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The aging transcriptome and cellular landscape
of the human lung in relation to SARS-CoV-2
Ryan D. Chow 1,2,3,4, Medha Majety1,2,3,5 & Sidi Chen 1,2,3,4,6,7,8,9,10,11,12,13,14✉

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19). Here, we

interrogate the transcriptional features and cellular landscape of the aging human lung.

By intersecting these age-associated changes with experimental data on SARS-CoV-2, we

identify several factors that may contribute to the heightened severity of COVID-19 in older

populations. The aging lung is transcriptionally characterized by increased cell adhesion and

stress responses, with reduced mitochondria and cellular replication. Deconvolution analysis

reveals that the proportions of alveolar type 2 cells, proliferating basal cells, goblet cells,

and proliferating natural killer/T cells decrease with age, whereas alveolar fibroblasts,

pericytes, airway smooth muscle cells, endothelial cells and IGSF21+ dendritic cells increase

with age. Several age-associated genes directly interact with the SARS-CoV-2 proteome.

Age-associated genes are also dysregulated by SARS-CoV-2 infection in vitro and in patients

with severe COVID-19. These analyses illuminate avenues for further studies on the rela-

tionship between age and COVID-19.
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Age is one of the strongest risk factors for severe outcomes
among patients with COVID-191–6. In the OpenSAFELY
cohort of over 17 million patients in England, people

over the age of 80 had more than twenty times the risk of
COVID-19-related death compared to people aged 50–59 years
old3. The OpenSAFELY study further noted an approximate
log–linear relationship between risk of COVID-19-related death
and age, indicating that the risk of COVID-19 mortality pro-
gressively increases over the spectrum of the human lifespan3.
Although the OpenSAFELY cohort excluded patients under the
age of 18, other lines of evidence have extended these conclu-
sions to younger populations. For instance, the clinical mani-
festations of infection in children (<18 years old) are generally
less severe than in adults7–9. With the exception of infants and
younger children (<1 year old and 1–5 years old, respectively),
many children are asymptomatic or experience mild illness10,11.
Collectively, these observations indicate a strong association
between age and COVID-19 morbidity and mortality. However,
it must be emphasized that younger patients can still frequently
contract the disease, possibly causing serious symptoms such as
multisystem inflammatory syndrome12, leading to hospitaliza-
tion, intensive care unit admission, or death. While the effects of
age on COVID-19 are likely to be multifactorial, involving a
complex blend of systemic and local factors, we hypothesized
that tissue-intrinsic changes that occur with aging may offer
valuable clues.

In this study, we investigate the transcriptomic features and
cellular landscape of the aging human lung in relation to SARS-
CoV-2. We find that the aging lung is transcriptionally char-
acterized by increased cell adhesion and heightened stress
responses, along with reduced mitochondria and diminished
cellular replication. Through deconvolution analysis, we identify
numerous age-associated alterations in the cellular composition
of the lung, including cell types that are implicated in host
responses to SARS-CoV-2. We then cross-reference these age-
associated factors with recent experimental data on host inter-
actions with SARS-CoV-2, revealing that age-associated genes
interact with the SARS-CoV-2 proteome and are also commonly
dysregulated by SARS-CoV-2 infection in vitro. Notably, these
findings are recapitulated in patients with severe COVID-19.
This study illuminates potential mechanisms by which age
influences the clinical manifestations of SARS-CoV-2 infection,
pinpointing specific characteristics of the aging human lung that
may contribute to the heightened severity of COVID-19 in older
populations.

Results
We focused our analysis on the Genotype-Tissue Expression
(GTEx) project13,14, a comprehensive public resource of gene
expression profiles from non-diseased tissue sites. As the lung is
the primary organ affected by COVID-19, here we specifically
analyzed lung RNA-seq transcriptomes from donors of varying
ages (21–70 years old) (Fig. 1a). A total of 578 lung RNA-seq
profiles from 578 different donors were compiled, of which
31.66% were from women (Supplementary Data 1). For down-
stream analyses involving clinical covariates, we only included
lung RNA-seq profiles from donors with complete annotations
for sex, smoking status, and Hardy scale (n= 561).

Factors associated with expression of SARS-CoV-2 entry fac-
tors. An initial hypothesis for why SARS-CoV-2 differentially
affects patients of varying ages is that the expression of host
factors essential for SARS-CoV-2 infection may increase with
aging15–17. To assess this possibility, we examined the gene
expression of ACE2 (Supplementary Data 2), which encodes the

protein angiotensin-converting enzyme 2 that is coopted as the
host receptor for SARS-CoV-29,18–21. Through multivariable
regression analysis of several clinical factors, we observed a sig-
nificant association between age and ACE2 expression (estimated
coefficient [95% confidence intervals]= 0.0061 [0.0026–0.0096],
p= 0.00064) (Supplementary Fig. 1a, Supplementary Data 3). Of
note, a major factor influencing ACE2 expression was the Hardy
scale, which describes the timescale of the circumstances sur-
rounding a donor’s death. The Hardy scale has been shown to
have significant impacts on gene expression in the GTEx dataset,
given its association with postmortem ischemic time22. With
Hardy scale 1 (violent and fast death) as the reference, donors
with Hardy scale 0 (on ventilator prior to death) had significantly
higher ACE2 expression (estimated coefficient= 0.5173
[0.3424–0.6922], p= 1.07 × 10−8), as previously reported23,24.
Examining only the lung samples from donors that were not on a
ventilator prior to death, ACE2 expression increased with age
(Supplementary Fig. 1b).

