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Tumor evolutionary trajectories during the
acquisition of invasiveness in early stage lung
adenocarcinoma
Siwei Wang1,13, Mulong Du2,3,4,5,13, Jingyuan Zhang6,13, Weizhang Xu1,13, Qianyu Yuan3,4,5, Ming Li1,

Jie Wang7,8, Hongyu Zhu1, Yuzhuo Wang1,9, Cheng Wang9, Yuhua Gong 10, Xiaonan Wang11, Zhibin Hu9,

David C. Christiani 3,4,5, Lin Xu1,12, Hongbing Shen9 & Rong Yin 1,7,8,12✉

The evolutionary trajectories of early lung adenocarcinoma (LUAD) have not been fully

elucidated. We hypothesize that genomic analysis between pre-invasive and invasive com-

ponents will facilitate the description of LUAD evolutionary patterns. We micro-dissect

malignant pulmonary nodules (MPNs) into paired pre-invasive and invasive components for

panel-genomic sequencing and recognize three evolutionary trajectories. Evolutionary mode 1

(EM1) demonstrates none of the common driver events between paired components, but

another two modes, EM2A and EM2B, exhibit critical private alterations restricted to pre-

invasive and invasive components, respectively. When ancestral clones harbor EGFR muta-

tions, truncal mutation abundance significantly decrease after the acquisition of invasiveness,

which may be associated with the intratumoral accumulation of infiltrated B cells. Harboring

EGFR mutations is critical to the selective pressure and further impacts the prognosis. Our

findings extend the understanding of evolutionary trajectories during invasiveness acquisition

in early LUAD.
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Lung adenocarcinoma (LUAD) is the most commonly diag-
nosed subtype of lung cancer and the leading cause of cancer
deaths, both globally and in China1. Although high-

resolution computed tomography (CT) screening has resulted
in a drastic increase in malignant pulmonary nodules (MPNs)2,
LUAD is still considered a heterogeneous prognosis disease, even
in the early stage3. Tumor invasive status has a notable impact on
prognosis for LUAD, especially in early-stage cases4. Although
surgical resection was reported to yield an almost 100% 5-year
survival rate for pre-invasive status (AAH, atypical adenomatous
hyperplasia and AIS, adenocarcinoma in situ), early invasive
LUAD had a worse prognosis with a certain recurrence rate5.

The invasive components in MPNs, including minimally
invasive adenocarcinoma (MIA) and invasive adenocarcinoma
(IAC), are demonstrated to be an important precise prognostic
discriminator and better than the T descriptor of the TNM sta-
ging system6,7. However, there is still little understanding of the
initiation, early progression, and evolutionary patterns of invasive
components in MPNs8,9. Genome-wide somatic mutation ana-
lysis has advanced our understanding of critical molecular events
in cancer progression and evolution. Although it was proposed
that AAH may progress to AIS, MIA and, eventually, IAC in a
linear manner5, the evolutionary trajectory from pre-invasive to
invasive LUAD has not been fully elucidated10. Previous studies
demonstrated significant genetic differences among AAH, AIS,
and MIA; however, pre-invasive and invasive LUAD have never
been investigated within a single MPN10–14.

EGFR and KRAS are two frequently mutated driver genes of
LUAD. Early-stage EGFR-mutated non-small-cell lung cancer
(NSCLC) cases usually have a better prognosis than wild-type or
KRAS-mutated cases, even without tyrosine-kinase inhibitor
(TKI) application15–17. Additionally, EGFR mutation is con-
sidered a positive prognostic marker of both disease-free survival
(DFS) and overall survival (OS) in T1-2aN0M0 patients without
adjuvant and TKI treatments15. This evidence implies that EGFR
mutations may contribute differently to clonal selection in early-
stage LUAD evolution compared to KRAS and other mutations18.
However, to date, little is known regarding whether and how
these dominant driver genes affect early progression from pre-
invasive to invasive LUAD.

