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A nanobody suite for yeast scaffold nucleoporins
provides details of the nuclear pore complex
structure
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Nuclear pore complexes (NPCs) are the main conduits for molecular exchange across the

nuclear envelope. The NPC is a modular assembly of ~500 individual proteins, called

nucleoporins or nups. Most scaffolding nups are organized in two multimeric subcomplexes,

the Nup84 or Y complex and the Nic96 or inner ring complex. Working in S. cerevisiae, and to

study the assembly of these two essential subcomplexes, we here develop a set of twelve

nanobodies that recognize seven constituent nucleoporins of the Y and Nic96 complexes.

These nanobodies all bind specifically and with high affinity. We present structures of several

nup-nanobody complexes, revealing their binding sites. Additionally, constitutive expression

of the nanobody suite in S. cerevisiae detect accessible and obstructed surfaces of the Y

complex and Nic96 within the NPC. Overall, this suite of nanobodies provides a unique and

versatile toolkit for the study of the NPC.
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The hallmark of the eukaryotic cell is a complex endo-
membrane system of organelles that compartmentalize
specific functions within the cell. One of the largest of these

organelles is the nucleus, which stores the genetic material and is
the site of replication, transcription, and ribosome synthesis.
Soluble transport of molecules into and out of the nucleus occurs
solely through nuclear pore complexes (NPCs), 40–120MDa
ring-like channels that perforate the inner and outer membranes
of the nuclear envelope (NE) (Fig. 1a). Roughly 30 nucleoporins
(nups) contribute to the modular, eightfold symmetric assembly
of subcomplexes that comprise the NPC1–4. One of the main
structural subcomplexes is the Nup84 or Y complex. In S. cere-
visiae, the 575 kDa Y complex has seven components, many
of which are essential or produce severe phenotypes when
deleted5–7. The Y complex structure consists of two short arms
that meet a long stalk at a central triskelion-like hub8–10 (Fig. 1b).
The other main structural component of the NPC is the hetero-
meric Nic96 or inner ring complex11. This ~0.5 MDa complex
occupies the inner ring of the NPC and anchors the trimeric Nsp1
complex, which contains three phenylalanine-glycine (FG)-nups
that are essential for maintaining the permeability barrier11–16.
Both Y complex nups (Nup84, Nup85, and Nup145C) and Nic96
have an ancestral coatomer element 1 (ACE1) fold, conserved
across the NPC and COPII vesicle coats17,18. The tripartite fold
consists of crown, trunk, and tail modules and the interfaces
between each module act as somewhat flexible joints. How this
flexibility affects the NPC assembly is still unclear.

Its size, flexibility, and membrane interactions pose challenges
for the elucidation of the structure of the NPC. But only with
detailed structural information will we obtain mechanistic insight
into the many functions of NPCs. To arrive at a structure, dif-
ferent labs approach the problem by either a bottom-up or top-
down approach. For the bottom-up approach, the many modular
structural assemblies that make up the NPC have been broken
down into further sub-assemblies which are then studied pri-
marily by X-ray crystallography. Over the past decade, many of
the structural elements have been characterized (reviewed in
refs. 2,19). We now have a complete composite model for the Y
complex from S. cerevisiae20. For the top-down approach, cryo-
electron tomography (cryo-ET) has been used to visualize whole
NPCs while still embedded in the nuclear membrane or after
detergent extraction. Recent studies have yielded maps of the
entire NPC at 2–5 nm resolution for human, Xenopus laevis, and
S. cerevisiae21–24. The resolution gap between the top-down and
bottom-up approaches has narrowed. Along with multiple stoi-
chiometry studies, docking of the many crystal structures of nups
into the cryo-ET maps has been attempted22,23,25–28. For S. cer-
evisiae, the cryo-ET map allows placement of Y complexes into
the density, resulting in a model that contains a total of 16 copies
per NPC24. This model consists of two eight-membered rings,
one each on both the cytoplasmic and nucleoplasmic faces of the
NPC23,24. The Y complexes are arranged in a head-to-tail man-
ner, with the main interface mediated by Nup120 and Nup13329.
On the cytoplasmic face, the Nup82 complex anchors to the Y
complex via Nup8530. Thirty-two copies of Nic96 are nestled
tightly into the inner ring complex along with Nup192, another
scaffolding nup23. While these studies improved our under-
standing of the overall architecture of the NPC, the resolution of
these cryo-ET maps does not reveal secondary structure. This
leaves room for further interrogation and improvement. We
aimed to create a set of tools that will aid in studying the com-
plicated NPC assembly in more detail.

Here we describe a nanobody library comprising 12 unique
nanobodies to the Y complex and Nic96 from S. cerevisiae.
Nanobodies are single-domain (VHH) antibody fragments derived
from camelid heavy-chain only antibodies. Nanobodies are

excellent tools both in vitro and in vivo, as they are small (~14 kDa),
easily purified from E. coli, easily modified with fluorophores, and
typically have nanomolar binding affinities31,32. The library consists
of nanobodies that bind to each of the 6 conserved nups in the Y
complex8. We describe their in vitro binding characteristics using
bio-layer interferometry, size-exclusion chromatography (SEC),
and, in several cases, their nup-bound structures by X-ray crystal-
lography. We show the effects of nanobody expression in vivo and
how these results suggest accessible and inaccessible surfaces within
the assembled NPC. Together, this work provides a toolkit for
studying the scaffold of the NPC and uncovers details of the NPC
structure in vivo.

Results
A nanobody library to the Y complex and Nic96. In order to
generate nanobodies specific to NPC scaffold nups, we separately
immunized alpacas with recombinantly purified full-length Y
complex and Nic96. We then selected nanobodies by phage dis-
play using single nups or subassemblies of the Y complex as
targets (Fig. 1b). This allowed us to obtain nanobodies that cover
both short arms, the hub, and the long stalk of the Y complex. We
thus compiled a set of twelve nanobodies that bind Y complex
nups and Nic96 (Fig. 1b, c). The library covers a wide range of
sequence space (Fig. 1c). Both, the sequences and lengths of
complementarity determining regions (CDRs) 1 and 2, are more
similar than CDR3 across the library. However, there is no
common CDR across the set. The greatest differences arise in
CDR3, which varies from 9 to 24 residues. This wide deviation in
length is attributed to the vast genetic diversity contributed by the
immunized alpaca, rather than the typically shorter and invariant
lengths used in in vitro selection methods33,34.