While ACE2 is the direct cell surface receptor for SARS-CoV-2,
transmembrane serine protease 2 (TMPRSS2) and cathepsin L
(CTSL) have been demonstrated to facilitate SARS-CoV-2 infection
by priming the spike protein for host cell entry20. Expression of the
corresponding genes TMPRSS2 and CTSL were not significantly
associated with age in the multivariable regression model, nor after
excluding patients that were on a ventilator prior to death
(Supplementary Fig. 1c–e). Notably, biological sex was not
associated with the expression of ACE2, TMPRSS2, or CTSL,
though it has been observed that males are more likely to be affected
by COVID-19 than females3,25–27. One important limitation of
these analyses is that the expression of SARS-CoV-2 entry factors is
cell type-specific15,28–31 (Supplementary Fig. 2a–c, Supplementary
Fig. 3a–c, Supplementary Data 4, Supplementary Data 5).
Transcriptional changes associated with different clinical features
(e.g., aging, sex, or smoking status) may only occur in specific cell
types, and could therefore be obscured in analyses of bulk
transcriptomes15,16.

Identification of age-associated genes in human lung. As
indicated by our analysis of SARS-CoV-2 entry factors, in order
to systematically identify age-associated genes in the human lung,
it is important to account for clinical variables that may influence
lung gene expression independently of age. Using a likelihood-
ratio test32 controlling for sex, smoking status, and Hardy scale,
we pinpointed the genes for which age significantly impacts their
expression (adjusted p < 0.05, Supplementary Data 6). We iden-
tified two clusters of genes in which their expression progressively
changes with age (Fig. 1b, Supplementary Data 7).

Totally, 436 genes were found to increase in expression with
age, while 346 genes decreased in expression with age (hereafter
referred to as Age-Up and Age-Down genes, respectively). Gene
ontology and pathway analysis of Age-Up genes revealed
significant enrichment for cadherins, cell adhesion, stress
response, extracellular matrix, and heat shock proteins, in
addition to other pathways (Fig. 1c, Supplementary Data 8).
These findings are consistent with the age-associated architectural
changes in the lung33,34, as well as the induction of stress
pathways with aging35. In contrast, Age-Down genes were
significantly enriched for cell cycle, DNA damage/repair, and
mitochondrial factors, among other pathways (Fig. 1d, Supple-
mentary Data 9), which is in line with prior observations of
progressive mitochondrial dysfunction and loss of regenerative
capacity with aging36–39. Notably, a recent computational model
of intracellular RNA localization predicted that the SARS-CoV-2
genome and associated transcripts are enriched in the mitochon-
drial matrix40. Age-associated alterations in mitochondrial
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function may therefore have unanticipated effects on COVID-19
pathogenesis41–43.

Cell type-specific characterization of age-associated genes.
Having compiled a set of age-associated genes, we sought to
identify the lung cell types that normally express these genes, using
the human lung single-cell RNA-seq (scRNA-seq) dataset from the
Human Lung Cell Atlas (HLCA)44. By examining the scaled per-
centage of expressing cells within each cell subset, we identified
age-associated genes predominantly enriched in different cell types
(Supplementary Data 10). Cell types with the highly enriched
expression for certain Age-Up genes included various fibroblast
populations, muscle cells, ciliated cells, and neuroendocrine cells
(Fig. 2a, Supplementary Data 11). Cell types with the highly
enriched expression for certain Age-Down genes included several
proliferative cell populations (Supplementary Data 12), as well as
multiple epithelial cell subsets such as alveolar epithelial type 2
(AT2) cells (Fig. 2b, Supplementary Data 13). Similar results were
found using an independent human lung scRNA-seq dataset from
the Tissue Stability Cell Atlas (TSCA) (Supplementary Fig. 4a, b,
Supplementary Data 14, Supplementary Data 15, Supplementary
Data 16, Supplementary Data 17)45.

Among the airway smooth muscle-enriched genes that were
annotated as Age-Up genes, ITIH3 and PDGFRB showed
particularly strong age-associated increases in expression (Fig. 2c).
A single nucleotide variant in ITIH3 has been associated with
heightened risk for myocardial infarctions, possibly due to its
effect on increasing ITIH3 expression46, while platelet-derived
growth factor (PDGF) signaling contributes to the development

of various age-associated lung diseases, such as pulmonary
arterial hypertension and fibrosis47,48. Among the AT2-enriched
genes that decreased in expression with age, FOXA2 and ORM2
were among the top-ranked genes. FOXA2 is a critical regulator
of lung development49,50 and lung tumor cell identity51,52,
whereas the function of ORM2 in the lung is presently unknown.
Thus, integrative analysis of bulk and single-cell transcriptomes
revealed that many of the age-associated transcriptional changes
in the human lung can be mapped to specific cell subpopulations,
suggesting that the abundance of these cell types, their
transcriptional status, or both, may be altered with aging.