To delineate the driver molecular events and early invasive
progression in MPNs, we included 53 T1 stage LUAD cases of the
ChiCTR1900022521 cohort of Jiangsu Cancer Hospital (JSCH)
with micro-dissection and panel-genomic-sequencing methods,
as well as 496 T1 stage patients with long-term follow-up from
the Boston Lung Cancer Study (BLCS) cohort. We focused on
genetic heterogeneities between pre-invasive and invasive com-
ponents, early invasive patterns, and the prognosis of MPN
patients. Phylogenetic analyses showed the differences among
evolutionary trajectories, and the results further elucidated strong
selective pressure and enhanced B cell infiltration during inva-
siveness acquisition of MPNs harboring truncal EGFR mutations.

Results
Study workflow and genetic landscape. A total of 53 cases were
included for the genomic sequencing and data analyses (Sup-
plementary Fig. 1a). All 53 LUAD patients were diagnosed with
MPN ≤ 3 cm and pathologically confirmed adenocarcinoma, and
lymph node metastasis was found in three cases (Fig. 1a; Sup-
plementary Data 1). Sixty-one of 69 MPNs were conducted with
microdissection to separate pre-invasive and adjacent invasive
components, including 52 paired components (Supplementary
Fig. 1b; Supplementary Data 2). Out of sequenced the 113 MPN
components, 8 whole MPNs, 5 metastatic lymph nodes (MLNs),
and 79 cfDNA specimens, somatic mutations were found in all

MPNs and MLNs and in 23 cfDNA samples (Supplementary
Fig. 2a; Supplementary Data 3).

Globally, 1–34 somatic mutations (median: 8) were identified
in each MPN component of the phase 1 study (Fig. 1c), and
1–15 somatic mutations (median: 4) were observed in the
subsequent phase 2 study (Fig. 1d). In addition to the most
frequently mutated gene EGFR, TP53, MED12, and ERBB2 were
the top mutated driver genes in tissue samples (Supplementary
Fig. 2b). EGFR L858R was to be the most recurrent variation in
this cohort (Supplementary Fig. 2c), and EGFR had higher
mutation rates in female cases (Supplementary Fig. 3a). Notably,
no significant differences in these driver genes were observed
between pre-invasive and invasive MPN components (Supple-
mentary Fig. 3a). The proportions of all six mutation groups
showed a greater proportion of C > G transversions in the
invasive components (Supplementary Fig. 3b).

Phylogenetic analyses within MPNs revealed three evolutionary
trajectories. To investigate the evolutionary relationship between
early pre-invasive and invasive LUAD within the MPNs, we
analyzed on 52 paired pre-invasive and adjacent invasive MPN
components using phylogenetic methods (Fig. 2a; Supplementary
Fig. 4; Supplementary Data 4). First, five MPNs from three cases
revealed no truncal driver mutations between pre-invasive and
adjacent invasive components (Supplementary Fig. 4a), which
indicated that pre-invasive and invasive LUAD were driven by
different driver events in this situation (Evolution Mode 1, EM1).
Second, a total of 45 MPNs harbored truncal critical alterations
between pre-invasive and adjacent invasive components (Evolu-
tion Mode 2, EM2), and we detected key mutations restricted to
pre-invasive branches in 26 of these MPNs, which were classified
as EM2A (Supplementary Fig. 4b). In the remaining 19 pairs we
observed branch driver mutations only in the invasive compo-
nents, which revealed a potential linear progression for pre-
invasive and adjacent invasive LUAD (classified as EM2B; Sup-
plementary Fig. 4c). Third, no private mutations were discovered
in the remaining two MPNs (Supplementary Fig. 4d), which
suggests the limitation of our approach to detect other potential
key alterations in branches. We also performed phylogenetic
analyses of the pre-invasive, invasive components, and MLNs in
JSCH P26 of EM2B, which buttressed the supposed linear evo-
lution (Supplementary Fig. 4e).

To estimate genetic relatedness, we quantified the intratumor
heterogeneity (ITH) of paired components within each evolution
mode. The results demonstrated that EM1 got the highest ITH level,
and EM2B had the lowest ITH level, as expected (Fig. 2b;
Supplementary Fig. 5a). The ITH level of invasive components was
significantly higher than the adjacent pre-invasive components in
EM2B (Fig. 2c; Supplementary Fig. 5b), which indicates clonal
expansion during the early progression19. Notably, we observed
differential tumor sizes among EMs (Supplementary Fig. 5c), and
we supposed that a strong interclonal competition of EM1 would
lead to a relatively smaller tumor size compared with EM2.

