumors based on the five subtypes
reported by TCGA: basal squamous, luminal papillary, luminal, luminal infiltrated,
and neuronal7. For both classifiers, the model was centroid-based and classifications
were generated using provided code22. The stromal signature was calculated from
the average expression of eight stromal-associated genes (ACTG2, CNN1, MYH11,
MFAP4, PGM5, FLNC, ACTC1, and DES). The cell-cycle signature is the average of
the E2F targets and G2M checkpoint signatures from the Molecular Signatures
Database (MSigDB) hallmark gene set collection60. The immune190 signature
scores were generated using the median of 190 immune-associated genes61.

Estimation of tumor fraction and TMB. For cfDNA and tissue samples subjected
to targeted sequencing, the fraction of cancer DNA was estimated based on the
highest VAF among autosomal somatic mutations as tumor fraction= 2/(1/VAF
+ 1), conservatively assuming a loss of heterozygosity, since copy number changes
are not readily detectable when tumor fraction is low. To deal with stochastic
variation in observed variant allele read counts, we modeled the variant read count
as arising from a binomial distribution, and conservatively calculated what the true
VAF would be if the highest observed VAF was a 95% quantile outlier9,13. The
somatic mutations utilized for estimation of tumor fraction are shown in Sup-
plementary Data 2. All chromosome 9 mutations were excluded from tumor
fraction estimation due to frequent copy neutral loss of heterozygosity, as were
TERT promoter mutations due to low sequencing depth. Somatic mutations in
copy number amplified regions were also excluded. Our limits for tumor fraction
estimation were ~2% in ctDNA, and ~15% in tissue (as determined by the con-
servative somatic mutation calling thresholds requiring 1% VAF for ctDNA and
8% for tissue). While 88/104 patients had evidence of ctDNA, we excluded eight of
those patients from downstream analyses due to a lack of protein-altering somatic
mutation calls.

Mutation clonality versus subclonality was approximated based on purity-
normalized VAFs to account for variable tumor fractions between samples
(Supplementary Data 7–8). Subclonal mutations were defined as those with a VAF
< 25% of the tumor fraction62,63; we applied this conservative threshold to account
for the difficulty in accurately estimating cancer cell fractions from targeted
sequencing data (where WES tools incorporating allelic copy number and ploidy
estimation are not applicable).

A copy number-based approach was utilized for ctDNA fraction estimation
from WES data; models testing different ctDNA fractions and diploid level log
ratios were manually fitted to the genome-wide copy number data, and candidate
models were rejected if any genes had a negative copy number. Some samples had a
tumor fraction too low for accurate quantification-based on copy number
(generally <20%), or highly complex copy number profiles (aneuploid and/or
complicated by subclonality), and thus did not have models fit.

TMB (mutations per Mb) was calculated taking into account the number of
genomic positions with sufficient coverage to detect a mutation with the same
VAF. Specifically, for each sample TMB was determined by summing the input
from each somatic mutation detected in a sample, using the formula 1/B1+⋯+ 1/
Bm, where Bm was the number of genomic sites with sequencing depth equal to or
higher than required (≥8 mutant allele reads/VAFm) for detecting mutation m.

Statistical analysis. All Mann–Whitney U tests performed were two-sided.
Pearson’s r values and associated p values were calculated via linear regression.

Survival analysis was performed using Python 3.7.4 with lifelines v0.22.664.
Patients with low tumor fractions (no protein-altering somatic mutations detected)
were excluded when fitting the Cox proportional hazard models given that the
status of the genomic variable in question could not be determined. For the MIBC

patients, RFS was calculated as the time from pre-treatment cfDNA collection to
disease recurrence. In the mUC setting, OS was defined as either the time from first
cfDNA collection to death or date of metastatic diagnosis to death. PFS was
calculated as the time from treatment initiation to documented clinical or
radiological progression, or death. Patients without documented events were
censored at the date of the last follow-up.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
All de-identified targeted and whole-exome DNA-sequencing data and RNA-sequencing
data have been deposited in the European Genome-phenome Archive (EGA) database
under the accession code EGAS00001004615 and is available under standard EGA
controlled release. The TCGA data referenced [https://doi.org/10.1016/j.cell.2017.09.007]
are available in public repositories from the cBioPortal [https://www.cbioportal.org] and
FireBrowse [http://firebrowse.org] websites. The MSigDB gene sets referenced [https://
doi.org/10.1016/j.cels.2015.12.004] are available from the GSEA website
[https://www.gsea-msigdb.org/gsea/msigdb]. All the other data supporting the findings of
this study are available within the article and its Supplementary information/data files,
and from the corresponding author upon reasonable request. Source data are provided
with this paper.

Code availability
Custom computer code utilized for analysis is available on Github at https://github.com/
annalam/muc-manuscript-code.
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