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Identity-by-descent detection across 487,409
British samples reveals fine scale population
structure and ultra-rare variant associations
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Detection of Identical-By-Descent (IBD) segments provides a fundamental measure of

genetic relatedness and plays a key role in a wide range of analyses. We develop FastSMC, an

IBD detection algorithm that combines a fast heuristic search with accurate coalescent-based

likelihood calculations. FastSMC enables biobank-scale detection and dating of IBD segments

within several thousands of years in the past. We apply FastSMC to 487,409 UK Biobank

samples and detect ~214 billion IBD segments transmitted by shared ancestors within the

past 1500 years, obtaining a fine-grained picture of genetic relatedness in the UK. Sharing of

common ancestors strongly correlates with geographic distance, enabling the use of genomic

data to localize a sample’s birth coordinates with a median error of 45 km. We seek evidence

of recent positive selection by identifying loci with unusually strong shared ancestry and

detect 12 genome-wide significant signals. We devise an IBD-based test for association

between phenotype and ultra-rare loss-of-function variation, identifying 29 association sig-

nals in 7 blood-related traits.
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Large-scale genomic collection, through efforts like the NIH
All of Us research program1, the UK BioBank2, Genomics
England3, and the Million Veteran Program4, is expected to

yield datasets of hundreds of thousands of individuals and to
grow to millions in the coming years. Utilizing such datasets to
understand disease and health outcomes requires understanding
the fine-scale genetic relationships between individuals. These
relationships can be characterized using short segments (less than
10 centimorgans [cM] in length) that are inherited identical by
descent (IBD) from a common ancestor between purportedly
unrelated pairs of individuals in a dataset5. Accurate detection of
shared IBD segments has a number of downstream applications,
which include reconstructing the fine-scale demographic history
of a population6–9, detecting signatures of recent adaptation10,11,
discovering phenotypic association12,13, estimating haplotype
phase5,14,15, and imputing missing genotype data16,17, a key step
in genome-wide association studies (GWAS)18. Detection of IBD
segments in millions of individuals within modern biobanks
poses a number of computational challenges. Although several
IBD detection methods have been published19–21, few scale to
analyses comprising more than several thousand samples. How-
ever, scalable methods that do exist trade modeling accuracy for
computational speed. As a result, current IBD detection algo-
rithms are either scalable but heuristic, solely relying on genotypic
similarity to detect shared ancestry and not providing calibrated
estimates of uncertainty, or too slow to be applied to modern
biobanks. Here, we introduce an IBD detection algorithm, called
fast sequentially Markovian coalescent (FastSMC), which is both
fast, enabling IBD analysis of modern biobank datasets, and
accurate, relying on coalescence modeling to detect short IBD
segments (down to 0.1 cM). FastSMC quantifies uncertainty and
estimates the time to most recent common ancestor (TMRCA)
for individuals that share IBD segments. It does so by efficiently
leveraging information provided by allele sharing, genotype fre-
quencies, and demographic history, which results in a cost-
effective boost in accuracy.

We validate the scalability, accuracy, and robustness of the
FastSMC algorithm in detecting IBD sharing within recent mil-
lennia using extensive coalescent simulation. Leveraging the
speed and accuracy of FastSMC, we analyze IBD sharing in
487, 409 phased individuals from the UK Biobank dataset,
identifying and characterizing ~214 billion IBD segments
transmitted by shared ancestors within the past 50 generations.
This network of shared ancestry enables us to reconstruct a fine-
grained picture of time-dependent genomic relatedness in the
UK. Analysis of the distribution of recent sharing within specific
genomic regions reveals evidence of recent positive selection at 12
loci. We find the sharing of IBD to be highly correlated with
geographic distance and the sharing of rare variants. Leveraging
this correlation, we detect 20 associations to genomic loci har-
boring loss-of-function (LoF) variants with seven blood-related
phenotypes. These results underscore the importance of modeling
distant relatedness to reveal subtle population structure, recent
evolutionary history, and rare pathogenic variation.