Dominant driver genes in truncal mutations. The truncal
mutations profile indicated that EGFR, TP53, KRAS, and STK11
were recurrently mutated driver genes, and almost all truncal
mutation genes were known drivers (Fig. 3a). EGFR, CDK4, and
TP53 were the top frequently altered driver genes of the invasive
branching mutations (Supplementary Fig. 6a), and TP53 carried the
highest number of alterations in the pre-invasive branch mutation
profile (Supplementary Fig. 6b). We also found that RTK-RAS
pathway-related genes (i.e., EGFR, KRAS, and ERBB2) contributed
mostly to truncal mutations both in two-phase studies (Supple-
mentary Fig. 6c). As expected, the decreased ratio of pre-invasive
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branching mutations (dN/dS ratio) suggested a relaxed ability of
promoting progression in pre-invasive branches (Fig. 3b; Supple-
mentary Fig. 6d). We also considered the potential function of
tumor suppressor genes (TSGs) in affecting tumor evolution20, and
the results demonstrated that critical double-hit events of TSGs,
including gene loss, homozygotic mutation, and loss of hetero-
zygosity (LOH) plus mutation, contributed differentially to EM2A
and EM2B (Fig. 3c; Supplementary Data 6).

EGFR, KRAS, and STK11 were three dominant truncal driver
genes (Fig. 3d). Somatic interaction analysis indicated that EGFR
was mutually exclusive from the other two truncal drivers, which
was validated in the BLCS and TCGA cohorts (Fig. 3e; Supple-
mentary Fig. 6e; Supplementary Data 7). Importantly, survival
analysis indicated a better prognosis of EGFR-mutated patients than
KRAS/STK11-mutated patients in the BLCS cohort (Fig. 3f), and the
TCGA data suggested a consistent trend (Supplementary Fig. 6f).

Truncal EGFR mutation is associated with strong selective
pressure and B cell infiltration. We compared the abundance of

identified truncal EGFR mutations between pre-invasive and
adjacent invasive components. Intriguingly, the results demon-
strated that the abundance of EGFR mutations in the invasive
component was significantly lower than that in the adjacent pre-
invasive component (Fig. 4a). We subsequently analyzed the
abundance change of truncal mutations between MPNs harboring
or not harboring truncal EGFR mutations, and the results sug-
gested that truncal mutation abundance in EGFR-mutated MPNs
was significantly reduced (Fig. 4b). These results indicated a
strong selective pressure on EGFR-mutated tumor cells during the
acquisition of invasiveness. The decreased dN/dS ratios of
mutations in the MPNs harboring truncal EGFR mutation but-
tressed these findings (Fig. 4c; Supplementary Fig. 6d).

Our previous study observed an association between EGFR
mutation and inflammatory infiltration in NSCLC patients21.
Therefore, we proposed that the selective pressure from
inflammatory infiltration contributed to the differential prognosis
in T1 stage LUAD patients. We analyzed the TCGA cohort and
found that the mutation abundance of EGFR was significantly
decreased in T1 stage, which was different from the exclusive
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driver genes KRAS and STK11 (Fig. 4d). Additionally, EGFR
mutation was found to be associated with specific high B cell
infiltration in the T1 stage (Fig. 4e; Supplementary Fig. 7c,d). To
validate this hypothesis, we further performed immunohisto-
chemistry (IHC) assays to evaluate the microenvironmental B
and T cell infiltration of EGFR-mutated cases. The results
confirmed that B cells (CD20+) were present at higher levels in
the invasive component than the adjacent pre-invasive compo-
nent (Fig. 4f), while no significant differences of T cells (CD3+)
between the two components were observed in the serial
histological sections (Fig. 4g).

In addition, we identified somatic mutations in 12 prior-
operation and 11 post-operation cfDNAs (Supplementary Fig. 8a,
b), and no significant differences in mutation abundances were
found between prior-operation and post-operation cfDNA
samples (Supplementary Fig. 8c). Notably, we did not detect
EGFR mutations both in prior-operation and post-operation
cfDNAs (Supplementary Fig. 8d; Supplementary Data 8).

