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Cell lines are key tools for preclinical cancer research, but it remains unclear how well they

represent patient tumor samples. Direct comparisons of tumor and cell line transcriptional

profiles are complicated by several factors, including the variable presence of normal cells in

tumor samples. We thus develop an unsupervised alignment method (Celligner) and apply it

to integrate several large-scale cell line and tumor RNA-Seq datasets. Although our method

aligns the majority of cell lines with tumor samples of the same cancer type, it also reveals

large differences in tumor similarity across cell lines. Using this approach, we identify several

hundred cell lines from diverse lineages that present a more mesenchymal and undiffer-

entiated transcriptional state and that exhibit distinct chemical and genetic dependencies.

Celligner could be used to guide the selection of cell lines that more closely resemble patient

tumors and improve the clinical translation of insights gained from cell lines.
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Tumor-derived cell line models have been a cornerstone of
cancer research for decades. The genomic and molecular
features of over a thousand cancer cell line models have

now been deeply characterized1, and recent efforts are system-
atically mapping their genetic2–4 and chemical5 vulnerabilities.
These datasets are thus providing new opportunities to identify
potential therapeutic targets and connect these vulnerabilities
with measurable biomarkers that can be used to develop precision
cancer approaches2,5.

The clinical applicability of results derived from cancer cell
lines remains an important question, however, due largely to
uncertainty as to how well they represent the biological char-
acteristics and drug responses of patient tumors. Historically
derived cell line models likely represent an incomplete sampling
of the spectrum of human cancers6,7. Many existing models have
been propagated for decades in vitro, with factors such as clonal
selection, cell culture conditions, and ongoing genomic instability
all potentially contributing to systematic differences between cell
line models and tumors7–9. Furthermore, many cell line models
lack detailed clinical annotations. Therefore, it is critically
important to better understand the systematic differences
between cell lines and tumors to identify which tumor types have
existing cell lines that sufficiently recapitulate their biology and
which tumor types do not. Such systematic comparisons may
ultimately also help reveal whether patient-derived xenografts,
genetically engineered mouse models, or organoid cultures are
more, less, or equivalently faithful to human tumors than his-
torical cell lines.

Large datasets such as The Cancer Genome Atlas (TCGA)10

and the Cancer Cell Line Encyclopedia (CCLE)1 include the
multi-omic features of approximately 10,000 primary tumor
biopsy samples and more than 1,000 cancer cell lines. While
TCGA focuses primarily on primary tumors (as opposed to
metastatic or drug-resistant tumors from which certain cell lines
may have been derived) it nevertheless provides a powerful
opportunity to begin to perform detailed comparisons of tumors
and cell lines systematically across many cancer types. By con-
trast, previous studies have primarily focused on comparing
tumors and cell lines within particular cancer types11–14.

In principle, a global alignment of the datasets would allow for
the identification of the best cell line models for a given cancer
type, without relying on annotated disease labels. Existing global
analyses have mainly compared samples based on their mutation
and copy number profiles15, which are complicated by several
factors: a lack of paired normal samples for calling mutations in
cell lines, systematic differences in the overall rates of copy
number variation and mutations13,16–19, as well as being limited
to known cancer-related lesions.

Comparisons based on information-rich gene expression pro-
files are a promising alternative20, given their demonstrated utility
for resolving clinically relevant tumor (sub)types21–25, as well as
predicting genetic2 and chemical vulnerabilities of cancer cells5,26.
However, a key challenge is that gene expression measurements
from bulk tumor biopsy samples are confounded by the presence
of stromal and immune cell populations not found in cell lines,
often comprising a substantial fraction of the cellular makeup of
each sample27,28. The presence of these contaminating cells not
only compromises the expression profiles by their own gene
expression, but also sends heterotypic signals to the tumors cells
that ultimately affect the gene expression within the tumor
cells29,30. Existing approaches for removing the effects of con-
taminating cells generally require detailed prior knowledge of the
expression profiles of each contaminating cell type31, and do not
account for other systematic differences between in vitro and
tumor expression profiles. Furthermore, more general batch effect
correction methods typically require either pre-existing subtype

annotations, or assume the cell line and tumor datasets have the
same subtype composition32.

To address these challenges, we developed Celligner, a method
to perform an unsupervised global alignment of large-scale tumor
and cell line gene expression datasets. Celligner leverages com-
putational methods recently developed for batch correction of
single-cell RNA-Seq data and differential comparisons of high-
dimensional data, in order to identify and remove the systematic
differences between tumors and cell lines, allowing for direct
comparisons of their transcriptional profiles. Notably, Celligner
aligns pan-cancer gene expression datasets without the need for
any additional information (such as tumor type labels, con-
taminating cell signatures, or tumor purity estimates).

We apply our method to tumor data from TCGA, TARGET,
and Treehouse33 and cancer cell line data from CCLE and the
Cancer Dependency Map1. This comparison identifies cell lines
that match well to different tumor subtypes, as well as cancer cell
lines that are transcriptionally distinct from their annotated pri-
mary cancer types.