Results
Overview of the FastSMC method. The algorithm we developed,
called FastSMC, detects IBD segments using a two-step proce-
dure. In the first step (identification), FastSMC uses genotype
hashing to rapidly identify IBD candidate segments, which
enables us to scale to very large datasets. In the second step
(verification), each candidate segment is tested using a coalescent
hidden Markov model (HMM), which enables us to improve
accuracy, compute the posterior probability that the segment is
IBD (IBD quality score), and provide an estimate for the TMRCA

in the genomic region. The identification step leverages the
GERMLINE2 algorithm that we developed and present here,
which improves over GERMLINE’s19 speed and memory
requirements and thus enables us to very efficiently detect IBD
candidate regions in millions of genotyped samples. GERMLINE2
utilizes hash functions to identify pairs of individuals whose
genomes are identical in small genomic regions, thus being
Identical-By-State (IBS). The presence of these short identical
segments triggers a local search for longer segments that are likely
to reflect recent TMRCA and thus IBD sharing in the region.
Although the original GERMLINE algorithm utilizes a similar
strategy, GERMLINE2 offers two key improvements, which result
in faster computation and lower memory consumption. First, the
GERMLINE algorithm can become inefficient in regions where
certain short haplotypes can be extremely common in the
population (e.g. due to high linkage disequilibrium), which results
in hash collisions across a large fraction of samples, effectively
reverting back to a nearly all-pairs analysis and monopolizing
computation time. GERMLINE2 avoids this issue by introducing
recursive hash tables, which require haplotypes to be sufficiently
diverse before they are explored for pairwise analysis and sig-
nificantly decrease downstream computation (Supplementary
Fig. 1). Second, the GERMLINE local search (extension) step
requires storing the entire genotype dataset in memory, which is
prohibitive for biobank-scale analyses. Instead, GERMLINE2 uses
an on-line strategy, reading a polymorphic site at a time without
storing complete genotype information in memory, which enables
scaling this analysis to millions of individuals. While long IBS
regions are often co-inherited from recent common ancestors,
thus being IBD, this need not always be the case22. In its ver-
ification step, FastSMC thus leverages coalescence modeling to
filter out candidate segments that are IBS, but not IBD. To
achieve this, FastSMC analyzes every detected candidate segment
using the ASMC algorithm23, a recently proposed coalescent-
based HMM that builds on recent advances in population
genetics inference24–27 to enable efficient estimation of the pos-
terior of the TMRCA for a pair of individuals at each site along
the genome. A key advantage of the ASMC algorithm over pre-
vious coalescent-based models is that it enables estimating the
TMRCA in SNP array data in addition to sequencing data.
FastSMC can thus be tuned to be applied to both types of data.
FastSMC produces a list of pairwise IBD segments with each
segment associated to an IBD quality score - i.e the average
probability of the TMRCA being between present time and the
user-specified time threshold – and an age estimate – i.e. the
average maximum a posteriori (MAP) TMRCA along the seg-
ment. FastSMC can be parallelized to efficiently scale up to bio-
bank datasets. The FastSMC software implements both the
GERMLINE2 and ASMC algorithms, and is freely available.

Comparison to existing methods. We measured FastSMC’s
accuracy using extensive realistic coalescent simulations that
mimic data from the UK Biobank2. We benchmarked IBD
detection for FastSMC in addition to three other widely used or
recently published IBD detection methods: GERMLINE19, Refi-
nedIBD20, and RaPID21. Parameters for all methods were opti-
mized to maximize accuracy and evaluated on the detection of
IBD segments within the past 25, 50, 100, 150, or 200 generations
on simulated populations with a European ancestry (Supple-
mentary Table 1). We found that FastSMC outperforms the
accuracy of all the other methods at all time scales (Fig. 1a, c,
Supplementary Fig. 2, and Supplementary Table 2). As expected,
model-based algorithms such as FastSMC and RefinedIBD tend
to achieve better results in detecting older (shorter) IBD segments
than genotype-matching methods, which cannot reliably exclude
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short segments where genotypes are IBS but not IBD (Supple-
mentary Table 2). FastSMC relies on the ASMC algorithm in its
validation step, which was shown to be robust to the use of an
inaccurate recombination rate map or violations of assumptions
on allele frequencies in SNP ascertainment23. We thus expect it to
be similarly robust to several types of model misspecification. In
particular, we tested the effects of using a misspecified demo-
graphic model on FastSMC’s accuracy, and observed that while
this results in biased estimates of segment age (Supplementary
Fig. 3), a wrong demographic model does not affect accuracy
(Supplementary Table 3).