After selection, we obtained two nanobodies (VHH-SAN6 and
7) that recognize a truncated Y complex hub construct (Nup120
and Nup85 C-terminal domains, full-length Nup145C-Sec13)
(Fig. 1b). In order to identify the nups these nanobodies target, we
first tested binding by SEC with full-length nups (Nup120,
Nup85, and a fusion construct of Nup145C-Sec1335). We found
that both bound Nup145C-Sec13. To further narrow down the
binding site, we conducted a second SEC experiment using only
Sec13 fused to the Nup145C insertion blade35 and found that
VHH-SAN7 recognizes Sec13 rather than Nup145C (Supple-
mentary Fig. 1). VHH-SAN6 did not bind Sec13 alone, meaning
that it recognizes Nup145C. Sec13 is tightly packed within the
hub of the Y complex, so we tested the ability of VHH-SAN7 to
bind the assembled Y complex hub. When pre-incubated with
Nup120-Nup85-Seh1-Nup145C-Sec13, VHH-SAN7 co-elutes as
a heterohexameric complex (Supplementary Fig. 1). This
experiment suggests that VHH-SAN7 binds Sec13 in the context
of the assembled Y complex.

Three nanobodies (VHH-SAN1/2/3) in the library recognize
Nup85. As an ACE1 nup, we examined whether these nanobodies
bind to one of three modules (crown, trunk, tail) within the
domain. By SEC analysis we found that all three nanobodies
bound Nup85trunk-crown-Seh1 (Supplementary Figs. 2, 3). We then
tested the binding of each nanobody to Nup85crown, which
formed a stable complex with VHH-SAN2 and 3, but not VHH-
SAN1 (Supplementary Fig. 2). Binding data suggest that VHH-
SAN2 and 3 recognize distinct, non-overlapping epitopes, as we
observe a heptameric complex of Nup85trunk-crown-Seh1-VHH-
SAN2/3 by SEC (Supplementary Fig. 2). We verified that VHH-
SAN1 bound Nup85 by observing no complex formation with
Seh1 alone (Supplementary Fig. 3).

Nanobodies bind with varying kinetics, but strong affinities. In
order to characterize the binding kinetics of our nanobody
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library, we employed bio-layer interferometry (BLI). We affixed
each nanobody with a C-terminal biotinylated Avi-tag36 to
streptavidin-coated biosensor tips. We assayed binding to each
nanobody’s respective nup target and observed a variety of

binding kinetics across the nanobody library (Table 1, Fig. 2). The
tightest binder, VHH-SAN3, dissociates very slowly resulting in
a binding constant of ~14 pM. In fact, a slow dissociation
rate applies to the majority of the library. A few nanobodies,
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Fig. 1 A nanobody library to scaffold nucleoporins. a Schematic of the NPC assembly and classification of yeast nups. Each subcomplex or type of nup is
listed together in a box and the relative position within the NPC assembly is indicated. b Schematic of the Y complex and Nic96 used for alpaca immunization,
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VHH-SAN2, 3, 8, and 9, have off rates less than ~1 × 10−4 s−1

resulting in very tight equilibrium binding constants
(14–170 pM). Of the set, VHH-SAN4 has the compara-
tively weakest affinity of ~230 nM, due to a much faster off rate
than the other members the library and is the only nanobody that
has an equilibrium binding constant of less than ~10 nM. Overall,
the nanobodies bind very stably to their antigens.

Mapping of nanobody epitopes by X-ray crystallography. We
mapped the epitopes of eight of the twelve nanobodies by solving
the crystal structures of multiple nup-nanobody complexes. This
enabled us to visualize the binding epitopes in greater detail. We
solved the structures of nups that cover both short arms and the
stalk of the Y complex: Nup85-Seh1-VHH-SAN2, Nup1201–757-
VHH-SAN10/11, and Nic96186–839-VHH-SAN12. We used

VHH-SAN4/5 and VHH-SAN8/9 as crystallization chaperones
for the previously uncharacterized Nup133NTD and Nup84-
Nup133CTD complex structures, respectively (see the accom-
panying paper, https://doi.org/10.1101/2020.06.19.161133).
VHH-SAN4 and five bind adjacent epitopes on the same face of
the Nup133NTD β-propeller. Both, VHH-SAN4 and VHH-SAN5,
contributed significant packing interfaces in the crystal lattice,
facilitating high-resolution diffraction of a previously elusive
target. In addition, both nanobodies rely primarily on CDR3 to
recognize Nup133, with VHH-SAN4 making no contacts with
either its CDR1 or 2. This is perhaps why VHH-SAN4 has the
lowest binding affinity of the library, as CDRs 1 and 2 typically
enhance binding strength37. Like Nup85, Nup145C, and Nic96,
Nup84 has an ACE1 domain fold. Interestingly, both Nup84-
specific nanobodies (VHH-SAN8 and 9) bind at the crown-trunk
module interface, recognizing opposite faces of Nup84. It is not
unusual for nanobodies to bind to a domain-domain interface38.
While our attempts at co-crystallization of VHH-SAN1, 3, 6, and
7 with their nup targets failed, we were able to narrowly define
their binding sites using SEC with smaller nup constructs.

We solved Nup85trunk-crown-Seh1 in complex with VHH-SAN2
by molecular replacement (MR) using the structure of scNup851-
564-Seh1 as a search model18 (Fig. 3). From previous biochemical
experiments, we expected that VHH-SAN2 binds the Nup85
crown module (Supplementary Fig. 2). After examining the
Nup85 crown in the electron density map, we observed additional
difference density, but not sufficient to encompass an entire
nanobody (Supplementary Fig. 4). This made it difficult to place
the nanobody by MR. We generated a VHH-SAN2 model using
SWISS-MODEL39 and manually placed it into the difference
density map (Supplementary Fig. 4). We used a nanobody model
that included the CDR loops, as these residues are most likely
what make up the density closest to Nup85. After several rounds

Table 1 Nanobody-binding affinities.