Results
Alignment of tumor and cell line transcriptional profiles. To
illustrate the analytical challenges involved with directly com-
paring cell line and tumor expression profiles, we first combined
several large RNA-Seq gene expression datasets and performed a
joint dimensionality reduction analysis. Specifically, we analyzed
transcriptional data from 1,249 CCLE cell lines1, 9,806 TCGA
tumor samples, 784 pediatric tumor samples from TARGET, and
1,646 pediatric tumor samples from Treehouse33. Although a
consistent computational pipeline was used to process all datasets,
this analysis revealed a clear separation of cell line and tumor
samples (Fig. 1a), as expected. This separation was not addressed
by applying simple normalization or batch correction methods
such as ComBat32,34 (Supplementary Fig. 1). This global
separation of cell line and tumor samples precludes more detailed
assessments of the similarity of samples of different types.

Several features of the problem make the alignment of cell line
and tumor expression profiles challenging. First, the degree of
tumor purity is highly variable across tumor samples27,28, and the
transcriptional effects of contaminating normal cells are not
captured by a single signature shared across tumor samples and
types35. Secondly, differences in the disease (sub)type composi-
tion of the datasets can greatly confound attempts at globally
aligning the distributions of tumor and cell line expression
profiles. Finally, even without the confounding effects of normal-
cell contamination, differences between in vivo and in vitro
conditions, as well as technical artifacts, likely give rise to
systematic differences in the cancer cells’ gene expression
profiles36.

To address these challenges, we developed a multi-step
alignment procedure (Fig. 1b; Methods). First, to identify gene
expression signatures characterizing recurrent patterns of normal
cell contamination in tumor samples, we used contrastive
principal component analysis (cPCA), a generalization of PCA
that uncovers patterns of correlated variation that are enriched in
one dataset relative to another37. Importantly, to avoid biases
resulting from the differential disease composition between the
two datasets, we first performed an unsupervised clustering of
each dataset (Supplementary Fig. 1; Methods; Supplementary
Data 1), and used cPCA to contrast the intra-cluster covariance
structure between the cell line and tumor data. This analysis
identified several gene expression signatures with greatly elevated
variance across the tumor samples compared to the cell lines
(Fig. 1c). Gene set enrichment analysis (GSEA)38 of these tumor-
specific signatures revealed clear enrichment for immune
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pathways (Fig. 1e; Supplementary Fig. 2), suggesting that cPCA
identifies the presence of different contaminating immune cell
populations. Furthermore, expression of the second tumor-
specific cPC was significantly correlated (R=−0.77, p-value <
2.2e-16, n= 7,832 tumors) to independent estimates of tumor
purity based on a consensus measurement of tumor purity28,
illustrating that this analysis is able to identify multiple
independent signatures of contaminating cells (Fig. 1d). As the
first stage of alignment, we thus removed the top four tumor-
specific signatures from both datasets (Methods).

While cPCA removes a dominant source of systematic tumor/
cell line differences, on its own it does not fully align the datasets
(Supplementary Fig. 3) as it does not account for uniform
differences between tumor and cell line profiles of a given disease
(sub)type. As a second stage of the alignment, we utilized a batch
effect correction algorithm based on mutual nearest neighbors
(MNN) to remove the remaining systematic differences between
the datasets. MNN batch correction was developed to remove
batch effects in single-cell RNA-Seq data. It functions by
identifying pairs of samples between datasets where each sample

R = − 0.77, p < 2.2e−160.25
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Fig. 1 Overview of the Celligner alignment method. a A 2D projection of combined, uncorrected cell line and tumor expression data using UMAP (n=
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is contained in each other’s set of nearest neighbors in the other
dataset, and leverages these MNN pairs to learn a flexible but
robust nonlinear alignment of the datasets. Critically, MNN is
robust to differences in subtype composition between the
datasets, assuming only that the datasets contain a subset of
corresponding samples39.

Application of MNN to the tumor and cell line expression
profiles identified a set of correction vectors (differences in
expression profiles between matched tumor/cell line pairs), which
on average showed increased expression of immune-related
genes, and decreased expression of cell cycle genes, in tumors
compared to MNN-matched cell lines (Supplementary Fig. 3).
While these tumor/cell line differences were largely consistent
across samples, the correction vectors also showed patterns that
varied across disease types (Supplementary Fig. 3), highlighting
the importance of using a flexible nonlinear correction method
such as MNN to remove such systematic differences. Notably,
while MNN on its own provided a broadly similar alignment of
the datasets, application of cPCA prior to MNN increased the
number of MNN pairs identified, and helped mitigate bias
towards matching cell lines with higher-purity tumor samples in
MNN pairs (Supplementary Fig. 3).

We applied this two-stage alignment method (which we refer
to as Celligner) to produce an integrated dataset of cell line and
tumor gene expression profiles that have been corrected for
multiple sources of systematic dataset-specific differences. Indeed,
creating a 2D Uniform Manifold Approximation and Projection
(UMAP)40 plot with the Celligner-aligned dataset revealed a map
of cancer transcriptional profiles with cell line and tumor samples
largely intermixed, while still preserving clear differences across
known tumor types (Fig. 2).