The cellular landscape of the aging human lung. As the
pathophysiology of viral-induced lung injury involves an intricate
interplay of diverse cell types53,54, aging-associated shifts in the
lung cellular milieu33 could contribute an important dimension to
the relationship between age and risk of severe disease in patients
with COVID-1955. To investigate the cellular landscape of the
aging lung, we deconvoluted the bulk lung GTEx transcriptomes
with CIBERSORTx56, using the scRNA-seq data from the HLCA
as a reference (Supplementary Fig. 5a, Supplementary Data 18).
Since bulk RNA-seq measures the average expression of genes
within a cell population, such datasets will reflect the relative
abundances of the cell types that comprised the input population,
though with the caveat that cell types can have overlapping
expression profiles and such profiles may be altered in response to
stimuli. To increase confidence in downstream analyses, we
retained only the cell types for which their estimated proportions
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Fig. 1 Identification of age-associated genes in the human lung. a Demographics of the human lung RNA-seq profiles in the GTEx dataset, detailed by sex
and age group (n= 578 samples). Downstream analyses were controlled for sex, smoking status, and Hardy scale, retaining samples with complete clinical
annotations (n= 561). b Tukey boxplots (interquartile range (IQR) boxes with 1.5× IQR whiskers) of age-associated genes in the human lung. Age-Up
genes increase in expression with aging (left, n= 436), while Age-Down genes decrease in expression with aging (right, n= 346). Statistical significance
was assessed by DESeq2 two-sided likelihood-ratio test (adj. p < 0.05) controlling for sex, smoking status, and Hardy scale. Data are shown in terms of
median z-score of gene expression, after adjustment for sex, smoking status, and Hardy scale. c DAVID gene ontology and pathway analysis of Age-Up
genes. d DAVID gene ontology and pathway analysis of Age-Down genes.
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Fig. 2 Lung single-cell transcriptomics pinpoints cell type-specific expression of age-associated genes. a Heatmap showing the percentage of cells
expressing each of the Age-Up genes (increasing with age), scaled by gene across the different cell types. Data are from the Human Lung Cell Atlas44.
b Heatmap showing the percentage of cells expressing each of the Age-Down genes (decreasing with age), scaled by gene across the different cell types.
Data are from the Human Lung Cell Atlas44. c, d Tukey boxplots (interquartile range (IQR) boxes with 1.5× IQR whiskers) showing the expression of ITIH3
and PDGFRB (c), or FOXA2 and ORM2 (d), across different age groups (n= 561 samples). Data are shown as log-transformed expression values, adjusted
for sex, smoking status, and Hardy scale. Statistical significance of age-associated variation was assessed by two-sided Kruskal–Wallis test on the adjusted
expression values.
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were >0 in at least 50% of the samples (49 out of 57 total cell
types; Supplementary Fig. 5b).

Using an ordinal logistic regression model controlling for sex,
smoking status, and Hardy scale, we identified age-associated
alterations in the proportions of several cell types in the lung
(Fig. 3, Supplementary Data 19). We observed that the
proportions of multiple epithelial cell subsets (goblet cells, AT2
cells, and proliferating basal cells) significantly decreased with age
(Supplementary Figs. 6 and 7). Of note, AT2 cells constitute the
stem cell population of the alveoli57,58, while basal cells function
as stem/progenitor cells in the airways59,60. These findings are
therefore consistent with the progressive loss of lung parenchyma

due to the reduced regenerative capacity of the aging lung61. On
the other hand, the estimated proportions of alveolar fibroblasts,
arterial endothelial cells, capillary intermediate endothelial cells,
pericytes, and airway smooth muscle cells increased with age
(Fig. 3). These data are consistent with the heightened risk for
chronic obstructive pulmonary disease and pulmonary fibrosis in
older populations62, as alveolar fibroblasts63,64, pericytes65, and
airway smooth muscle cells66 have been directly implicated in the
pathogenesis of these diseases. Collectively, these changes in the
regenerative capacity and cellular architecture of the aging lung
could contribute to the increased risk of COVID-19 morbidity
and mortality in older patients.
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Among the immune cell populations, proliferating natural
killer (NK)/T cells decreased with age, whereas IGSF21+ dendritic
cells increased with age (Fig. 3). T cells are thought to play
essential roles in immune responses against SARS-CoV-267–70,
and proliferating T cells are indicative of active antiviral
responses in COVID-19 patients71. IGSF21+ dendritic cells are
defined by the high expression of genes that have been previously
implicated in asthma, such as CCL2, CCL13, and IGSF21 itself44.
Patients with severe asthma (requiring recent use of an oral
corticosteroid) were found to have an increased risk of COVID-
19-related death3. Thus, age-associated alterations in specific lung
immune populations may contribute to the relationship between
aging and COVID-19 severity.