Nanobody Nucleoporin KD (M) kon (M−1s−1) koff (s−1)

VHH-SAN1 Nup85 5.8 × 10−10 2.3 × 106 1.4 × 10−3

VHH-SAN2 8.0 × 10−11 1.0 × 106 8.1 × 10−5

VHH-SAN3 1.4 × 10−11 5.8 × 105 8.1 × 10−6

VHH-SAN4 Nup133 2.3 × 10−7 9.5 × 105 2.2 × 10−1

VHH-SAN5 1.0 × 10−8 2.8 × 105 2.8 × 10−3

VHH-SAN6 Nup145C 2.4 × 10−10 5.3 × 105 1.3 × 10−4

VHH-SAN7 Sec13 5.1 × 10−10 1.3 × 106 6.5 × 10−4

VHH-SAN8 Nup84 6.3 × 10−11 3.5 × 105 2.2 × 10−5

VHH-SAN9 1.7 × 10−10 4.4 × 105 7.7 × 10−5

VHH-SAN10 Nup120 3.8 × 10−10 4.5 × 105 1.7 × 10−4

VHH-SAN11 7.9 × 10−10 9.8 × 105 7.8 × 10−4

VHH-SAN12 Nic96 1.3 × 10−9 1.8 × 106 2.4 × 10−3
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Fig. 2 Bio-layer interferometry of nanobody-nup binding. a Schematic of the Y complex and Nic96 with the nanobody library. b Binding curves showing
association and dissociation kinetics for each nanobody-nup pair. Nanobodies with a biotinylated C-terminal Avi-tag were fixed (ligand) and nups were
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of positional refinement, the nanobody fit reasonably well into the
density (Supplementary Fig. 4).

VHH-SAN10 recognizes a flexible loop in Nup120. We also
solved the complex of Nup1201–757-VHH-SAN10/11 by MR
using the published scNup1201–757 structure as a model40. After
initial refinement, we observed additional density near residues
431–439 of Nup120, which we could attribute to a nanobody
using MR. However, there was no obvious additional density for a
second nanobody. Analysis of the crystals by SDS-PAGE showed
that both nanobodies were present in the crystal (Supplementary
Fig. 5). We then examined the crystal packing to see if there was
space to accommodate the missing nanobody adjacent to
unstructured loops. We hypothesized that if the nanobody was
completely missing in the density, the epitope was also disordered
in the crystal and therefore missing in the density as well. There
are five unstructured loops in the β-propeller domain of Nup120
that neighbor solvent channels (Supplementary Fig. 5). A nano-
body’s dimension are roughly 35 Å × 15 Å × 15 Å. Only one large
loop, residues 187–203, faces a solvent channel in the crystal that
appeared sufficiently large to accommodate a nanobody. We
hypothesized that the missing nanobody bound this loop and
tested whether replacement of residues 187–203 with a flexible
linker (GGSx5) would ablate binding by BLI. Indeed, we found
that VHH-SAN10 no longer bound this Nup120 mutant, but as
expected, VHH-SAN11 still recognized Nup120 (Fig. 4c). In a
reciprocal experiment, we replaced residues 431–439 with a
flexible linker (GSSx3) and tested VHH-SAN10 versus VHH-
SAN11 binding. This experiment confirmed that VHH-SAN11,
and not VHH-SAN10, binds to the 431–439 region (Fig. 4b).

Both VHH-SAN10 and 11 are interesting nanobodies, as they
recognize relatively unstructured regions of Nup120. Typically,
nanobodies recognize structured regions or clefts in their target,
owing to their long CDR loops that prefer to insert into and along
concave surfaces38. Regardless of this difference, both have very
high binding affinities (Table 1). VHH-SAN10 and 11 add to a
growing list of nanobodies that bind to short epitopes that
function outside of a folded domain41–44.

VHH-SAN12 binds Nic96 between its trunk and tail modules.
In addition to the Y complex nanobodies, we identified a

nanobody, VHH-SAN12, that binds Nic96 of the inner ring
complex. We solved the complex of Nic96186–839 with VHH-
SAN12 by MR with the published scNic96186–839 structure as a
template (Fig. 5a)45. Nic96186–839 forms an elongated structure of
30 α-helices. Overall, the dimensions, shape, and ACE1 fold of
Nic96 are identical to the previously described structures45,46.
The N terminus is in the center of the protein that then zig-zags
towards one end of the molecule. Helices α4–12 fold over
themselves, forming the crown of the ACE1 domain, with α6–9
running perpendicular to the trunk helices of α13–21. The C-
terminal helices α22–30 form the tail and zig-zag away from the
trunk at an angle. VHH-SAN12 inserts its CDR loops 1 and 2
into the space between helices α20–21 and α22–25. Interestingly,
VHH-SAN12 has one the shortest CDR3 of the library and CDR3
contributes little to the binding interface, which is unusual for a
nanobody37. Even without this contribution, VHH-SAN12 has a
high affinity for Nic96 (Fig. 2, Table 1).

Helices α20–25 delineate the trunk and tail interface of the
ACE1 fold. In comparison to the previously solved structures, we
observe a change in conformation. Aligning the tail domains of
this structure and the structure from Jeudy et al.45, we observe a
kink that translates through the remainder of the molecule
(Fig. 5b). VHH-SAN12 brings helices α20–21 and α22–25 slightly
closer to each other, resulting in a ~19 Å shift between the two
crown domains. This shift is slightly smaller (~10 Å) when
comparing our structure to the one described in Schrader et al.46.
While the overall conformation changes, the three modules of the
ACE1 fold individually superpose very well. In comparing the
crown domains, our new structure is much better defined
(Fig. 5c). At the increased resolution (from 2.5 to 2.1 Å), we were
able to complete Nic96 by including helix α9, and two loops
including 30 additional residues. We speculate that the improve-
ment of the data is due to the ability of the nanobody to stabilize
Nic96 in one conformation. Either this is an effect of the
nanobody alone, or it may be a combination of nanobody-
binding paired with crystal packing.