Alignment preserves meaningful subtype relationships. To
evaluate Celligner, we first tested whether it produced an alignment
of known disease types and subtypes present in both the tumor and

cell line data. As apparent in Fig. 2, Celligner removes much of the
systematic differences between tumor and cell line expression
profiles, producing an integrated map of cancer expression space
with clear clusters composed of both cell line and tumor samples.
Even though Celligner is completely unsupervised (i.e., does not rely
on any sample annotations such as disease type), the aligned tumor
and cell line expression profiles largely clustered together by disease
type. We quantified this by classifying the most similar tumor type
for each cell line, based on its nearest neighbors among the tumor
samples. We found that, for disease types found in both datasets,
these inferred tumor types matched the annotated cell line disease
type 57% of the time (Fig. 3a; Methods), while in the uncorrected
data the inferred tumor types matched the annotated cell line dis-
ease type 49% of the time (Supplementary Fig. 4). Celligner cor-
rection also increased the measured similarity of tumors and cell
lines expression profiles of the same type (Fig. 3b; Supplementary
Fig. 4).

A key advantage of Celligner is that it does not assume that all
cell line samples in a dataset are necessarily similar to any tumor
samples, and vice versa. As a result, we can utilize the Celligner-
aligned expression data to identify which cancer types show good
agreement between cell lines and primary tumors, and which do
not. Although a high proportion of cell lines clustered with
tumors of the same cancer type, not all cell lines aligned well with
tumor samples. For example, while many soft tissue, skin cancer,
and breast cancer cell lines were similar to corresponding tumor
samples, we found that central nervous system (CNS) and thyroid
cell lines consistently aligned poorly with tumor samples (Fig. 3a,
b). This observation agrees with previous reports in the literature
that in vitro media conditions can alter the phenotype of CNS cell
lines and cause genomic changes that were not present in the
original tumor41,42.

Nevertheless, these analyses illustrate that overall, Celligner
tends to group cell lines and tumors of the same disease type. We
next sought to determine whether the aligned data also reveal
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meaningful relationships between more granular subtypes. To
this end, we aggregated existing subtype annotations for cell line
and tumor datasets (Supplementary Data 1)1,10,43–45, and found
that Celligner also tended to align tumor and cell line samples of
the same subtype (Fig. 4a). For example, breast cancer tumors
and cell lines clustered together by subtype (Fig. 4b). Similarly,
the leukemia samples formed clusters that correspond to existing
annotations for acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL), and the majority of leukemia cell
lines aligned to tumors of the same subtype (Fig. 4c, d).

We further tested whether Celligner preserves and aligns
biologically meaningful intra-cluster variability. For example,
even though the melanoma tumors and cell lines mainly formed a
single distinct cluster, variability within this cluster recapitulated
recently-described melanoma differentiation states43, and anno-
tations of these melanoma subtypes were well-aligned between
cell lines and tumors (Fig. 4e). Interestingly, the region of the
melanoma cluster that consisted entirely of tumor samples
primarily contained tumors of the transitory subtype that are
from primary - rather than metastatic - samples. This result is
consistent with the fact that many of the melanoma cell lines are
annotated as being derived from metastatic samples1. Together,
these results highlight the ability of Celligner to reveal more
detailed patterns of transcriptional similarity between cell lines
and tumors, going beyond merely matching clusters.

One potential concern with methods that seek to globally align
tumor and cell line data is that they might obscure important
underlying biological differences. A key feature of Celligner in
this regard is that it allows for sub-populations that are only
present in one dataset or the other. For example, both data sets
contain renal cancer samples, but samples annotated as
chromophobe renal cell carcinoma are only present in the tumor
data. Accordingly, after the Celligner alignment, the cluster of
chromophobe renal cell carcinoma tumor samples remained
distinct and did not include any cell lines (Fig. 4f). Similarly,

myeloma cancer samples are present in the cell line data, but not
in the TCGA, TARGET, or Treehouse tumor data. After Celligner
correction, the myeloma cell lines clustered near the other
hematopoietic samples, but did not clearly group with any tumor
samples (Fig. 4d). The cell line data also includes 39 cell lines
annotated as fibroblasts, which we expect to be transcriptionally
distinct from any cancer type in the tumor or cell line data.
Indeed, we found that these fibroblast cell lines formed a distinct
cluster with virtually no tumors present (Supplementary Fig. 5).
These cases demonstrate that Celligner does not artificially force
all samples to align with samples from the other dataset, allowing
it to reveal subtypes that are absent or underrepresented in either
dataset.

Celligner enables improved tumor-cell line similarity esti-
mates. We also assessed the results of Celligner by comparing it
to two previously published methods designed to measure the
transcriptional similarity of cell lines and tumors. Firstly, the
method of Yu et al.20 used a combination of batch effect cor-
rection (using ComBat32) and regression-based tumor-purity
correction to calculate adjusted similarity metrics between cell
lines and tumors. We also compared Celligner to the results of
CancerCellNet46, a method that uses a machine learning model
trained on tumor transcriptional profiles to predict the most
likely tumor type of each cell line.