Next, we evaluated the computational efficiency of FastSMC
and other methods using phased data from chromosome 20 of the
UK BioBank (Fig. 1b, d and Supplementary Fig. 4). As expected,
the improvement in accuracy achieved leveraging FastSMC’s
validation step leads to slightly increased computing time
compared to only using GERMLINE, the most scalable method.
FastSMC is faster than RefinedIBD, the closest method in terms
of accuracy for short segments. For instance, detecting IBD
segments within the past 50 generations on 10,000 samples takes
27 min for FastSMC, 9 min for GERMLINE, 3 h and 17 min for
RefinedIBD, and 6 h and 58 min for RaPID. We finally assessed
the memory cost of FastSMC and other methods (Supplementary
Fig. 5). FastSMC does not store the genotype hashing or IBD
segments, resulting in a very low memory footprint, whereas the
memory requirements of other methods become prohibitive for
large sample sizes such as those required to analyze the entire UK
Biobank cohort. For example, analyzing chromosome 20 for a
time threshold of 50 generations and 10,000 random diploid
individuals from the UK Biobank dataset, FastSMC requires 1.4

GB of RAM compared to 3.8 GB for GERMLINE, 11.5 GB for
RefinedIBD, and 62.9 GB for RaPID.

Downstream analysis of IBD sharing such as demographic
inference or the study of natural selection often involves
estimating the age of IBD segments. Because current approaches
do not explicitly model the TMRCA between IBD individuals,
segment age is typically estimated through the length of the IBD
segment. FastSMC, on the other hand, explicitly models TMRCA
across individuals, leveraging additional prior information (such
as demography and allele frequencies) to produce an improved
estimate of IBD segment age. We found FastSMC’s segment age
estimates to be more accurate than a length-based estimator
(Supplementary Fig. 6), with significant gains for short segments
as a result of the additional modeling in the validation step of the
algorithm (e.g. the median error from FastSMC’s segments age
estimate decreased by ~60% for segments ≥0.5 cM compared to
the current approach, Fig. 1e). FastSMC’s increased accuracy in
estimating coalescence times in IBD segments will translate in
improved resolution for downstream applications that leverage
this type of information.

IBD sharing and population structure in the United Kingdom.
We leveraged the scalability and accuracy of FastSMC to analyze
487,409 phased British samples from the UK Biobank, obtaining a
fine-grained picture of the genetic structure of the United King-
dom. We detected ~214 billion IBD segments shared within the
past 1500 years, with ~75% of all pairs of individuals sharing at
least one common ancestor (Supplementary Fig. 7). Analyzing the
fraction of genome covered by IBD segments, we observed that
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~93% of individuals in the cohort have >90% of their genome
covered by at least one IBD segment in the past 50 generations,
compared to only ~4% of individuals for the past 10 generations
(Supplementary Fig. 8A). Looking for geographic patterns, we
noticed that, despite the large sample size of the UK Biobank
cohort, the average fraction of genome covered by at least one
IBD segment is substantially heterogeneous across UK postcodes
for recent time scales – ranging from 53.4% in London Eastern
Central (EC) to 76.2% in Stockport (SK) for 10 generations – but
more uniform at deeper time scales – ranging from 96.7% in
London EC to 99.2% in Stockport for 50 generations (Supple-
mentary Fig. 8B, C, D). The observation of a non-uniform IBD
coverage has implications for downstream methods that rely on
distant relatedness at each genomic site, such as variant discovery,
phasing, and imputation.

Next, we analyzed the network of recent genetic relatedness for
432,968 samples for whom birth coordinates are available. As
observed in previous studies of fine-scale genetic structure28 with a
considerably smaller sample size29, genetic clusters within the UK
tend to be localized within geographic regions (Fig. 2). Leveraging
FastSMC’s accuracy and the large sample size of the UK Biobank
dataset we were able to zoom into increasingly smaller regions,
finding that such clusters extend beyond broad geographic clines.

Smaller geographic regions revealed increasingly fine-grained
clusters of individuals born within a few tens of kilometers from
each other, likely reflecting the presence of extended families
which experienced limited migration during recent centuries. We
found that individuals throughout the UK, including cosmopo-
litan regions, find overwhelmingly more recent genetic ancestors
within their own postcode than in other regions of the country,
reflecting isolation-by-distance due to limited migration across the
country in recent generations (Supplementary Fig. 9 and https://
ukancestrymap.github.io/ for an interactive website displaying
these results). For instance, within the past ~300 years, two
individuals born in North London share on average 0.0092
common ancestors and two individuals born in Birmingham share
on average 0.0043 common ancestors. In contrast, and despite the
relative geographic proximity, an individual born in North
London shares on average a substantially lower 0.00059 ancestors
with one born in Birmingham. We observed similar trends when
we restricted this analysis to samples of self-reported and inferred
non-White British ancestry2, as shown in Supplementary Fig. 10.
We further visualized the strong link between genetic and physical
distances (Supplementary Fig. 11) by building a low-dimensional
planar representation of pairwise genetic distances across post-
codes within the past 600 years (Supplementary Fig. 12B), which
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we found to closely reflect geographic distance across these
regions.