Functional roles of age-associated genes in SARS-CoV infec-
tion. We next explored the roles of lung age-associated genes in
host responses to viral infection, first searching for data on SARS-
CoV. While SARS-CoV and SARS-CoV-2 belong to the same
genus (Betacoronaviridae) and are conserved to some extent9,
they are nevertheless two distinct viruses with different epide-
miological features, indicating unique virology and host biology.
Therefore, data from experiments performed with SARS-CoV
must be interpreted with caution. We reassessed the results from
a prior in vitro siRNA screen of host factors involved in SARS-
CoV infection72. In this kinase-focused screen, 130 factors were
determined to have a significant effect on SARS-CoV replication.
Seven of the 130 factors exhibited age-associated gene expression
patterns (Supplementary Fig. 8a, b), with 3 genes in the Age-Up
group and 4 genes in the Age-Down group (Supplementary
Data 20). Using the human lung scRNA-seq data, we further
determined which cell types predominantly express these host
factors (Supplementary Fig. 8c, d), revealing cell type-enriched
expression patterns for several of these genes.

Age-associated host factors that interact with SARS-CoV-2
proteins. We then investigated whether proteins encoded by age-
associated genes in the human lung interact with SARS-CoV-2
proteins. A recent study interrogated the human host factors that
interact with 27 different SARS-CoV-2 proteins73, revealing the
SARS-CoV-2: human protein interactome in cell lines expressing
recombinant SARS-CoV-2 proteins. By cross-referencing the
interacting host factors with the set of age-associated genes, we
identified 14 factors at the intersection (Fig. 4a, Supplementary
Data 21). Seven of these genes showed an increase in expression
with age (i.e., Age-Up genes), while 7 decreased in expression
with age (Age-Down genes). Mapping these factors to their
interacting SARS-CoV-2 proteins, we noted that the age-
associated host factors which interact with M, Nsp5, Nsp8,
Nsp13, and Orf9b mostly decreased in expression with aging
(Fig. 4b). In contrast, the host factors that interact with Nsp9,
Nsp12, and Orf8 mostly increased in expression with age
(Fig. 4c). Nsp12 encodes for the primary RNA-dependent RNA
polymerase (RdRp) of SARS-CoV-2 and is a prime target for
developing therapies against COVID-1974,75. Orf8 has been
suggested to promote immune evasion by downregulating antigen
presentation in SARS-CoV-2-infected cells76. Age-associated
changes in these various host factors may thereby influence the
capacity for SARS-CoV-2 replication and/or immune evasion.

To assess the cell type-specific expression patterns of these
various factors, we further analyzed the lung scRNA-seq data
from the HLCA. Of the SARS-CoV-2-interacting genes that
increase in expression with age, MYCBP2 was frequently
expressed across several populations, particularly proliferating
basal cells (Fig. 4d). MYCBP2 was also expressed in 21.95% of
AT2 cells. CEP68 was preferentially expressed in basal cells, while

MFGE8 was widely expressed across several stromal and smooth
muscle populations. FBLN5 was most frequently expressed in
adventitial fibroblasts and alveolar fibroblasts. Of the SARS-CoV-
2-interacting genes that decrease in expression with age, ATP1B,
DCTPP1, and HDAC2 were broadly expressed in many cell types,
including AT2 cells (Fig. 4e). Analysis of the independent TSCA
dataset revealed similar conclusions (Supplementary Fig. 9).
Together, these analyses highlight specific age-associated factors
that interact with the SARS-CoV-2 proteome, in the context of
the lung cell types in which these factors are normally expressed.

Age-associated genes are dysregulated by SARS-CoV-2 infec-
tion. We next assessed whether SARS-CoV-2 infection directly
alters the expression of lung age-associated genes. A recent study
profiled the in vitro transcriptional changes associated with
SARS-CoV-2 infection in different human lung cell lines77. We
specifically focused on the data from A549 lung cancer cells, A549
cells transduced with an ACE2 expression vector (A549-ACE2),
and Calu-3 lung cancer cells. Several age-associated genes were
found to be differentially expressed upon SARS-CoV-2 infection
(Fig. 5a–c, Supplementary Data 22, Supplementary Data 23,
Supplementary Data 24). Of note, the overlap between lung age-
associated genes and SARS-CoV-2-regulated genes was statisti-
cally significant in the A549 and Calu-3 cells, though not in
A549-ACE2 cells (Fig. 5d–f), suggesting a certain degree of
similarity between the transcriptional changes associated with
aging and with SARS-CoV-2 infection. Among the age-associated
genes that were induced by SARS-CoV-2 infection in A549 and
Calu-3 cells, the majority of these genes increased in expression
with age (Fig. 5g–i, Supplementary Data 25). Conversely, among
the age-associated genes that were repressed by SARS-CoV-2
infection, most of these genes decreased in expression with
age. The directionality of SARS-CoV-2 regulation (induced or
repressed) and the directionality of age-association (increase or
decrease with age) was significantly associated for A549 and Calu-
3 cells. However, these observations were not recapitulated in the
A549-ACE2 cells. The discordant findings with A549-ACE2 cells
compared to parental A549 or Calu-3 cells are unclear, but could
potentially reflect the consequences of ectopic expression of
ACE2 in the context of SARS-CoV-2 infection.