Overall, we found that estimates of which cell lines were more
or less transcriptionally similar to tumors of the same annotated
type were highly concordant between Celligner and both the
method of Yu et al.20 (Supplementary Fig. 6), and CancerCell-
Net46 (Supplementary Fig. 7; Methods). We further compared the
ability of each of these methods to accurately classify the
annotated cancer type of cell lines based on their similarity to
tumor profiles. For Celligner and the Yu et al.20 method we based
these classifications on each cell line’s nearest neighbors (using
Pearson correlation; Methods), while for CancerCellNet46 we
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used the tumor type probability estimates for each cell line. This
comparison showed that Celligner-based classifications were
substantially more accurate compared to those derived using
the method of Yu et al.20 (Celligner: 50% agreement, Yu et al.:
38% agreement; n= 666 cell lines, n= 7,656 tumors), as well as
when compared to the estimates from CancerCellNet46 on
matched cohorts (Celligner: 49% agreement, CancerCellNet:
37% agreement; n= 657 cell lines, n= 8,825 tumors; Methods).

Lastly, we sought to compare Celligner, which uses transcrip-
tional data to compare cell lines and tumors, with similarity
metrics based on genomic features. There are a large number of

potential genomic features and representations that could be used
for such an analysis. To simplify the comparison, we utilized a
previously published set of 1,250 binarized cancer functional
events (CFEs)15,47, which include copy number, methylation, and
mutation features identified as recurrent events in tumors
(Methods). We found that both Celligner-based and CFE-based
similarity estimates produced similar accuracy when classifying
the cell lines’ cancer type based on tumor data (Celligner: 60%
agreement, CFEs: 61%; n= 2,448 tumors, n= 459 cell lines;
Methods). However, the rankings of which cell lines were most
similar to tumors of the same type differed substantially
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(Supplementary Fig. 8), suggesting that transcriptomic and
genomic similarity may vary independently.

Information transfer between cell line and tumor datasets. By
providing an unsupervised data integration procedure, Celligner
enables joint analyses of the tumor and cell line datasets, pro-
viding greater power to detect transcriptionally distinct sub-
populations. This is particularly true for the cell line data where
there are ~10-fold fewer samples compared to the tumors.
Indeed, clustering analysis of the Celligner-aligned dataset
revealed a larger number of more distinct clusters among the cell
lines compared with the same analysis applied to the cell line
dataset on its own (Supplementary Fig. 1). This difference was
most evident for cancer types that had few representative cell
lines. For example, in the current dataset, only one testicular cell
line is present (SUSA), and when analyzing the cell line data on
its own, this cell line clustered most closely with the soft tissue
cancers (Supplementary Fig. 9). Joint analysis of the Celligner-
aligned data, however, showed that this cell line clustered with a
subset of the germ cell tumors (Supplementary Fig. 9), and in
particular was nearest neighbors with the non-seminoma testi-
cular cancer samples (Supplementary Fig. 9).

We next explored whether integrated analysis of the tumor and
cell line data might also help resolve missing, or potentially
incorrect (sub)type annotations. For example, four cell lines that
are not annotated as melanoma samples nevertheless clustered
with the melanoma samples (Supplementary Fig. 9). One such
cell line, COLO699, is annotated as derived from a metastatic
lung cancer sample1, raising the possibility that the current
annotation accurately characterizes the biopsy site, but not the
primary tissue. Previous reports in the literature have also
identified that this cell line likely derives from a melanoma
sample11.

We can also use the combined dataset to perform label transfer
of annotations from one dataset to another. For example, ALL
subtype annotations (T-cell and B-cell) were available for the ALL
cell lines, but only for some of the ALL tumor samples. The ALL
cell lines formed two distinct clusters, which perfectly matched
the labeled B-cell and T-cell subtype. The ALL tumors also largely
clustered together with the ALL cell lines, with all of the
annotated (B-cell) tumor samples clustering with the B-cell cell
lines. The rest of the (un-annotated) tumor samples could easily
be classified as either B-cell or T-cell ALL (with some putative
AML samples as well) based on their cluster membership
(Fig. 4c), which aligned well with the clustering of the tumor
samples based on the expression of B-cell ALL and T-cell ALL
marker genes (Supplementary Fig. 9)48. These results further
highlight the advantage of performing an unsupervised global
alignment that does not rely on existing annotations.

A group of transcriptionally and functionally distinct cell lines.
Jointly analyzing the Celligner-aligned cell line and tumor data
also revealed common structures across cell lines that were dis-
tinct from primary tumors. As described above (Fig. 3), cell line
models of certain cancer types, such as thyroid and CNS, did not
recapitulate the disease-specific transcriptional patterns exhibited
by primary tumors of their respective cancer types. Closer
inspection revealed that 252 of the cell lines that did not group
with tumor samples of the same disease type formed a separate
cluster (Fig. 5a; Methods). While approximately 20% of the cell
lines belonged to this cluster, it contained less than 2% of the
tumor samples (primarily soft tissue and bone tumors) (Supple-
mentary Data 1). The cell lines in the cluster spun a wide range of
different lineages (notably, 82% of all CNS, 91% of all thyroid
lines, and 41% of all liver lines; Fig. 5b; Supplementary Data 1),

and we did not identify any distinguishing features based on
available clinical annotations for these cell lines (Supplementary
Fig. 10).