We hypothesized that the presence of such a fine-scale genetic
structure in the UK may be used to effectively predict the birth
location of an individual. This would imply that FastSMC may be
used to predict other subtle environmental covariates, which may
be causing confounding in GWAS30. We computed the fraction
of individuals who find at least one close genetic relative within
the UK Biobank dataset (Fig. 3a). We observed that almost all
individuals (99.8%) find a genetic relative with IBD sharing
equivalent to a 5th degree cousin (3.5 cM) or closer relationship,
with 64.6% of samples finding a putative 3rd degree cousin (56.6
cM) or closer relative. We found that, indeed, stronger genetic ties
translate into greater proximity of birth locations (Fig. 3b). For
instance, for individuals sharing a fraction of genome equivalent
to 3rd degree cousins or closer, the median distance between birth
locations is 17 km. Very close genetic relationships are also
pervasive in the dataset: about one in four individuals (23.4%) has
a relative with genetic sharing equivalent to a 2nd degree cousin
(226.5 cM) or closer; for these samples the median distance
between birth locations is only 5 km. We then sought to quantify
how accurate IBD sharing is at predicting the birth coordinate of
a random UK Biobank sample. We found that the birth
coordinate of the closest genetic relative for a random UK
Biobank individual can be used to predict the individual’s birth
location with a median error of 45 km. In contrast, taking a
random individual to predict the birth location would result in a
median error of 200.6 km (95% bootstrap CI= [200.3, 200.8]).
Using this approach to predict a random individual’s current
place of living, rather than birth location, resulted in a higher
median error of 75 km (Supplementary Fig. 13). Additional
details are shown in Supplementary Fig. 14. Prediction in non-
White British samples resulted in decreased accuracy due to the
smaller sample size (Supplementary Fig. 15B). Conversely,
restricting this analysis to only samples of White British ancestry
resulted in a slightly improved median error of 42 km
(Supplementary Fig. 15A). These findings provide empirical
support to recent hypotheses that extensive segment sharing
within genealogical databases may be used to recover the
genotypes of target individuals31, or to re-identify individuals
through long-range familial searches32.

As expected, entries of the IBD matrix within the past 10
generations are highly correlated to corresponding allele sharing
entries of the genetic relatedness matrix (GRM) that is widely
used in applications such as principal component analysis33 and
linear mixed models34 (r= 0.66, SE= 0.02 computing the GRM
for 50,000 random samples using Plink35). However, by
conditioning on the presence of recent shared ancestors, the
IBD matrix is better suited to capture genomic relationships that
are recent but would not result in large outlier entries in the
GRM. To compare the performance of our IBD-based approach
with an approach based on allele sharing in the absence of
extremely close relatives, we removed individuals with very recent
genetic ties (≤3rd degree relatives, e.g. first degree cousins2) and
used a simple machine learning approach (K Nearest Neighbors)
to perform the prediction of birth coordinates. Prediction of birth
coordinates using the IBD matrix was 44% more accurate than
prediction based on allele sharing (Supplementary Fig. 16). We
also found birth coordinates predicted using IBD sharing to be
strongly correlated to true coordinates (r= 0.74, 95% CI= [0.73,
0.75], for Y-coordinates and r= 0.6, 95% CI= [0.59, 0.62], for X-
coordinates), substantially higher than the correlation achieved
using allele sharing (r= 0.43, 95% CI= [0.41, 0.45], for Y-
coordinates and r= 0.31, 95% CI= [0.30, 0.33], for X-
coordinates).

Analyzing broader patterns of IBD sharing, we found that
individuals living in the North of the country share more common
ancestry than in the South, and that more generally regions within
Scotland, England, and Wales tend to cluster with other regions
within the same country. We estimated the effective population size
from 300 years ago within each postcode and detected significant
correlation (r= 0.28, 95% CI= [0.09, 0.47] by bootstrap using
postcodes) with present-day population density (Supplementary
Fig. 12A). As we look deeper in time, IBD sharing patterns tend to
shift and reflect historical migration events within the country.
Notably, we find that individuals throughout England share deep
genealogical connections with other individuals currently living in
the North-West and the North of Wales (Supplementary Fig. 17).
These regions correspond to the unromanised regions of the UK
and Britons living there are believed to have experienced limited
admixture during the Anglo Saxon settlement of Britain occurring
at the end of the Roman rule in the 5th century36. Elevated IBD
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sharing between these regions may thus reflect deep genealogical
connections within the ancient Briton component of modern day
individuals, which is overrepresented in the North-West of the
country. As expected, large cosmopolitan regions display substan-
tially more uniform ancestry across the UK. London, in particular,
has a uniform distribution of ancestry at deep time scales
(Supplementary Fig. 9), suggesting that it has attracted substantial
migration for extended periods of time.