Several NPC nanobodies localize to the NE in vivo. Having
characterized this nanobody library in vitro, we asked whether
these nanobodies would bind their targets in vivo and whether
their expression would affect cellular fitness. We first put the
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production of each nanobody under control of the high expres-
sion GAL promoter in a wild type yeast strain. We observed no
fitness defects upon nanobody expression at both 30 °C and 37 °C
(Fig. 6a). Given the small size of a nanobody relative to the NPC,
this was not entirely surprising, but also suggests that none of the
surfaces occupied by the nanobodies are essential for NPC
integrity, assuming that the nanobodies can find their targets in
the cell. We therefore asked whether the nanobodies localized to
the NPC and the NE in vivo, thus examining their ability to bind
their targets within the context of the assembled NPC. To this
end, we fused mKate2, a monomeric far-red fluorescent protein40,
to the C terminus of each nanobody. We then expressed these
nanobody-mKate2 fusions in a yeast strain with endogenously
GFP-tagged Nup120 (Nup120-GFP) as a Y complex and NPC
marker, and examined co-localization. The expression of the
nanobody-mKate2 fusions had only minor defects on fitness at
37 °C, with the exception of VHH-SAN7, which recognizes Sec13
(Fig. 6a). As none of the nanobody-mKate2 fusions were lethal,
we converted the GAL promoter to the Nup120 promoter. We
opted to perform the localization analysis using the weaker
Nup120 promoter to maintain a similar stoichiometry of the
nanobody to NPC components28 rather than to vastly over-
express the nanobody or have any confounding effects from GAL
induction.

In the absence of any nanobody expression, we observed clear
nuclear rim fluorescence for Nup120-GFP, while mKate2 alone
produced diffuse fluorescence throughout the cytoplasm and the
nucleus (Fig. 6b, ‘Mock’). Of the three Nup85 nanobodies, one
exhibited strong co-localization with Nup120 at the nuclear rim
(VHH-SAN3) while the other two (VHH-SAN1 and 2) displayed

reduced rim colocalization. VHH-SAN4 and 5 nanobodies, which
recognize Nup133 at its N-terminal β-propeller, did not colocalize
with Nup120 but instead were distributed diffusely throughout
the cell. VHH-SAN6, which recognizes Nup145C in the Y
complex hub, also strongly enriched with Nup120 at the nuclear
rim. VHH-SAN7 formed puncta in the cytoplasm, possibly due to
binding Sec13 in the COPII vesicle coat or SEA complex, rather
than forming a complex with the copies of Sec13 in the NPC47–49.
We suggest that binding of VHH-SAN7 to these cytoplasmic
copies of Sec13 may also account for the fitness defect of this
strain. The majority of cells expressing both Nup84 nanobodies
(VHH-SAN8 and 9), also showed strong nuclear rim localization
with Nup120. However, VHH-SAN9 had a curious effect on
Nup120 localization. While some cells expressing VHH-SAN9
showed strong colocalization with Nup120-GFP, many other cells
had no or diffuse localization of Nup120-GFP on the NE to which
VHH-SAN9 was localized. For the Nup120 nanobodies, both
VHH-SAN11 and 12 showed strong localization at the nuclear
rim. Finally, VHH-SAN12, which recognizes Nic96, presented as
foci at the nuclear rim. Taken together, we find that the
expression of our nanobodies in S. cerevisiae does not obviously
affect cellular fitness. Many of these nanobodies localize to the
NPC in vivo, confirming their potential as tools for future
experiments in understanding NPC composition and assembly.

Discussion
Here we describe a 12-member library composed of nanobodies
that bind both the Y complex and Nic96. The nanobodies bind
their targets tightly, with all but one nanobody having an
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Fig. 4 Mutational analysis of Nup120 confirms the binding site of VHH-SAN10. Bio-layer interferometry (BLI) showing association and dissociation
kinetics for VHH-SAN10 and VHH-SAN11 with Nup120 mutants. Nanobodies with a biotinylated C-terminal Avi-tag were fixed (ligand) and nups used as
analytes. Curves were corrected for buffer background. Each set of curves is a twofold dilution series from 10 nM analyte. Data are indicated by the black
dotted lines and the red lines show the globally fitted curves. a Structure of Nup1201–757-VHH-SAN11 and BLI data of wild type (WT) Nup1201–757 as the
analyte. b Illustration and BLI data of Nup1201–757 Δ431–439 (GSSx3) as the analyte. c Illustration and BLI data of Nup1201–757 Δ187–203 (GGSx5) as the
analyte.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19884-6

6 NATURE COMMUNICATIONS |         (2020) 11:6179 | https://doi.org/10.1038/s41467-020-19884-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


equilibrium binding constant of <10 nM. Through both SEC and
X-ray crystallography, we mapped their general binding sites or
epitopes. The recognized epitopes range from relatively unstruc-
tured loops to clefts between domain interfaces. We also
expressed these nanobodies in yeast cells to assess their ability to
localize to NPCs in their native cellular environment. Armed with
this information, we can now interpret the heterogeneity of the
observed in vivo effects and identify elements of this library that
can aid in future NPC assembly studies.