Cell lines in this cluster lacked lineage-specific expression
characteristics present in the primary tumor datasets analyzed
herein, suggesting that they were derived from an undiffer-
entiated tumor or have entered a more undifferentiated state.
Indeed, of the twelve skin cancer samples in this cluster that were
annotated by Tsoi et al., all three of the skin cell lines and seven of
the nine skin tumors were annotated as being of an undiffer-
entiated subtype43. The majority (11/12) of the thyroid cell lines,
which have been observed to be more dedifferentiated than
thyroid tumors36,49,50, also belonged to this cluster. To further
assess how distinct these cell line models were from their lineage-
matched counterparts that co-clustered with tumors, we also
looked at a set of lineage-specific transcription factors. For
example, SOX10 is selectively expressed in melanoma cells, and
SOX10 knockout by CRISPR is lethal selectively in melanoma cell
lines3. Consistent with the interpretation of this cell-line-specific
cluster as representing a more dedifferentiated state, skin cancer
lines within the cluster showed much weaker expression of, and
dependency on, SOX10 (Fig. 5c)43. Similarly, liver cancer cell
lines within the undifferentiated cluster showed lower expression
of, and less dependency on, the hepatocyte transcription factor
HNF4A (Fig. 5d).

To further understand the biological features that distinguish
this group of undifferentiated cell lines we performed genome-
wide differential expression analysis, controlling for differences
attributable to the annotated lineages. This analysis revealed a
striking enrichment of epithelial-mesenchymal transformation
(EMT)-related genes (Fig. 5e, f), reflecting a stronger mesench-
ymal expression pattern among these undifferentiated cell lines.
The relatively small set of tumor samples in this cluster (n= 229)
were primarily from cancer types with mesenchymal cell
lineages51, and GSEA showed that these samples exhibited
elevated expression of genes in the EMT pathway (normalized
enrichment score= 3.33, adjusted p-value= 6.2e-05). Notably,
however, there were a small number of tumor samples from other
lineages present in the cluster (Supplementary Data 1), including
all of the melanoma tumors annotated as the undifferentiated
subtype (Fig. 4e)43.

We also tested whether the cell lines expressing this distinct
mesenchymal/undifferentiated expression pattern exhibit a
unique pattern of chemical and genetic vulnerabilities. For this,
we used the Achilles dataset of genome-wide CRISPR knockout
screens to interrogate gene essentiality across 689 cell lines52, as
well as a recently-generated dataset of clinical compounds
screened across 578 cell lines5. These analyses showed that the
undifferentiated cell lines have increased sensitivity to tubulin
polymerization inhibitors (Fig. 5g), as well as greater dependency
on integrin genes, particularly ITGAV and ITGB5 (Fig. 5h),
consistent with their upregulation of EMT-related genes53,54. The
undifferentiated cell lines were also more resistant than other cell
lines to several compounds, most notably many EGFR inhibitors
(Fig. 5g). This is also consistent with a marked decrease in EGFR
dependency among the undifferentiated cell lines (Fig. 5h).

Discussion
Cancer cell lines are crucial drivers of preclinical cancer research.
Yet, our limited understanding of the similarities and differences
between cell lines and patient tumors remains a key challenge for
translating findings from cell lines to the clinic. To help address
this, we developed a computational method, Celligner, which
identifies and removes systematic differences between gene
expression profiles of tumors and cell lines in an unsupervised
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manner, allowing for direct and detailed comparisons of the
transcriptional states of cell lines and tumors.

In our global analysis of 1,249 cell lines and 12,236 tumors, we
identified pronounced differences across cancer types in how well
cancer cell lines reflected the transcriptional patterns of their
primary tumor counterparts. While many disease types (such as
lymphoma, Ewing sarcoma, and melanoma) were similar between
cell lines and tumors, there were few thyroid and CNS cell lines
whose gene expression profiles aligned with the corresponding
primary tumor samples. Previous studies have identified that CNS
cell lines grown in serum-containing media tend to lose their
ability to differentiate, and have gene expression profiles that are
unlike their primary tumors42,55, while CNS cell lines grown in
serum-free specialized media had gene expression profiles and
genetic aberrations that better recapitulated their primary

tumors55. We note that even cell lines that are transcriptionally
distinct from their corresponding tumors likely reflect specific
dependencies of patient tumors, such as PDGFR dependency,
which is found in GBM cell lines and recurrently amplified in
tumors56, and thus can still serve as valuable cancer models.
Nevertheless, the tumor-type specific differences revealed in our
analysis pinpoint where new cell lines, organoid models57,
patient-derived xenografts, and mouse models are most needed.
They also reinforce the importance of efforts such as the Human
Cancer Models Initiative (HCMI) that aim to address gaps in our
current in vitro model representation. Future applications of the
method to RNAseq datasets from these and other novel model
formats should prove useful.