To identify a consensus set of age-associated genes that are
regulated by SARS-CoV-2 infection in vitro, we integrated the
analyses from all three cell lines. Totally, 603 genes were
consistently induced by SARS-CoV-2 infection (Supplementary
Fig. 10a, Supplementary Data 26). Of these, 8 genes increased in
expression with age (Age-Up), and 2 genes decreased with age
(Age-Down). The 2 induced genes in the Age-Down group were
CCL20 and CXCL1, which encode immune cell-recruiting
cytokines. On the other hand, 641 genes were concordantly
repressed by SARS-CoV-2 infection (Supplementary Fig. 10b),
with 6 genes in the Age-Up category and 16 genes in the Age-
Down category. Among the latter group, nearly half of these
genes encode proteins that localize to the mitochondria (AIFM1,
C1QBP, DCTPP1, ENO1, MTCH2, NDUFA7, and TYMS),
highlighting certain commonalities in the mitochondrial changes
observed with aging and with SARS-CoV-2 infection.

Within the consensus set of all 32 age-associated genes that are
perturbed by SARS-CoV-2 infection, the directionality of SARS-
CoV-2 regulation (induced or repressed) and the directionality of
age-association (increase or decrease with age) were significantly
associated (Supplementary Fig. 10c). Analysis of the human lung
scRNA-seq datasets revealed the cell types that normally express
these different genes (Supplementary Fig. 11a, b). In particular,
the majority of the Age-Down genes repressed by SARS-CoV-2
infection were expressed across multiple epithelial cell types,
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including AT2 cells (AHCY, MPDU1, DCTPP1, AKR1A1, PARP1,
MTCH2, CACYBP, ENO1, C1QBP, NDUFA7, and PHB).
Collectively, these analyses highlight the unexpected parallels
between the aging transcriptome of the human lung and the
transcriptional changes caused by SARS-CoV-2 infection in vitro.

We wondered whether lung age-associated genes are similarly
dysregulated in patients with COVID-19. A recent study

profiled the transcriptomes of single bronchoalveolar lavage
fluid cells from patients with COVID-1978. We collapsed the
single-cell transcriptomes into pseudo-bulk transcriptomes by
aggregating the data from each donor, then used these data to
perform differential expression analysis. Comparing patients
with severe COVID-19 to healthy controls, 6343 genes
were upregulated and 3847 genes were downregulated (Fig. 6a,
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Fig. 4 Age-associated genes in the human lung interact with SARS-CoV-2 proteins. a Venn diagram of the intersection between age-associated genes in
human lung and the SARS-CoV-2: human protein interactome73. Of the 14 age-associated genes that were found to also interact with SARS-CoV-2, 7 of
them increased in expression with age, while 7 decreased with age. b Age-associated genes in human lung and their interaction with SARS-CoV-2 proteins,
where each block contains a SARS-CoV-2 protein (underlined) and its interacting age-associated factors. Blocks are colored by the dominant directionality
of the age association (orange, decreasing with age; blue, increasing with age). Gene targets with already approved drugs, investigational new drugs, or
preclinical molecules are additionally denoted with an asterisk. c Tukey boxplots (interquartile range (IQR) boxes with 1.5× IQR whiskers) detailing the
expression of select age-associated genes that interact with SARS-CoV-2 proteins, highlighted in (b) (n= 561 samples). Data are shown as log-
transformed expression values, adjusted for sex, smoking status, and Hardy scale. The SARS-CoV-2-interacting protein is annotated in parentheses.
Statistical significance of the expression variation across all age groups was assessed by a two-sided Kruskal–Wallis test on the adjusted expression values.
d Heatmap showing the percentage of cells expressing each of the Age-Up genes (increasing with age) that interact with SARS-CoV-2 proteins, as
highlighted in (b). Data are from the Human Lung Cell Atlas44. e Heatmap showing the percentage of cells expressing each of the Age-Down genes
(decreasing with age) that interact with SARS-CoV-2 proteins, as highlighted in (b). Data are from the Human Lung Cell Atlas44.
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Fig. 5 SARS-CoV-2 infection alters the expression of lung age-associated genes in vitro. a–c Volcano plots of differentially expressed genes in A549
cells (a), A549 cells transduced with an ACE2 vector (A549-ACE2) (b), or Calu-3 cells (c). Data are from GSE14750777. Age-associated genes are color-
coded. d–f Venn diagrams highlighting the intersections between lung age-associated genes and SARS-CoV-2-regulated genes in A549 cells (d), A549-
ACE2 cells (e), or Calu-3 cells (f). Statistical significance of the overlap was assessed by the hypergeometric test. g–i Characteristics of age-associated
genes that are affected by SARS-CoV-2 infection in A549 cells (g), A549-ACE2 cells (h), or Calu-3 cells (i), from d–f. Statistical significance of the
interaction between the directionality of SARS-CoV-2 regulation (induced or repressed) and the directionality of age-association (increase or decrease with
age) was assessed by two-tailed Fisher’s exact test.
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Supplementary Data 27). We again observed that age-associated
genes were enriched among the genes differentially expressed in
severe COVID-19 patients (Fig. 6b). However, unlike the
analysis of SARS-CoV-2 infection in vitro, the directionality
of COVID-19 association (induced or repressed) and the
directionality of age-association (increase or decrease with