Signals of recent positive selection in the UK Biobank. We
analyzed locus-specific patterns of recent shared ancestry, seeking
evidence for recent positive selection by identifying loci with
unusually high density of recent coalescence times in the UK
Biobank dataset. We computed the DRC50 (Density of Recent
Coalescence) statistic23, capturing the density of recent coales-
cence events along the genome within the past 50 generations
(Supplementary Fig. 18). Large values of the DRC50 statistic are
found at loci where a large number of individuals descend from a
small number of recent common ancestors, a pattern that is likely
to reflect the rapid increase in frequency of a beneficial allele due
to recent positive selection. Although, as expected, the DRC50

statistic computed in this analysis is strongly correlated (r= 0.67)
with the DRC150 statistic that was computed using fewer samples
from a previous UK Biobank data release by Palamara et al.23, the
DRC50 statistic reflects more recent coalescence events than the
DRC150 statistic, and thus more specifically reflects natural
selection occurring within recent centuries.

Analyzing the distribution of the 52,003 windows in the UK
Biobank dataset, we detected 12 genome-wide significant loci (at
an approximate DRC50 p < 0.05/52, 003= 9.6 × 10−7; Fig. 4 and
Supplementary Table 4). Five of these loci are known to be under
recent positive selection, harboring genes involved in immune
response (NBPF137, HLA38), nutrition (LCT39, LDLR40), and
mucus production (MUC223). We also identified 7 other loci,
harboring genes related to immune response (MRC1, playing a
role in both the innate and adaptive immune systems41, and
BCAM, encoding the Lutheran antigen system, also associated
with low density lipoprotein cholesterol measurement42), mucus
production (CAPN8, involved in gastric mucosal defense43),
tumor growth (CHD1L, associated with tumor progression and
chemotherapy resistance in human hepatocellular carcinoma44,
and BANP, encoding a tumor suppressor and cell cycle regulator
protein45), as well as genetic disorders (HYDIN, causing primary
ciliary dyskinesia46, and EFTUD2, causing mandibulofacial

dysostosis with microcephaly47). We checked that these regions
are not extreme in recombination rate or marker density
(Supplementary Table 5).

IBD sharing enables association of ultra-rare variants. Indivi-
duals who co-inherit a genomic region IBD from a recent com-
mon ancestor are also expected to have identical genomic
sequences within that region, with the exception of de-novo
mutations and other variants introduced by e.g. non-crossover
gene conversion events in the generations leading to their recent
common ancestor48. We thus expect the sharing of IBD segments
to be strongly correlated to the sharing of ultra-rare genomic
variants (MAF < 0.0001), which tend to be very recent in origin
and are usually co-inherited through recent ancestors who carried
such variants. We verified this by testing for correlation between
the sharing of IBD segments at various time scales and the
sharing of rare variants for the ~50k individuals included in the
UK Biobank’s initial exome sequencing data release49 (Supple-
mentary Fig. 19A). Specifically, we analyzed mutations that are
carried by N out of 99,920 exome-sequenced haploid genomes
(for 2 <N < 500), which we refer to as FN mutations50,51. We
compared the sharing of FN mutations to the sharing of IBD
segments in the past 10 generations within all postcodes in the
UK (Fig. 5a). We found that there is indeed a strong correlation
between the per-postcode sharing of ultra-rare variants and the
per-postcode sharing of recent ancestors (e.g. r= 0.3, 95% CI=
[0.22,0.37] for F3 mutations). The correlation between IBD
sharing and FN variant sharing decreases as N increases, with
slightly higher correlation for more recent IBD segments, while
deeper IBD sharing (within 50 generations) tends to provide
better tagging of ultra-rare variants of slightly higher frequency
(e.g. bootstrap p < 0.05/50= 0.001 for N= 20; Supplementary
Fig. 19B).