Using Celligner, we discovered a distinct set of cell lines,
composed of a range of tissue types, which exhibited a

Fig. 5 A cluster of cell lines show EMT signature and integrin-related dependencies. a A cluster of 252 undifferentiated cell lines within the global
Celligner-alignment. b Composition of the cell lines within the cluster (n= 252 cell lines). c Skin cell lines within the cluster do not express and do not
depend on SOX10. d Liver cell lines within the cluster have lower expression of, and weaker dependency on, HNF4A. e Differential expression analysis
shows an up-regulated mesenchymal profile and f enrichment of the EMT pathway for cell lines in the cluster. P-values are based on a gene-permutation
test and adjusted using the Benjamini-Hochberg procedure (Methods, ‘Gene set enrichment analysis’). g Differential drug vulnerability analysis shows
decreased sensitivity to EGFR inhibitors and increased sensitivity to tubulin polymerization inhibitors for cell lines in the cluster. h Differential dependency
analysis shows stronger integrin-related dependencies for cell lines within the cluster.
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transcriptional state that was largely dissimilar from those of the
available primary tumor samples. These cell lines had undiffer-
entiated characteristics, lacking activity of lineage-specific tran-
scription factors (and associated genetic dependencies). They also
showed clear upregulation of mesenchymal genes and down-
regulation of epithelial markers; all characteristics concordant
with an EMT phenotype. Consistently, this group of cell lines was
most similar to tumors that arise from mesenchymal tissue, but
generally clustered separately from the primary tumor samples.
Interestingly, these undifferentiated cell lines also exhibited dis-
tinct genetic and chemical vulnerabilities, including increased
dependency on integrin genes and sensitivity to tubulin inhibi-
tors, as well as decreased sensitivity to EGFR inhibitors, all of
which are consistent with an EMT state58–60. This group of cell
lines included those previously annotated as undifferentiated
melanoma and basal B breast cancer subtypes (Fig. 4b), both
known to exhibit more stem-like and mesenchymal expression
profiles, and associated with more invasive and therapy-resistant
cancers43,61–63. This raises the possibility that these cell lines may
reflect a biologically relevant tumor cell state that is not repre-
sented in the primary tumor datasets used here. Indeed, there
were a small subset of tumor samples from diverse lineages that
clustered with the undifferentiated cell lines, including all of the
melanoma tumors previously annotated as undifferentiated43.
Consistent with this possibility, a stem-like and mesenchymal
expression program has been previously identified specifically in
early metastatic samples64, while the tumor data we used is lar-
gely from primary tumor samples10. Furthermore, EMT gene
expression patterns may be obscured in bulk tumor data, as
single-cell RNA-Seq analysis of tumors has shown that EMT
programs are activated in a minority of cells65,66. More research is
needed to determine whether these cell lines could be good
models for particular tumor cell states, or if they reflect an artifact
of cell culture conditions. As new large-scale datasets of meta-
static and drug-resistant tumors emerge we can incorporate them
into Celligner to better answer this question.

Our analyses focused on using gene expression data to com-
pare tumor and cell line samples. In contrast, previous efforts,
such as CELLector15, have utilized genomic alterations to identify
cell lines that are most representative of specific disease subtypes.
When we compared the estimates of tumor/cell line similarity
produced by Celligner to those based on a set of 1,250 curated
copy number, methylation, and mutation features47, we found
that they were largely dissimilar, though both approaches yielded
similar accuracy at classifying cell lines’ tumor type. We also
found that some cell lines previously identified as poor models
based on copy number and mutations were identified as non-
tumor-like based on our analysis of Celligner-aligned gene
expression features as well. For example, Domcke et al. observed
that OC316 was hyper-mutated12, Sinha et al. found that SLR20
had an outlier copy number profile67, and Ronen et al. found that
COLO320 was dissimilar to colorectal tumors and lacked major
colorectal cancer driver genes68. In our analysis, all of these cell
lines were also identified as being unlike their respective tumor
types. Overall, these analyses suggest that transcriptional and
genomic similarity estimates could reflect distinct aspects of the
biology, and might provide complementary information, though
further work will be needed to understand these relationships in
detail. Indeed, a future version of Celligner that also integrates
genomic features could enable more detailed comparisons of
tumors and cell lines.

A key component of Celligner is correcting for systematic
differences between tumor and cell line expression profiles, most
notably those related to the presence of normal cells in tumor
samples. To do this, we utilized an unsupervised approach that
did not depend on predefined signatures of the various

contaminating cell types, and that also allowed us to account for
unknown systematic differences between tumors and cell lines.
For instance, we found that cell lines exhibited upregulation of
cell cycle expression programs compared with tumors (Supple-
mentary Fig. 3), which agrees with previous findings that a higher
proportion of cancer cells are cycling in vitro compared to
in vivo69. The tumor/cell line differences we identified also varied
across disease types, emphasizing the importance of using a
nonlinear method that allows for disease-type-specific differences.
As single-cell data from normal tissues become more readily
available, methods that use these data to estimate and remove the
effect of different non-cancerous cells70,71 could be incorporated
to further improve comparisons between tumors and cell lines.