Discussion
There is little understanding of the histological continuum pre-
ceding early invasive progression in LUAD. Multi-region sam-
pling and genomic sequencing revealed significant ITH, even in
the pre-invasive AIS14,22. Evaluating the evolutionary trajectory
of early invasive LUAD is critical to elucidate the mechanism of
early invasive progression, classify molecular genotypes, and
provide potential strategies for early intervention. However,
conflicting findings were obtained in investigations of early

invasive driver events10,11,14,22. Evgeny et al. found that KRAS,
TP53, and EGFR mutations were indicators of malignant transi-
tion from AAH to AIS/MIA22. Sivakumar et al. demonstrated
that BRAF and KRAS were initiated as driver events in AAH, but
EGFR and TP53 were secondary driver events in LUAD11. Xin
et al. observed truncal EGFR and KRAS mutations between pre-
invasive and invasive LUAD in multifocal MPNs from the same
patients10. Zhang et al. demonstrated that EGFR, ERBB2, NRAS,
and BRAF were early clonal genomic events in AIS, but TP53 was
only found in MIA and IAC14. Consistent with previous studies,
we revealed that trunk mutations of common driver genes (i.e.,
EGFR, TP53, KRAS, and STK11) played a dominant role in early
invasive LUAD. Although we did not observe different propor-
tions of driver genes between pre-invasive and invasive compo-
nents, driver mutations have direct effects on different evolution
trajectories. A greater proportion of C>G transversions was found
in invasive components than in pre-invasive components, which
indicated potential differences in mutation signatures.

Evolution is always branched23,24, and our results demonstrated
that pre-invasive and adjacent invasive LUAD arose from branch-
ing evolution in 62% (31 in 50) of MPN samples (EM1 and EM2A).
As expected, 19 MPNs (EM2B) demonstrated the linear evolution
model, which suggests a canonical early invasive progression of the
stepwise process from preneoplasia to IAC5. To the best of our
knowledge, invasive progression in a single lesion was never
investigated. Performing a thorough phylogenetic analysis within
the MPN is important to demonstrate the evolutionary process
from pre-invasive to invasive LUAD. Based on the micro-dissection,
we investigated genomic relationships between pre-invasive and
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invasive components in one MPN. Previous reports revealed sig-
nificant ITH in AAH/AIS, and the results implied a trend of
branched evolution10,25. The results of the present study indicated
that pre-invasive and invasive components were mostly evolu-
tionary results of branched evolution, which support the findings of

the previous studies10,22. Additionally, we noted that either pre-
invasive or invasive branch was not detected in JSCH P38 and P49,
which suggests that our approach could not detect additional dif-
ferences, such as rare genetic events, epigenetic alterations, and
tumor microenvironment infiltration11. All of these findings
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indicated a high complexity of invasive progression in early
stage LUAD.

Notably, the EGFR dual hotspot variants were found in MPNs
JSCH P33-1 and P33-2 of EM1. These findings revealed that dual
EGFR hotspot mutations derived from pre-invasive and invasive
components separately in early invasive LUAD, which may explain
the biology of this rare EGFR mutation distribution26. Approxi-
mately 80% (36 in 45) of trunks in EM2 contained EGFR exons 19,
20, and 21 variants (Fig. 3a), suggesting a dominant role of EGFR
variants in LUAD initiation. In addition to high mutation fre-
quency, tumor clones harboring EGFR mutations interacted with
the tumor microenvironment21, even in AAH10. Truncal EGFR

mutations exhibited significantly lower mutation abundance in the
invasive component compared to the pre-invasive component
within the same MPN. According to the analysis results, we
hypothesized that tumor ancestors harboring EGFR mutations
would undergo negative selective pressure from B cell infiltration
during the acquisition of invasiveness. We suppose that inde-
terminate B-cell-derived cytokines contribute to this biological
process27. Furthermore, this tumor microenvironment cross-talk
may provide an explanation for the inefficiency in detecting EGFR
mutations in cfDNA samples in this T1 stage cohort.