The Nup85 crown is thought to be adjacent to the Nup82
complex, where both VHH-SAN2 and 3 bind24,30 (Fig. 7a, b).
This correlates well with the localization of VHH-SAN2 being
largely diffuse throughout the cell, suggesting that the VHH-
SAN2 binding site is occluded. However, there is still some
enrichment at the NE with Nup120, suggesting the Nup82-Nup85
tether may be flexible or dynamic, allowing for a fraction of the
nanobody pool to still bind. Another possibility is that some
Nup85 epitopes may be accessible, while others are not. This

would suggest that Nup85 is differently assembled in different
parts of the NPC. Both VHH-SAN1 and VHH-SAN3 are strongly
enriched at the NE. However, the expression of VHH-SAN1 also
yielded the unexpected formation of VHH-SAN1-Nup120 puncta
away from the NE. We hypothesize that this nanobody may
weaken the affinity of the Y complex to the NPC assembly. These
puncta could represent Y complexes that are slower to incorpo-
rate into the NPC assembly or potentially dissociated Y com-
plexes from assembled NPCs. In either case, this is only a modest
disruption, as the cells have no obvious growth defect.

Both Nup133 nanobodies (VHH-SAN4 and 5) were unable to
localize to the NE in yeast cells (Fig. 6b). These nanobodies are
most likely blocked from binding in the assembly by the Arf-
GAP1 lipid packing sensing (ALPS) motif50 (Fig. 7b, d). Nup133
is thought to be anchored to the NE by its ALPS motif on its N-
terminal β-propeller domain51,52, which is on the same face of
Nup133 as the epitopes for VHH-SAN4 and 520. This suggests
that the ALPS interaction with the membrane outcompetes the
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binding of the nanobodies. While VHH-SAN4 has both fast on
and off kinetics and the weakest binding affinity (230 nM),
VHH-SAN5 binds Nup133 tightly in vitro (10 nM). This implies
that the membrane interaction of the ALPS motif must have an
even higher affinity or the epitope for VHH-SAN4 and 5 on
Nup133 is blocked by the membrane very soon after new copies
of Nup133 are synthesized, since the nanobodies are con-
stitutively expressed.

Similar to VHH-SAN1, the Nup145C-specific VHH-SAN6
redistributes some Nup120 (and potentially Y complex) into
cytoplasmic puncta, but does so to a lesser extent, along with its
colocalization on the NE (Fig. 6b). Like VHH-SAN1 expression,
the presence of these puncta has no effect on the fitness of the
strain, so the pool of Y complex present on the NE must still be
sufficient for proper cellular function. We cannot exclude at
present that the expression of nanobodies like VHH-SAN1 might
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exert more subtle effects, for example by affecting the extent or
rate of nuclear import/export of select cargoes. The Sec13
nanobody, VHH-SAN7, is the only nanobody in the library that
decreases fitness as a mKate2 fusion, but not when expressed
alone (Fig. 6a). From our fluorescence localization data, VHH-
SAN7 exists mostly in cytoplasmic puncta, potentially due to the
fact that Sec13 is present not only in the NPC, but also the COPII
vesicle coat and SEA complex47,48. We hypothesize that VHH-
SAN7 binds the copies of Sec13 outside of the NPC present in the
cytoplasm, possibly by interacting with these copies of Sec13
more quickly after translation. Although we know VHH-SAN7
can bind Sec13 when assembled into the Y complex hub in vitro,
it is also possible that its binding site is occluded in the context of
the assembled NPC (Supplementary Fig. 1).

The Nup84 specific nanobodies (VHH-SAN8 and 9) behave
differently due to binding opposite faces of Nup84. VHH-SAN8
binds the ‘top surface of Nup84, away from the NE (Fig. 7b, d).
This most likely explains why VHH-SAN8 colocalizes strongly
with Nup120-GFP and causes no fitness defects. On the other
hand, the expression of VHH-SAN9 has a peculiar effect on the
localization of Nup120-GFP. Many cells showed diffuse fluores-
cence for VHH-SAN9, but in the general curvature of the NE. In
many cases, we observed similar diffuse NE fluorescence of
Nup120-GFP on part of the NE, but crisp NE rim fluorescence on
the part of the nucleus where VHH-SAN9 was not present. VHH-

SAN9 binds the side of Nup84 adjacent to the NE (Fig. 7b, d). It is
possible that the presence of VHH-SAN9 disrupts the Y complex
assembly on the NE, prying the Y complex away from the
membrane. Interestingly, this occurs on only some of the NPCs
within the same cell. Further investigation into the state of these
NPCs and the NE is ongoing.

Both Nup120 specific nanobodies colocalize well with Nup120-
GFP. The expression of VHH-SAN10 has little effect on the
distribution of rim fluorescence of Nup120-GFP. Residues
197–216 are hypothesized to also be an ALPS motif and the
overlapping residues 187–203 are required for VHH-SAN10
binding52. Docking of the Y complex into the cryo-ET map of the
scNPC suggests this face of Nup120 to be positioned adjacent to
the membrane24 (Fig. 7b, d). If Nup120 does bind the membrane
at this loop, the nanobody likely outcompetes the affinity of
Nup120 for the membrane. This would also suggest that the
membrane-attachment by Nup120 may not be critical for NPC
assembly and function. VHH-SAN11 had a more pronounced
effect on the localization of Nup120-GFP. Some protrusions
emanating from the NE were observed to have both Nup120 and
VHH-SAN11, along with some foci in the cytoplasm.

VHH-SAN12 binds Nic96 between its trunk and tail modules.
The interaction between the CDR loops of VHH-SAN12 and these
trunk-tail interface helices maintains Nic96 in a different con-
formation than previously observed by X-ray crystallography45,46.
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Most of the VHH-SAN12-mKate2 fusion enriched at the NE
along with Nup120-GFP. However, VHH-SAN12 formed foci,
both on the NE and in the cytoplasm and within the nucleus,
while Nup120-GFP showed an even distribution on the NE. There
are two possible explanations that can account for these foci.
Either VHH-SAN12-mKate2 expression was limiting or not every
NPC displays Nic96 in a conformation or configuration accessible
for VHH-SAN12 binding. The concept of NPC heterogeneity has
been observed and discussed in the literature, both in terms of its
composition and in size53–55. Whether this interesting fluores-
cence is indeed due to NPC heterogeneity within the same cell is
also under ongoing investigation.