age) was not significantly associated (Fig. 6c, Supplementary
Data 28). Among the Age-Up genes that were upregulated in
severe COVID-19 patients, IDO1 was the most significant
(Fig. 6d). IDO1 encodes indoleamine-2,3-dioxygenase, a meta-
bolic enzyme that has been demonstrated to have antiviral
functions in a variety of contexts79,80.
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We subsequently intersected the age-associated genes that are
differentially expressed upon SARS-CoV-2 infection in vitro or in
severe COVID-19 patients (Fig. 6e, Supplementary Data 29). A
total of ten age-associated genes showed consistent patterns of
differential expression both in vitro and in vivo. Turning to the
lung scRNA-seq data, we examined which lung cell types
normally express these genes (Fig. 6f and Supplementary Fig. 12).
Whereas AKR1A1 and NDUFA7 were widely expressed
in multiple cell populations, CFD was preferentially expressed
in innate immune cells, while FST and GEM were primarily
expressed in stromal and muscle cells. Interestingly, CXCL1 was
most highly expressed in airway epithelial populations (basal
cells, goblet cells, mucous cells). CXCL1 is a potent neutrophil
attractant81,82, and neutrophil-derived extracellular traps have
been frequently observed in patients that died from COVID-1983.
Taken together, these data demonstrate that age-associated genes
are frequently dysregulated in patients with severe COVID-19,
further identifying the specific cell types in the lung that normally
express these genes.

Discussion
Here, we systematically analyzed the transcriptome and cellular
landscape of the aging human lung in relation to SARS-CoV-2.
We found that the aging lung is characterized by a wide array of
changes that could contribute to the worse outcomes of older
patients with COVID-19. Controlling for sex, smoking status, and
Hardy scale, we identified 782 genes that exhibit age-associated
expression patterns. We subsequently demonstrated that the
aging lung is characterized by several gene signatures, including
increased cell adhesion, heightened stress responses, reduced
mitochondrial activity, and decreased proliferation. By integrating
these data with single-cell transcriptomes of human lung tissue,
we further pinpointed the specific cell types that normally express
the age-associated genes. Through bulk deconvolution analysis,
we showed that the proportions of lung stem/progenitor popu-
lations (namely AT2 cells and proliferating basal cells) decrease
with age, whereas the proportions of alveolar fibroblasts, peri-
cytes, endothelial cells, and airway smooth muscle cells increase
with age. Among the immune cell types in the lung, proliferating
NK/T cells decrease in proportion with age, while IGSF21+

dendritic cells increase with aging.
We also found that some of the age-associated factors have

been shown to directly interact with the SARS-CoV-2 proteome.
Furthermore, age-associated genes are enriched among genes
directly regulated by SARS-CoV-2 infection in vitro, suggesting
transcriptional parallels between the aging lung and SARS-CoV-2
infection. These findings were recapitulated in vivo when com-
paring patients with severe COVID-19 to healthy controls. We
speculate that the transcriptional parallels between aging and
SARS-CoV-2 infection/COVID-19 could reflect the dysregulation

of cellular pathways common to both processes. However, while
the directionality of age-association and SARS-CoV-2 regulation
was concordant in both A549 and Calu-3 cell lines, we did not
observe the same patterns in A549-ACE2 cells or in patients with
severe COVID-19. Exploring the commonalities and differences
between aging and SARS-CoV-2 infection in these different
contexts may serve as a valuable window into the mechanisms
by which COVID-19 differentially affects patients across the
lifespan.

We emphasize that the analyses presented here cannot be
used to guide clinical practice at this stage. Whether any of these
age-associated changes causally contribute to the heightened
susceptibility of COVID-19 in older populations remains to
be experimentally tested. Our analyses unveil a number of
observations and phenomena that provide potential directions for
subsequent research efforts on SARS-CoV-2, generating geneti-
cally tractable hypotheses for why advanced age is one of the
strongest risk factors for COVID-19 morbidity and mortality.

Methods
Data accession. The Genotype-Tissue Expression (GTEx) project was supported
by the Common Fund of the Office of the Director of the National Institutes of
Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS13,14. RNA-seq
raw counts and normalized TPM matrices were directly downloaded from the
GTEx Portal (https://gtexportal.org/home/datasets) on March 18, 2020, release v8.
Gene expression data used in this study are publicly available on the web portal and
have been de-identified, except for patient age range and gender. Detailed clinical
annotations of the GTEx cohort were obtained as controlled access data through
dbGaP (phs000424.v8.p2).

Single-cell transcriptomes of human lungs were directly obtained from the
HLCA (https://github.com/krasnowlab/HLCA) (Synapse #syn21041850)44, and
from the Tissue Stability Cell Atlas (https://www.tissuestabilitycellatlas.org/)45

(PRJEB31843). In both cases, preprocessed R objects were downloaded from the
respective repositories and utilized for downstream analysis.