Our research results serve to elucidate the relationship among
genetic heterogeneity, tumor evolution, and long-term prognosis
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in early invasive LUAD. The major limitation of this study was
the hotspot sequencing method, which limited the depiction of
comprehensive genomic alterations. Whole exome or genome
sequencing and a larger sample size in micro-dissection are
needed for follow-up research. Importantly, the mechanism of
evolutionary selection during the acquisition of invasiveness
warrants further research.

Methods
Patient samples and study design. Patients enrolled in this study belonged to a
cohort study (A Non-Interventional Systematic Study for the NSCLC Tempo-spatial
Heterogeneity; ChiCTR1900022521, http://www.chictr.org.cn/showproj.aspx?
proj=34204)28. Fifty-three cases were pathologically confirmed as T1 stage LUAD
with MPN ≤ 3 cm (American Joint Committee on Cancer, AJCC, 8th edition; clinical
data available in Supplementary Data 1). Two pathologists identified and reviewed all
patient samples to characterize the histopathological features, and a total of 61 MPNs
were micro-dissected under the stereomicroscope to separate pre-invasive and inva-
sive components. The Institutional Review Board of JSCH approved the study, and all
the patients provided written informed consent.

In the phase 1 study, 80 specimens of the first 18 cases were subjected to wide
panel-genomic sequencing (pan-cancer 1021-gene panel, Geneplus Technology Inc.)
at the coverage depth of 1800×. In the phase 2 study, 125 specimens of 35 cases were
subjected to hotspot panel-genomic sequencing (GeneseeqOneTM pan-cancer 425-
gene panel, Geneseeq Technology Inc.) at the coverage depth of 1500×. Finally, a total
of 126 tissue samples and 41 prior-operation and 38 post-operation cfDNA samples
from 53 patients were included in the analysis (Supplementary Data 2). We integrated
the clinical data and the Snapshot mutation data from the BLCS cohort (https://sites.
sph.harvard.edu/blcs/), who were primarily recruited in Massachusetts General
Hospital and enrolled a total of 496 T1N0M0 stage LUAD patients for further
prognosis analysis (Supplementary Fig. 1a; Supplementary Data 7). TCGA data were
queried from the GDC data portal (https://portal.gdc.cancer.gov)29.

Targeted next-generation sequencing and data processing. DNA from per-
ipheral blood mononuclear cells (PBMCs) of the same patients served as a germline
DNA reference. Peripheral blood (5–10 mL) was collected from each patient in
EDTA-coated tubes (BD Biosciences). Plasma was extracted within 2 h of blood
collection and shipped to the central testing laboratory within 48 h. Genomic DNA
from FFPE sections or biopsy samples and whole blood samples were extracted
with a QIAamp DNA FFPE Tissue kit and DNeasy Blood and tissue kit (Qiagen,
USA), respectively. Circulating cell-free DNA (cfDNA) from plasma was extracted
using the QIAamp Circulating Nucleic Acid kit (Qiagen). Sequencing libraries were
prepared using the KAPA Hyper Prep Kit (KAPA Biosystems) according to the
manufacturer’s instructions for different sample types. The target-enriched library
was then sequenced on the HiSeq4000 NGS platform (Illumina) according to the
manufacturer’s instructions.

In brief, Trimmomatic30 (v0.36) was used for FASTQ file quality control.
Paired-end reads were then aligned to the reference human genome GRCh37
(https://www.ncbi.nlm.nih.gov/genome/) using the Burrows–Wheeler aligner
(BWA)31. PCR deduplication was performed using Picard, and local realignment
around indels and base quality score recalibration were performed using the
Genome Analysis Toolkit (GATK v3.2)32. Furthermore, somatic single nucleotide
variant (SNV) and insertion/deletions (INDELs) calling was performed using the
Mutect2 mode of GATK. All mutations were manually inspected using the
Integrative Genomics Viewer (IGV)33.

Determination of copy number variation (CNV). CNV analysis was performed
using Control-FREEC34, which indicated CNV gain or loss for genes within panel
coverage. Sequenza35 (v2.1.2) was used to estimate the total copy number (CNt)
and allele-specific copy number (CNA and CNB) profiles in the gene locus, then we
defined the high genomic amplification (CNt ≥ 6)36 and gene loss (CNt= 0). TSGs
were defined according to previous reports37, and LOH events (CNB= 0) were
screened for TSGs38. The results are shown in Supplementary Data 5 and 6.