In order to facilitate the use of Celligner, we have incorporated
an interactive web app on the Cancer Dependency Map portal
(https://depmap.org/portal/celligner), that allows users to explore
a Celligner-aligned integrated resource of cell line and tumor
expression profiles, as well as download the data. This tool
enables the identification of cell line models that best represent
the transcriptional features of a tumor type, or even a particular
tumor sample, of interest. We hope that an improved under-
standing of the similarities between cancer cell lines and tumors
will allow for better selection of models and allow for better
translation of findings on drug response from preclinical models
to clinical samples72. More generally, by identifying and removing
many of the confounding differences between cell lines and
tumors in an unbiased fashion, Celligner enables integrated
analyses of cell line and tumor datasets that can be used to reveal
patterns within, and relationships between, these data, helping to
improve translation of insights derived from cell line models to
the clinic.

Methods
Expression data. Gene expression data for 12,236 tumor samples were taken from
the Treehouse Tumor Compendium V10 Public PolyA dataset, obtained from
Xena browser (https://xenabrowser.net)33 and produced by the Treehouse Child-
hood Cancer Initiative at the UC Santa Cruz Genomics Institute. The data set
compiled samples from the UCSC Treehouse Childhood Cancer Initiative, the
Therapeutically Applicable Research to Generate Effective Treatments (TARGET)
program, and The Cancer Genome Atlas (TCGA)10. Cell line gene expression data
for 1,249 samples were taken from the DepMap Public 19Q4 file: CCLE_ex-
pression_full.csv52. All gene expression data were processed using the STAR-RSEM
pipeline and are TPM log2 transformed (with a pseudocount of 1 added). Gene
expression data were subset to 19,188 protein-coding genes that were present in
both the tumor and cell line data.

Celligner method. To remove sources of variation that are unique to one of the
data sets and align the cell line and tumor data we used a multi-step process. First,
we used contrastive principal component analysis (cPCA)37 to identify correlated
variability that is enriched in the tumor data compared to the cell line data, or vice-
versa. In order to avoid identifying signatures related to differences in the cancer
type or subtype compositions of the datasets we first clustered the tumor and cell
line data separately and subtracted the average expression of each cluster from all
samples in the cluster to estimate the average intra-cluster covariance for tumors
and cell lines. The data sets were clustered in 70-dimensional PCA space using a
shared nearest neighbor (SNN) based clustering method implemented in the Seurat
R package73, with a resolution parameter of 5. We then regressed out the first four
cPCs (components which had higher variance in the tumor data) from both the
tumor and cell line data (Supplementary Fig. 11).

We then performed mutual nearest neighbors (MNN) correction39 on the data
sets, using the cell line data as the reference dataset. To identify mutual nearest
neighbors between the two datasets we used a set of genes that showed high
between-cluster variance in each data set. Specifically, we used limma74 to estimate
the across-cluster variation in each gene’s expression within each dataset, using the
empirical-Bayes moderated F-statistics as a metric of between-cluster variability.
We used the union of the top 1000 genes from each data set with the highest
F-statistics (Supplementary Data 2). We modified the MNN algorithm from the R
package scran75 to use different k values (the numbers of nearest neighbors to
consider) for each data set, which was necessary to account for the much larger set
of tumor samples used compared with cell lines. Specifically, we used a k value of 5
to identify nearest neighbors in the cell line data and a k value of 50 to identify
nearest neighbors in the tumor data. We verified that the output was robust to
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modest changes in these parameters (Supplementary Fig. 11) and stable even if a
tissue type was removed from one of the datasets (Supplementary Fig. 11).

Measuring tumor/cell line similarity. To evaluate the similarity of cell lines to
tumor samples we used the Pearson correlation distance between each cell line and
tumor in the Celligner-aligned space. Cell lines were classified as a tumor type by
identifying the most frequently occurring tumor type within each cell line’s 25
highest correlated tumor neighbors.

Yu et al. comparison. To calculate tumor type classifications for each cell line we
used the pairwise correlation matrix provided by Yu et al.20 and used the approach
described above (‘Measuring tumor/cell line similarity’) to classify each cell line as a
tumor type. To compare to the Celligner results we re-classified each cell using the
same approach, but this time using the same subset of cell lines and tumors, as well
as the disease categories, defined by Yu et al. To evaluate agreement with annotated
types we used the annotations from Yu et al. and only considered cell lines where
the annotated type was present within the set of tumors (n= 666 cell lines).

CancerCellNet comparison. To calculate tumor type classifications for each cell
line we used the random forest probabilities output by CancerCellNet and used the
maximum probability to classify each cell line as one of the 22 cancer types. To
compare to the Celligner results we re-classified each cell line by identifying the
tumor type most frequently occurring within each of the cell line’s 25 high cor-
related tumor neighbors (using Pearson correlation within the Celligner-aligned
data), but this time using the same subset of cell lines and tumors, as well as the
disease categories, defined by Peng et al.46 To evaluate agreement with annotated
types we used the annotations from Peng et al. and only considered cell lines where
the annotated type was present within the set of tumors (n= 657 cell lines).