Based on this correlation between sharing of mutations and
sharing of IBD segments, we hypothesized that IBD sharing of
disease causing mutations would be predictive of disease. In
particular, individuals who share an IBD segment with a
pathogenic rare variant carrier in a known gene have a higher
probability of carrying the pathogenic variant (by inheriting it
from the shared ancestor) than the general population, and would
thus be at increased risk for the phenotypic effect. The UK
Biobank exome pilot49 identified multiple rare coding variant
burden associations with complex phenotypes, some of which
were recently replicated52,53. We set out to test whether our IBD
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inference could empower us to replicate and refine these
associations using the larger non-sequenced cohort. For each
previously reported gene-phenotype association, we identified all
sequenced individuals with a rare LoF variant (mirroring the
definition of LoF from Van Hout et al.49) and any IBD segments
they shared with individuals in the non-sequenced cohort (we
refer to these as putative LoF-segments, though they will also
include sharing of the non-LoF haplotypes because the phase of
the LoF is unknown). As expected due to the effects of natural
selection54, the LoF variants belonging to a small subset for which
an age estimate has recently been computed55 are slightly younger
than other exome-sequenced variants (Supplementary Table 6).
Note that the majority of these variants are singletons or
doubletons49 and would be excluded from imputation by most
current algorithms56. Then, in the (independent) non-sequenced
cohort, we tested for association between carrying a LoF-segment
(the LoF-segment burden) and the phenotype known to be
associated with that gene. This approach would be optimal when
IBD individuals carry a LoF variant that arose prior to the
TMRCA of their shared segment. We thus tested 10 transforma-
tions of the LoF-segment metric for association with phenotype
to model uncertainty about the age distribution of the underlying
causal variants.

Using our LoF-segment burden, we replicated 11 out of 14
previously reported49 associations with seven blood-related traits
at p < 0.05/10= 0.005 (adjusted for testing of 10 transformations;

Table 1). Strikingly, we found eight of these associations to be
exome-wide significant in the non-sequenced cohort (p < 0.05/
(10 × 14,249), reflecting 14,249 genes tested using 10 transforma-
tions; Fig. 5b). We next aimed at quantifying how effective IBD
sharing is at detecting associations, compared to testing directly
based on exome sequencing data. We computed the phenotypic
variance explained by the indirect IBD-based test and the direct
exome-based test (after subtracting the effect of covariates from
both), focusing on the 14 loci reported by Van Hout et al.49. The
ratio of these variances was 19.64% on average, corresponding to
the decrease in effect-size (in units of variance) due to estimation
error and inclusion of segments sharing the non-LoF haplotype.
We note that, due to phase uncertainty, we expect LoF-segment
burden to explain at most 50% of the variance explained by direct
sequencing. Assuming the ratio of variances corresponds to the
squared correlation between the LoF-segment burden estimate
and the true exome burden, the LoF-segment burden estimator
has statistical power equivalent to a direct exome sequencing
study of 19.64% of the 303, 125, or ~60k samples57 – effectively
doubling the size of the exome study. This demonstrates
FastSMC’s accuracy and, more broadly, the utility of leveraging
distant relatedness in identifying disease associations.

Motivated by these results, we next expanded our study to all
sequenced genes for this same set of primarily blood-related
traits. We identified a total of 186 exome-wide significant gene
associations (p < 0.05/(10 × 14,249)) spanning 33 genomic loci in

Chromosome

N

2221201918171615141312

400300200100

0.4

a

c

b

0.3

0.2

0.1

0.0

0 500

1110987654

30

IQGAP2

LoF-segment burden (29 loci)

20 7

2
1

3

3

1

Van Hout et al. (14 loci)
WES-LoF burden (13 loci)

GP1BA

KALRN

OR6F1 HLA MLXIP
CENPBD1 CHEK2

–l
og

10
(p

-v
al

ue
)