Construction of phylogenetic tree and determination of driver events. We
derived phylogenies for each set of micro-dissected MPNs using Treeomics (v1.8.1)39

to estimate the truncal and branching alterations. Each phylogeny was rooted at the
pre-invasive and adjacent invasive components using the Treeomics algorithm,
which used the Bayesian inference model and determined the probability that a
variant was either present or absent. The somatic alterations were considered truncal
events when the present probabilities in two components were both >99.9%, and the
somatic alterations with present probabilities >99.9% in only one component were
identified as branching events. In addition, mutations with low variant allele fre-
quency (VAF) would be excluded during phylogenetic processing for a low level of
confidence. The driver alterations in trunk and branches were annotated and
adjusted using driver gene and Cancer Gene Census (v84) annotation parameters
within the Treeomics program.

Tumor-infiltrating lymphocytes (TILs). To analyze inflammatory infiltration in
the TCGA cohort, we queried gene expression data from the GDC data portal
(https://portal.gdc.cancer.gov)29. Then we applied the tumor immune cell deconvo-
lution method TIMER40 to predict TILs. Six types of immune infiltrates were esti-
mated (B cell, CD4+ T cell, CD8+ T cell, neutrophil, macrophage, and dendritic cell),
and B cells and T cells were considered into further analyses. Immunohistochemistry
was used to validate the infiltration of B cells and T cells using the expression of CD20
(M075501; Dako, CA, USA) and CD3 (A045201; Dako, CA, USA), respectively.
Truncal EGFR-mutated cases were selected to test B cell and T cell infiltration in the
preinvasive and invasive components of MPN, and two pathologists independently
estimated the results. The final results are presented as the median number of tumor-
infiltrating cells in the three randomly selected hotspot areas.

ITH and dN/dS estimation. We estimated the ITH using the mutant-allele tumor
heterogeneity (MATH) method41. The MATH score was calculated using the formula

MATHi ¼ MADðVAFiÞ
MedianðVAFiÞ ´ 100, where VAFi is a vector of the VAF of all mutations from

sample i and median absolute deviation (MAD) was denoted. A constant factor
(1.4826) was used to scale MAD such that the expected MAD of a sample from a
normal distribution equaled the standard deviation. To estimate the selective pressure
in each group, dndscv (https://github.com/im3sanger/dndscv)42 was used to compute
the relative ratio of nonsynonymous to synonymous mutations (dN/dS ratio), and the
calculation was only used full-length covered genes within panels.

Oncogenic signaling pathway annotation and mutually exclusive analysis.
According to the previous study43, somatic alterations in tumors were classified
into canonical pathways, RTK-RAS, TP53, PI-3-kinase/Akt, SWI-SNF, cell cycle,
Nrf2, β-catenin/Wnt, Notch, and Myc, to reveal the potential mechanisms and
patterns of truncal and branching mutations. To distinguish among recurrent
driver alterations, mutually exclusive analysis was performed separately on truncal
driver variations in the JSCH cohort, and driver mutations in BLCS and TCGA
cohorts. Pair-wise Fisher’s exact test was used in the “somaticInteractions” function
of R package Maftools44.

Statistical analysis and figures. Statistical analyses were performed using R
(v3.5.1). For comparisons of continuous variables between groups, Mann–Whitney
U tests and Kruskal–Wallis H tests were used. For comparisons of categorical
variables between groups, chi-squared or Fisher’s exact tests were employed. To
compare survival between groups, we used the log-rank test. All reported P values
were two-sided. The differences were considered significant when the P value was
<0.05. Other figures were generated using the R package ggplot2 and
RColorBrewer.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data reported in the study have been deposited in the EGA database as
EGAD00001006457. The data is deposited under controlled access for access to the data
contact Dr. Rong Yin, rong_yin@njmu.edu.cn. Data that support the findings of this
study are available from BLCS (https://sites.sph.harvard.edu/blcs/) and TCGA database
(https://portal.gdc.cancer.gov). All the other data supporting the findings of this study are
available within supplementary files and from the corresponding author upon reasonable
request.
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