The nanobody suite describes here provides a set of tools for
studying the NPC assembly both in vitro and in vivo. In vitro, the
nanobodies bind tightly to their targets and have enabled struc-
tural analysis of multiple nups at higher resolution than reported
earlier or that evaded previous attempts by X-ray crystallography
altogether20. In vivo, many nanobodies colocalize with the Y
complex and therefore can be used as cellular tools in future
studies on the NPC. For example, the nanobody library could
enable subunit identification in future cryo-ET studies. In several
cases, such as VHH-SAN9 and VHH-SAN12, they have also
provided questions for further study on NPC assembly and het-
erogeneity. Along with ref. 20, we also detailed the library’s
breadth in antigen recognition, owing to its wide diversity in both
CDR sequence and length. Overall, our data highlight the exciting
potential of this nanobody library to be used as tools for both
in vitro and in vivo studies of the NPC and pave the way for
future explorations of NPC assembly and composition in S.
cerevisiae.

Methods
Construct generation. All Nups (Nup120, Nup85, Seh1, Nup145C, Sec13, Nup84,
Nup133, Nic96) were cloned from S. cerevisiae and expressed recombinantly in
E. coli. Expression constructs for His-tagged Nup84, Nup85, Nup85200–383
(Nup85crown), Nup851–564-Seh1 (Nup85crown-trunk-Seh1), Nup120855–1037-
Nup145C34–712-Sec13, Nup1201–757, Nup120-Nup145C-Sec13, Sec13-
Nup145C320–411 (Sec13-Nup145Cblade), and Nic96186–839 were published
previously18,35,40,45,56. In addition, we used N-terminally fused 14xHis, bdSUMO
tagged full-length Nup133 and N-terminally fused 6xHis tagged Nup13355–481
(Nup133NTD).

Upon VHH selection by phage display and ELISA, each VHH was sub-cloned
for expression. Each VHH sequence was N-terminally fused with a 14xHis
bdSUMO tag57 and cloned into a T7-promoter-based bacterial expression vector
with ampicillin resistance. A separate construct for each VHH was created with a
C-terminally fused Avi-tag36 for biotinylation. Primers used for cloning are listed
in Supplementary Table 1.

Protein expression and purification. Nup120-Nup145C34–712-Sec13, Nup85-
Seh1, Nup120855–1037-Nup145C34–712-Sec13, Nup84, Nic96189–839, Nup133NTD,
Sec13-Nup145Cblade, Nup85crown-trunk-Seh1, and Nup85crown expression vectors
were transformed into E. coli LOBSTR-RIL(DE3)58 (Kerafast) cells and protein
production was induced with 0.2 mM IPTG at 18 °C for 12–14 h. Cells were col-
lected by centrifugation at 6000 × g, resuspended in lysis buffer (50 mM potassium
phosphate pH 8.0, 500 mM NaCl, 30–40 mM imidazole, 3 mM β-mercaptoethanol
(βME), 1 mM PMSF) and lysed using a high-pressure cell homogenizer (Micro-
fluidics LM20). The lysate was cleared by centrifugation at 12,500 × g for 25 min.
The soluble fraction was incubated with Ni Sepharose 6 Fast Flow beads (GE
Healthcare) for 30 min on ice. After washing the beads with lysis buffer, the protein
was eluted (250 mM imidazole pH 8.0, 150 mM NaCl, 3 mM βME).

All VHH constructs and Nup133 were transformed, grown, harvested, and
lysed as above. For Avi-tagged VHH constructs, 20 mM biotin was added to the
cultures prior to IPTG induction. After lysis, the soluble fraction was incubated
with Ni Sepharose 6 Fast Flow beads (GE Healthcare) for 30 min on ice. The beads
were then washed with lysis buffer and transferred to low imidazole buffer (50 mM
potassium phosphate pH 8.0, 500 mM NaCl, 10 mM imidazole, 3 mM βME) along
with 10 µg SEN-p protease and incubated 2 h at 4 °C. The flow through containing
the cleaved protein was collected, along with a 2-column volume (CV) wash with
low imidazole buffer. Cut tags and uncut protein was eluted as above.

Buffers used in further purification are as follows: gelfiltration (GF) buffer
(150 mM NaCl, 10 mM Tris/HCl pH 7.5, 1 mM DTT, 0.1 mM EDTA), Dialysis
buffer (100 mM NaCl, 10 mM Tris/HCl pH 7.5, 1 mM DTT, 0.1 mM EDTA),
S buffers (0 or 1 M NaCl, 10 mM Tris/HCl pH 7.5, 1 mM DTT, 0.1 mM EDTA)

and Q buffers (0 or 1 M NaCl, 20 mM HEPES/NaOH pH 8.0, 1 mM DTT,
0.1 mM EDTA).

After Ni purification, Nup120-Nup145C34–712-Sec13, Nup120855–1037-
Nup145C34–712-Sec13, Nup85-Seh1, Nup84, Nic96189–839, Nup133NTD, Sec13-
Nup145Cblade, Nup85crown-trunk-Seh1, Nup1201-757, and Nup133 were incubated
with 3C protease and dialyzed into dialysis buffer overnight. Nup120-
Nup145C34–712-Sec13, Nup84, Nup85crown, and Nup1201–757 were run over a
HiTrap SP FF column (GE Healthcare), collecting the flow through. Nup133 was
loaded onto a MonoQ column (GE Healthcare) and eluted over a gradient of
100–700 mM NaCl, collecting the peak. Nup85crown-trunk-Seh1, Nup120-
Nup145C34–712-Sec13, Nup85-Seh1, Nup84, Nic96189–839, and Nup133 were
concentrated and loaded onto a pre-equilibrated Superdex S200 16/60 column (GE
Healthcare) in GF buffer. Nup133NTD, Sec13-Nup145Cblade, Nup85crown, and every
VHH were concentrated and loaded onto a pre-equilibrated Superdex S75 16/60
column (GE Healthcare) in GF buffer. All fractions were analyzed by SDS-PAGE,
peaks were pooled and concentrated.