C
or

re
la

tio
n

25

20

15

10

5

0
321

Fig. 5 IBD sharing and rare variant associations. a Correlation between IBD sharing (average number of IBD segments per pair across UK postcodes in
the past 10 generations in the UK Biobank’s 487,409 samples) and ultra-rare variants sharing (average number of FN mutations per pair across UK
postcodes in the UK Biobank 50k Exome Sequencing Data Release for increasing values of N). b Venn diagram representing the sets of exome-wide
significant associated loci for 7 blood-related traits using three methods: the WES-based LoF burden test reported by Van Hout et al.49, a WES-based LoF
burden test we performed (WES-LoF burden), and the IBD-based LoF burden test we performed (LoF-segment burden). The corresponding p-values were
computed using two-sided t-tests and are reported in Tables 1, 2 and Supplementary Table 8. c Exome-wide Manhattan plot for mean platelet
(thrombocyte) volume, after SNP-correction, using 303, 125 unrelated UK Biobank samples not included in the exome sequencing cohort. Labeled genes
are exome-wide significant after adjusting for multiple testing: p < 0.05/(14,249 × 10)= 3.51 × 10−7; dashed red line. Black labels indicate genes that were
previously reported by Van Hout et al.49 (KALRN, GP1BA, and IQGAP2), while red labels indicate novel associations detected by our LoF-segment burden
analysis. The corresponding p-values were computed using two-sided t-tests and are reported in Table 2.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19588-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6130 | https://doi.org/10.1038/s41467-020-19588-x |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the non-sequenced cohort by only leveraging LoF-segments
(Table 1); these genes were not significant in the exome burden
analysis due to insufficient statistical power. We noticed that
some loci included multiple significant associations, suggestive of
correlation between associated features as is often seen for GWAS
signals. We hypothesized that, in some cases, the true underlying
causal variant may be better tagged by known high-frequency
SNPs, which are likely to have been detected in previous GWAS
analyses. Repeating this analysis including previously associated
common variants as covariates reduced the number of significant
associations to 111 across 29 loci, suggesting that inclusion of
significant common associations in rare variant burden tests may
lead to improved interpretability and fewer false-positives due to
tagging (Table 2, Fig. 5c and Supplementary Figs. 20–25).

Our exome-wide significant signals include the association
between platelet count and MPL (two-sided t-test p= 1.99 × 10−7),
which encodes the thrombopoietin receptor that acts as a primary
regulator of megakaryopoiesis and platelet production and has not
been previously implicated by genome-wide scans of either rare or
common variants. We also detect several associations in genes that
were not detected using exome sequencing but have been previously
implicated in genome-wide scans for common variants, including
associations between eosinophil count, GFI1B (two-sided t-test p=
1.92 × 10−7) and RPH3A (two-sided t-test p= 7.63 × 10−14)58,59,
and associations between platelet count, IQGAP2 (two-sided t-test
p= 6.52 × 10−8) and GP1BA (two-sided t-test p= 1.43 × 10−7)59,60.
We also identify genes that were previously associated with other
blood-related phenotypes in other populations, including the
association between platelet distribution width and APOA5 (two-
sided t-test p= 1.94 × 10−8), a gene that encodes proteins
regulating the plasma triglyceride levels; common variants
linked to this gene have been linked to platelet count in
individuals of Japanese descent61. We detect association between
red blood cell distribution width and APOC3 (two-sided t-test
p= 3.67 × 10−11), a gene encoding a protein that interacts with
proteins encoded by other genes (APOA1, APOA4) associated
with the same trait. The association between APOC3 and platelet
count was also detected with our WES-LoF burden analysis (two-
sided t-test p= 2.13 × 10−7) and by previous studies based on
common SNPs59. We also found an association between CHEK2
and both mean corpuscular hemoglobin (two-sided t-test p=
1.43 × 10−7) and mean platelet volume (two-sided t-test p=

1.93 × 10−7). This gene plays an important role in tumor
suppression and was found to be associated with other blood
traits, such as platelet crit, using both exome sequencing49 and
common GWAS SNPs59, and red blood cell distribution width58.
Overall, this analysis highlights the utility of applying FastSMC
on a hybrid sequenced/genotyped cohort to identify novel, rare
variant associations and/or characterize known signals in larger
cohorts.

Discussion
We developed FastSMC, an algorithm for IBD detection that
scales well in analyses of very large biobank datasets, is more
accurate than existing methods, enables estimating the time to
most recent common ancestor for IBD individuals, and provides
an estimate of uncertainty for detected IBD regions. We leveraged
FastSMC to analyze 487,409 British samples from the UK Bio-
bank dataset, detecting ~214 billion IBD segments transmitted by
shared common ancestors in the past ~1500 years. This enabled
us to obtain high-resolution insight into recent population
structure and natural selection in British genomes. Lastly, we used
IBD sharing between exome sequenced and non-sequenced
samples to infer the presence of LoF variants, successfully repli-
cating known burden associations with seven blood-related
complex traits and revealing novel gene-based associations.

The level of geographic granularity that could be captured by
the IBD networks emerging from our analysis underscores the
importance of modeling distant relationships in genetic studies.
Indeed, detecting IBD segments among close and distant relatives
is a key step in many analyses, such as genotype imputation or
haplotype phase inference5,14,15, haplotype-based
associations12,13, as well as in the estimation of evolutionary
parameters such as recombination rates62,63, or mutation and
gene conversion rates48,64. More broadly, the observed geographic
heterogeneity in IBD sharing and fine-scale structure is a
reminder that human populations substantially deviate from
random mating, even within small geographic regions. In parti-
cular, efforts to generate optimal sequenced reference panels for
imputation65 may be greatly improved by directly sampling based
on distant relatedness. Our findings also provide empirical sup-
port to recent hypotheses that relatedness within available
genomic databases is sufficiently pervasive to enable recovering
the genotypes of target individuals31, or to re-identify individuals

Table 1 Comparison between association analyses.