Transcriptomic profiles of cell lines infected with SARS-CoV-2 in vitro were
obtained from the Gene Expression Omnibus (GSE147507). Transcriptomic
profiles of patients with severe COVID-19 and healthy controls were also obtained
from the Gene Expression Omnibus (GSE145926).

Analysis of clinical features associated with expression of SARS-CoV-2 entry
factors. Clinical annotations for age, sex, obesity, hypertension, type 1 diabetes,
type 2 diabetes, Hardy scale, and smoking history were compiled from the con-
trolled access GTEx metadata. A Hardy scale of 1 was used as the reference for
comparisons (Hardy scale 0: on ventilator prior to death, 1: violent and fast death,
2: fast death of natural causes, 3: intermediate death, 4: slow death from chronic
illness). With these annotations, a multivariable linear regression model was uti-
lized to assess whether different clinical features were associated with the log-
transformed expression of SARS-CoV-2 entry factors. The resulting estimated
regression coefficients were visualized as forest plots with 95% confidence intervals.

Identification of age-associated genes in human lung. To identify age-associated
genes, the RNA-seq raw count matrix was analyzed by DESeq2 (v1.24.0)32, using
the likelihood-ratio test (LRT). Sex, smoking status, and Hardy scale were included
in the LRT model to control for these factors. Donor ages were binned into decades
(e.g., 20–29, 30–39, 40–49, 50–59, 60–69, 70–79) for analysis. Age-associated
genes were determined at a significance threshold of adjusted p < 0.05. Genes

Fig. 6 Transcriptional parallels between severe COVID-19 and the aging human lung. a Volcano plot of differentially expressed genes in bronchoalveolar
lavage fluid samples from patients with severe COVID-19 compared to healthy controls. Data are from GSE14592678. Age-associated genes are color-
coded. b Venn diagram of the intersection between lung age-associated genes and differentially expressed genes in patients with severe COVID-19.
Statistical significance of the overlap was assessed by the hypergeometric test. c Characteristics of age-associated genes that are dysregulated in patients
with severe COVID-19. Statistical significance of the interaction between the directionality of COVID-19 regulation (induced or repressed) and the
directionality of age-association (increase or decrease with age) was assessed by two-tailed Fisher’s exact test. d Tukey boxplots (interquartile range (IQR)
boxes with 1.5× IQR whiskers) detailing the lung expression of IDO1 across age groups (n= 561 samples). Data are shown as log-transformed expression
values, adjusted for sex, smoking status, and Hardy scale. Statistical significance of the expression variation across all age groups was assessed by a two-
sided Kruskal–Wallis test on the adjusted expression values. e Heatmap detailing the categories of the age-associated genes that are differentially
expressed upon SARS-CoV-2 infection in vitro and in patients with severe COVID-19. f Heatmap showing the percentage of cells expressing the consensus
SARS-CoV-2/COVID-19-regulated genes that also exhibit age-associated expression, from e. Genes are annotated by whether they are induced or
repressed by SARS-CoV-2/COVID-19, and whether they increase (Age-Up) or decrease (Age-Down) in expression with age. Data are from the Human
Lung Cell Atlas44.
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passing the significance threshold were then scaled to z-scores and clustered using
the degPatterns function from the R package DEGreport (v1.20.0). Gene clusters
with progressive and consistent trends with age were retained for downstream
analysis.

Gene ontology and pathway enrichment analysis were performed using DAVID
(v6.8)84 (https://david.ncifcrf.gov/), separating the age-associated genes into two
primary clusters (increasing or decreasing with age).

RNA-seq gene expression visualization and statistical analysis. For visuali-
zation of unadjusted RNA-seq expression data, the TPM values were log2 trans-
formed and plotted in R (v3.6.1). For visualization of adjusted expression levels, the
raw counts were first processed by variance-stabilizing transformation with
DESeq232, followed by statistical adjustment for sex, smoking status, and Hardy
scale using the remove Batch Effect function in limma85 (v3.45). All boxplots are
Tukey boxplots, with interquartile range (IQR) boxes and 1.5× IQR whiskers.
Pairwise statistical comparisons in the plots were assessed by the two-tailed
Mann–Whitney test, while statistical comparisons across all age groups were
performed by Kruskal–Wallis test. We note that the identification of age-associated
genes was purely determined through the two-sided DESeq2 LRT32 described
above; the two-sided Mann–Whitney or Kruskal–Wallis statistics shown on the
plots are solely for confirmatory purposes.

Normal human lung scRNA-seq data analysis. scRNA-seq data were analyzed in
R (v3.6.1) using Seurat86,87 (v3.2) and custom scripts. Of the 782 age-associated
genes identified from GTEx bulk transcriptomes, 712 genes were matched in the
Tissue Stability Cell Atlas dataset and 683 genes were matched in the HLCA
dataset. To determine the percentage of cells expressing a given gene, the expres-
sion matrices were converted to binary matrices by setting a threshold of expres-
sion >0. Cell type-specific expression frequencies for each gene were then
calculated using the provided cell type annotations. To identify genes preferentially
expressed in a specific cell type, we further scaled the expression frequencies in R to
obtain z-scores. Data were visualized in R using the NMF package88 (v0.23).