Cancer Functional Event comparison. To compare Celligner results to compar-
isons of cell lines and tumors using the CFE data we calculated tumor type clas-
sifications for each cell line using by calculating Jaccard similarity between cell lines
and tumors in the binary CFE matrix. Each cell line was classified as the majority
tumor type within its 25 nearest neighbors (same approach as described above).
We only used samples that were present in both the Celligner and CFE data (n=
2,448 tumors). To compare to the Celligner results we re-classified each cell line
using the same approach described above (‘Measuring tumor/cell line similarity’),
but this time only using cell lines and tumors included within the Iorio et al.
dataset47. To evaluate agreement with annotated types we used the lineage anno-
tations (Supplementary Data 1) and only considered cell lines where the annotated
type was present within the set of tumors (n= 459 cell lines).

Undifferentiated cluster. The undifferentiated cluster was identified using a
shared nearest neighbor (SNN) based clustering method implemented in the Seurat
R package in the 70-PCA space. Two neighboring clusters were combined to form
the undifferentiated cluster, as both clusters were composed of a high proportion of
cell lines (compared to tumors) and cell lines within both clusters had similar up-
regulated mesenchymal expression profiles.

Differential expression analysis. Differential expression analysis was performed
on gene-level read count data using the ‘limma-trend’ pipeline74,76. We first sub-
setted the data to genes that had a counts-per-million value greater than one in 10
or more samples. The data were normalized per sample using the ‘TMM’ method
from the edgeR package77, and transformed to log2 counts-per-million using the
edgeR function ‘cpm’. Linear model analyses, with empirical-Bayes moderated
estimates of standard error, were then used to identify genes whose expression was
most associated with covariates of interest, such as disease type, or membership in
a particular cluster. When analyzing differential gene expression related to the
‘undifferentiated’ cell line cluster (Fig. 5e), we included disease type as a covariate
in the model. The differential dependency analysis and differential drug analysis
were also performed using the limma pipeline74,76 with empirical Bayes moderated
t-stats for p-values and disease type included as a covariate.

Dependency data. We used estimates of gene dependency taken from the Achilles
genome-wide CRISPR-Cas9 KO data3, 19Q4 release1. Specifically, we used gene
effect estimates based on the CERES algorithm, taken from the file DepMap Public
19Q4 Achilles_gene_effect.csv52.

Drug sensitivity data. Cell line drug sensitivity data were taken from a dataset of
repurposing drugs screened with PRISM5. For the PRISM dataset replicate-col-
lapsed, log fold change data at a 2.5 µM dose from the secondary screen were used.
Specifically, we used the ‘secondary-screen-replicate-collapsed-logfold-change’ and
‘secondary-screen-replicate-treatment-info’78. Annotations of compound
mechanism of action (MOA) were also taken from ‘repurposing related drug
annotations’ from the CLUE data library (clue.io/data).

Gene set enrichment analysis. For gene set enrichment analysis of gene
expression profiles we used the fgsea R package79. We used gene-level statistics (log
fold change values in Fig. 5d, contrastive principal component loadings in Fig. 1e,
Supplementary Fig. 2, and average MNN correction vectors in Supplementary
Fig. 3), and 100,000 permutations of the gene-level values to calculate normalized
enrichment scores and statistical significance for gene sets from the ‘Hallmark’ and
‘GO_biological_proccesses’ gene set collections from MSigDB v6.280. GSEA results
shown display the enrichment score normalized to mean enrichment of random
samples of the same size and the associated Benjamini-Hochberg adjusted p-values.

2D embedding. To compute 2D embeddings of gene expression profiles (e.g.
Figure 2; Supplementary Data 1) we used the UMAP method40, as implemented in
the Seurat v3 package73. The UMAP embedding was computed on the first 70
principal components, using Euclidean distance, with an ‘n.neighbors’ parameter of
10, and a ‘min.dist’ parameter of 0.5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets used in the analysis are publicly available. The inputs to the Celligner method are
RNA-Seq data from TCGA (https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga), TARGET (https://ocg.cancer.gov/programs/target), Treehouse
(https://treehousegenomics.soe.ucsc.edu/public-data/), and CCLE (https://depmap.org/portal/
ccle). The results shown here are in part based upon data generated by the TCGA Research
Network: https://www.cancer.gov/tcga10. The combined tumor data (TCGA, TARGET, and
Treehouse) are available from Xena Browser33 (https://xenabrowser.net/datapages/?
dataset=TumorCompendium_v10_PolyA_hugo_log2tpm_58581genes_2019-07-25.
tsv&host=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443&removeHub=http%3A%2F
%2F127.0.0.1%3A7222). CCLE RNA-Seq data, as well as additional cell line data used in
analyses in this study, are available from figshare, https://doi.org/10.6084/m9.
figshare.11384241.v252. Additional cell line drug screening data used in analyses in the study
are also available from figshare, https://doi.org/10.6084/m9.figshare.9393293.v478. The results
of running the Celligner method on these datasets are provided on figshare, https://doi.org/
10.6084/m9.figshare.11965269.v481. The remaining data are available within the Article,
Supplementary Information, or available from the authors upon request.

Code availability
The full source code implementing the method and generating figures is made available
at [https://github.com/broadinstitute/Celligner_ms]82, https://doi.org/10.5281/
zenodo.4162468. All R packages used in the method and to generate figures are included
in the script, install_packages.R, within the repo.
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