For all Nup-VHH complexes, the proteins were incubated for 30 min on ice.
The incubated mixtures were then run over a Superdex S75 or S200 10/300 column
pre-equilibrated in GF buffer. Fractions containing the complexes were pooled and
concentrated. To assemble the Y complex, we first mix 1.5× molar excess of
Nup85-Seh1 with Nup120-Nup145C34–712-Sec13. After incubation for 30 min on
ice, the complex was run over a Superdex S200 10/300 column in GF buffer.
Fractions containing all five proteins were pooled and concentrated. We also mixed
1.5× molar excess of Nup84 with Nup133 and followed the same protocol. These
two complexes were then mixed together with 1.5× molar excess of Nup84-Nup133
and run over a Sepharose 6 10/300 column (GE Healthcare). Fractions containing
all Y complex components were pooled and concentrated.

VHH library and M13 phage generation. Alpaca immunization and library
generation were done as previously described59. The animal was purchased locally,
maintained in the pasture, and immunized following a protocol authorized by the
Tufts University Cummings Veterinary School Institutional Animal Care and Use
Committee (IACUC). The animal was immunized against recombinantly expressed
full-length Y complex (Nup120-Nup85-Seh1-Nup145C-Sec13-Nup84-Nup133).
The library was then grown to mid-log phase in 100 ml SOC with 50 µg/ml
ampicillin. Then, the culture was infected with 100 µl 1014 PFU/ml VCSM13 helper
phage. Following 2 h incubation at 37 °C, the cells were harvested by centrifugation
and re-suspended in 100 ml 2YT, 0.1% glucose, 50 µg/ml kanamycin, and 50 µg/ml
ampicillin. Cultures were incubated overnight at 30 °C, then centrifuged for 20 min
at 7700 × g, followed by phage precipitation from the resulting supernatant with 1%
PEG-6000, 500 mM NaCl at 4 °C, and resuspended in PBS.

Selection of VHHs by phage display. VHHs were selected by panning against
Nup120855–1037-Nup145C34–712-Sec13, Nup85-Seh1, Nic96189–839, Nup84, and
Nup13355–481. Hundred micrograms of recombinant protein was biotinylated by
coupling Chromalink NHS-biotin reagent (Solulink) to primary amines for 90 min
in 100 mM sodium phosphate pH 7.4, 150 mM NaCl. Unreacted biotin was
removed using a Zeba desalting column (Thermo Fisher). Biotin incorporation was
monitored using absorbance at 354 nM. 100 µl MyOne Streptavidin-T1 Dynabeads
(Life Technologies) were blocked in 2% (w/v) bovine serum albumin (Sigma) in
PBS for 2 h at 37 °C. Twenty micrograms of biotinlyated antigen in PBS was added
to the blocked beads and incubated for 30 min at 25 °C with agitation. The beads
were then washed three times in PBS and 200 µl of 1014 PFU/ml M13 phage
displaying the VHH library were added in 2% BSA in PBS for 1 h at room tem-
perature. The beads were then washed 15 times with PBS, 0.1% Tween-20 (PBST).
Phage was eluted by the addition of E. coli ER2738 (NEB) for 15 min at 37 °C,
followed by elution with 200 mM glycine, pH 2.2, for 10 min at 25 °C. The eluate
was neutralized with 1M Tris/HCl pH 9.1, pooled with the E. coli culture, and
plated onto 2YT agar plates supplemented with 2% glucose, 5 µg/ml tetracycline,
and 10 µg/ml ampicillin, and grown overnight at 37 °C. A second round of panning
was performed with the following modifications: 2 µg of biotinylated antigen was
used as bait, and incubated with 2 µl 1014 PFU/ml M13 phage displaying the first-
round VHH library for 15 min at 37 °C, followed by 15 washes in PBST.

ELISA. Following two rounds of phage panning, 96 colonies were isolated in 96-
well round-bottom plates and grown to mid-log phase at 37 °C in 200 µl 2YT, 10
µg/ml ampicillin, 5 µg/ml tetracycline, induced with 3 mM IPTG and grown
overnight at 30 °C. Plates were centrifuged at 12,000 × g for 10 min, and 100 µl of
supernatant was mixed with an equal volume of 5% (w/v) nonfat dry milk in PBS.
This mixture was added to an ELISA plate coated with 1 µg/ml antigen. Following
four washes with 1% Tween-20 in PBS, anti-llama-HRP antibody (Bethyl) was
added at a 1:10,000 dilution in 5% (w/v) nonfat dry milk in PBS for 1 h at 25 °C.
The plate was developed with fast kinetic TMB (Sigma) and quenched with 1M
HCl. Absorbance at 450 nm was determined in a plate reader (Spectramax;
Molecular Devices).

Biolayer interferometry. Streptavidin biosensor tips were pre-incubated in BLI
buffer (10 mM Tris/HCl pH 7.5, 150 mM NaCl, 1 mM DTT, 0.1 mM EDTA, 0.05%
Tween-20, 0.1% bovine serum albumin) for 10 min, followed by immobilization of
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biotinylated, C-terminally Avi-tagged nanobody ligands to between 0.2–0.5 nm
over 40–60 s. After dipping the coated biosensor tip in BLI buffer for 1 min,
association was measured in analyte over 1–80 min. Dissociation was measured in
BLI buffer for 1–220 min. All binding sensorgrams were recorded on a forteBIO
OctetRED96 instrument. All fits were done using global, 1:1 kinetic binding
parameters using the Octet data analysis software.

Protein crystallization. Initial hits of Nic96186–839-VHH-SAN12 were obtained at
18 °C in 1 day in a 96-well sitting drop tray with a reservoir containing 8% (w/v)
PEG 8,000 and 0.1 M tri-sodium citrate pH 5.0 (Protein Complex suite, Qiagen).
Hanging drops of 1 μl protein at 6 mg/ml and 1 μl of precipitant (7–10% (w/v) PEG
8000 and 0.1 M tri-sodium citrate pH 5.0) incubated at 18 °C produced diffraction
quality rod-shaped crystals in 3 days. Crystals were transferred into a cryo-
protectant solution containing the crystallization condition with 15% (v/v) glycerol
and cryo-cooled in liquid nitrogen.