Inferring the cellular composition of the aging human lung. To infer the cellular
composition of each bulk lung transcriptome, we used the CIBERSORTx algo-
rithm56. We provided the HLCA dataset44 as a reference to calculate estimated cell-
type proportions in each lung sample with S-mode batch correction. The resultant
cell type proportions were analyzed in R. Cell types with estimated proportions of
“0” in >50% of samples were filtered out prior to further analysis. Statistical sig-
nificance of age-association was assessed by an ordinal logistic regression model, a
generalization of the nonparametric Kruskal–Wallis test that allows for multi-
factorial designs. Sex, smoking status, and Hardy scale were included in the
regression model to pinpoint the cell types that are specifically altered with aging.
The estimated coefficients were visualized as a forest plot with 95% confidence
intervals. For visualization purposes, the estimated proportions were adjusted for
sex, smoking status, and Hardy scale by extracting the residuals from fitting a
generalized linear model with these variables.

Assessing the functional roles of lung age-associated genes in SARS-CoV. To
assess whether any age-associated genes affect host responses to SARS-CoV (a
coronavirus related to SARS-CoV-2), we analyzed the data from a published siRNA
screen of host factors influencing SARS-CoV72 (Data Set S1 in the publication;
accessed on March 20, 2020). For data visualization, each point corresponding to a
target gene was size-scaled and color-coded according to the age-association sta-
tistical analyses described above.

Age-associated genes that interact with the SARS-CoV-2 proteome. To assess
whether any lung age-associated genes encode proteins that interact with the
SARS-CoV-2 proteome, we compiled the data from a study detailing the human
host factors that interact with 27 different proteins in the SARS-CoV-2 proteome73

(corresponding preprint manuscript accessed on March 23, 2020).

Age-associated genes that are transcriptionally regulated upon SARS-CoV-2
infection in vitro. To assess whether the expression of lung age-associated genes is
influenced by SARS-CoV-2 infection, we utilized the data from a recent study
detailing the transcriptional response to SARS-CoV-2 infection77, from the Gene
Expression Omnibus (GSE147507) (accessed on April 13, 2020). Differentially
expressed genes were determined using the Wald test in DESeq2 (v1.24.0)32

comparing SARS-CoV-2-infected cells to batch-matched mock controls, with a
significance threshold of adjusted p < 0.05.

Of the 782 age-associated genes, 641 genes were matched to the RNA-seq
dataset. Statistical significance of overlaps between the gene sets was assessed by
two-tailed hypergeometric test, assuming 21,797 total genes as annotated in the
RNA-seq dataset and 641 age-associated genes. Statistical significance of the
association between the directionality of SARS-CoV-2 regulation and the
directionality of age-association was assessed by two-tailed Fisher’s exact test.

Age-associated genes that are transcriptionally dysregulated in patients with
severe COVID-19. To assess whether the expression of lung age-associated genes
is affected in patients with severe COVID-19, we utilized the data from a recent
study detailing the transcriptomes of bronchioalveolar lavage fluid cells from
patients with COVID-1978, from the Gene Expression Omnibus (GSE145926)
(accessed on May 14, 2020). Cells were filtered in a similar manner as previously
described by the study authors (unique RNA species ≥200 and ≤6000, mito-
chondrial reads ≤10%, and UMI ≥ 1000). The single-cell transcriptomes were
collapsed into pseudo-bulk profiles by summing the read counts for all the cells
from each donor. Differentially expressed genes were then determined using the
Wald test in DESeq2 (v1.24.0)32 comparing patients with severe COVID-19 to
healthy controls, with a significance threshold of adjusted p < 0.05.

Of the 782 age-associated genes, 675 genes were matched to the scRNA-seq
pseudo-bulk dataset. Statistical significance of overlaps between the gene sets was
assessed by hypergeometric test, assuming 33,540 total genes as annotated in the
scRNA-seq dataset and 675 age-associated genes. Statistical significance of the
association between the directionality of COVID-19 regulation and the
directionality of age-association was assessed by two-tailed Fisher’s exact test.

Statistical information summary. Comprehensive information on the statistical
analyses used is included in various places, including the figures, figure legends,
and results, where the methods, significance, p values, and/or tails are described. All
error bars have been defined in figure legends or methods.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant processed data generated during this study are included in this article and its
supplementary information files. Raw data are from various sources as described above.
Accession codes: GTEx (phs000424.v8.p2), Human Lung Cell Atlas (#syn21041850),
Tissue Stability Cell Atlas (PRJEB31843), SARS-CoV-2 infection in vitro (GSE147507),
and COVID-19 patients (GSE145926). All data related to this study are freely available
from the links provided in the Data Accession section of the Methods or from the
corresponding author upon request, with the exception of detailed clinical annotations
on the GTEx cohort that are under controlled access.

Code availability
Codes used for data analysis or generation of the figures related to this study have been
deposited to GitHub (https://github.com/rdchow/agingLung-COVID)89.
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