Initial hits of Nup1201–757-VHH-SAN10/11 were obtained at 18 °C in 3 days in
a 96-well sitting drop tray with a reservoir containing 20% (w/v) PEG 8000, 0.2 M
magnesium chloride, 0.1 M Tris/HCl pH 8.5 (JCSG+ suite, Qiagen). Hanging
drops of 1 μl protein at 2 mg/ml and 1 μl of precipitant (19% (w/v) PEG 8000, 0.1
M magnesium chloride, 0.1 M Tris/HCl pH 8.5) incubated at 18 °C yielded large
rod-shaped crystals in 4 days. Crystals were transferred into a cryo-protectant
solution containing the crystallization condition with 20% (v/v) glycerol and cryo-
cooled in liquid nitrogen.

Initial hits of Nup851–564-Seh1-VHH-SAN2 were obtained at 18 °C in 1 day in a
96-well sitting drop tray with a reservoir containing 1 M ammonium sulfate and
0.1 M sodium acetate pH 5.0 (Protein Complex suite, Qiagen). Crystals
significantly improved by changing the buffer to di-sodium succinate pH 5.5 and
the addition of 4% (v/v) 1-propanol. Sitting drops of 0.2 μl protein at 17 mg/ml and
0.2 µl of precipitant yielded diffraction-quality, hexagonal rod-shaped crystals in
3 days that continued to grow over 3 weeks at 18 °C. Crystals were transferred into
a cryo-protectant solution containing the crystallization condition with 15% (v/v)
PEG 200 and cryo-cooled in liquid nitrogen.

Structure determination. Data collection was performed at the advanced photon
source end station 24-IDC. All data processing steps were carried out with pro-
grams provided through SBgrid60. Data reduction was performed using
HKL200061. Statistical parameters of data collection and refinement are all given in
Table 2. All manual model building steps were carried out with Coot62 and phenix.
refine63 was used for iterative refinement. Structure figures were created in PyMOL
(Schrödinger LLC).

The structure of Nic96186-839-VHH-SAN12 was solved by MR using Phaser-MR
in PHENIX. A two-part MR solution was obtained by sequentially searching with
models of Nic96 and VHH-SAN12. For Nic96, we used the previously solved
structure from S. cerevisiae (PDB:2QX5)45. For VHH-SAN12, we used a nanobody
structure with its CDR loops removed (PDB:1BZQ)64. The asymmetric unit
contains one copy of Nic96186–839-VHH-SAN12. Near the end of refinement, TLS
refinement was used, with a significant impact on lowering the R factors.

The structure of Nup1201–757-VHH-SAN10/11 was solved by MR using Phaser-
MR in PHENIX, just as Nic96186–839-VHH-SAN12. We used the previously solved
S. cerevisiae Nup1201–757 structure as the search model (PDB:3HXR)40. The
asymmetric unit contains one copy of the complex. Many sidechains were removed
from the model due to poor density. Secondary structure restrains were used
throughout refinement. Regarding the two nanobodies, density only for VHH-
SAN11 was present on the map.

The structure of Nup85crown-trunk-Seh1-VHH-SAN2 was solved by MR using
Phaser-MR in PHENIX. A solution was found by searching with the previously
solved S. cerevisiae Nup851–564-Seh1 structure as the model (PDB:3EWE)18. The
asymmetric unit contains one copy of the complex. Large difference density was
present near the crown domain of Nup85, the known binding site of VHH-SAN2
biochemically (Supplementary Fig. 4), and we were able to manually place a model
after refinement of Nup85crown-trunk-Seh1. Since the CDR loops provide a
significant amount of density nearest to Nup85, a model was generated by SWISS-
MODEL. Near the end of refinement, TLS parameters were used. For the final
structure, occupancies for the VHH-SAN2 residues outside of the 2Fo-Fc density at
1σ were set to zero.

Yeast strain construction. The Nup120-GFP strain was made as previously
described40. In brief, C-terminal GFP-tagging was achieved by homologous
recombination in a BY4741 background, using pFA6a-GFP(S65T)-kanMX6 as a
template for C-terminal modifications65. Strains were selected on G418 plates (200
μg/ml) and verified by PCR. Nanobody expression for fluorescence experiments
was done on a plasmid based on pAG416GAL-ccdB (Addgene). The plasmid was
modified with the Nup120 promoter (500 bp upstream of the ORF) in place of the
GAL promoter and each nanobody followed by a fused C-terminal mKate2 tag.
Strains were selected and maintained by growth on SD-Ura media and verified by
sequencing. Nanobody expression for toxicity experiments was done on a plasmid
based on pAG416GAL-ccdB (Addgene). Each VHH sequence was inserted
downstream of the GAL promoter and strains were selected and maintained by
growth on SC-Ura media.

Fluorescence microscopy. Strains were grown overnight in SD-Ura media (CSM-
Ura (Sunrise Science), Yeast nitrogen base with ammonium sulfate, 2% (v/v)
glucose) at 30 °C, followed by 20-fold dilution into fresh SC-Ura media. After
growth for 4–5 h at 30 °C to OD600 ~0.5, cells applied to a thin SD-Ura agar pad
on a standard microscopy slide and imaged live on a DeltaVision Elite Widefield
Deconvolution Microscope (GE Healthcare) using a 100× oil immersion objective
with an sCMOS camera (Teledyne Photometics). Images were processed and
analyzed in ImageJ66.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Coordinates and structure factors have been deposited in the Protein Data Bank under
PDB accession codes 6X06 (Nup1201–757-VHH-SAN10/11), 6X07 (Nic96186–839-VHH-
SAN12), 6X08 (Nup851–564-Seh1-VHH-SAN2). The cryo-ET map used for docking of
the Y complex and nanobodies is described elsewhere24 and available from the Electron
Microscopy Data Bank (EMDB) under accession number EMD-10198.
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