Gene Trait Van Hout et al. WES LoF burden LoF-segment burden R2
prop

1 IL33 Eosinophil count 3.30E-10 2.01E-03 8.64E-15 72.26
2 GP1BA Mean platelet (thrombocyte) volume 6.40E-08 8.84E-08 1.82E-19 32.57
3 TUBB1 Platelet distribution width 2.50E-23 7.34E-18 7.38E-12 07.25
4 TUBB1 Mean platelet (thrombocyte) volume 2.40E-08 3.01E-07 2.15E-03 04.11
5 TUBB1 Platelet count 2.10E-09 7.45E-07 4.21E-05 07.84
6 HBB Red blood cell distribution width 5.80E-08 3.49E-02 2.25E-03 23.99
7 HBB Red blood cell count 1.70E-09 7.95E-02 2.68E-02 18.23
8 KLF1 Red blood cell distribution width 1.50E-13 6.95E-13 3.49E-34 32.99
9 KLF1 Mean corpuscular hemoglobin 1.70E-16 9.11E-15 6.79E-21 16.76
10 ASXL1 Platelet distribution width 4.70E-09 1.44E-06 0.16E-00 00.98
11 ASXL1 Red blood cell distribution width 2.40E-11 8.23E-04 0.32E-00 01.03
12 KALRN Mean platelet (thrombocyte) volume 2.70E-23 3.85E-18 3.79E-12 07.33
13 IQGAP2 Mean platelet (thrombocyte) volume 1.10E-19 3.72E-15 4.40E-34 27.43
14 GMPR Mean corpuscular hemoglobin 1.10E-08 2.94E-06 7.60E-11 22.18

We report association statistics for 14 loci and 7 traits as detected by Van Hout et al.49 (obtained using a linear mixed model), our whole-exome sequencing burden analysis (two-sided t-test; labeled as
WES LoF burden); and the LoF-segment burden (two-sided t-test). The Bonferroni-corrected exome-wide significance threshold for the first two approaches is 3.4 × 10−6, after correcting for multiple
testing with ~15k genes, and 3.51 × 10−7 for the LoF-segment burden, after adjusting for 14,249 genes and 10 time transformations. We identify 10 genes at exome-wide significance with the WES-LoF
burden test, and we replicate 11/14 at p < 0.05/10= 0.005 (adjusted for testing of 10 transformation) using the LoF-segment association in non-sequenced samples (8 at exome-wide significance). The
last column estimates the proportion of the phenotypic variation (R2prop, in %; Supplementary Table 9) of the sequenced samples that can be explained by the non-sequenced cohort; on average that is
19.64% for all the 14 reported associations, or 27.35% if focusing on the exome-wide significant signals.
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through familial searches32. As demonstrated by our analysis,
leveraging IBD to impute ultra-rare variant burden from small
sequenced reference panels can be an effective approach to reveal
gene associations in complex traits and diseases. Although our
analysis only considered association to individual genes, in
principle genome-wide IBD sharing could also be leveraged to
enhance common SNP-based risk prediction, which is particu-
larly relevant for non-European cohorts where sequencing is
limited.

FastSMC inherits some of the limitations and caveats of the
GERMLINE and ASMC algorithms. First, as with most IBD
detection methods, FastSMC requires the availability of phased
data. We note, however, that when very large cohorts are ana-
lyzed, long-range computational phasing results in high-quality
haplotype estimation with switch errors rates as low as one every
several tens of centimorgans5,14. This is particularly true in
regions that harbor IBD segments, which are of interest in our
analysis. Nevertheless, our analysis has shown the presence of
substantial regional heterogeneity in the extent to which indivi-
dual genomes are spanned by IBD segments, which is likely
reflected in a heterogeneous quality of phasing, as well as other
downstream analyses, such as imputation, that rely on the pre-
sence of IBD segments. Second, FastSMC requires the input of a
demographic model and allele frequencies as a prior in order to
accurately estimate the age of IBD segments, and is thus subject to
biases whenever the demographic model is misspecified.
Although we have verified that these biases are not substantial,
future work may enable us to simultaneously estimate IBD
sharing and demographic history. Like ASMC, FastSMC may
tolerate reasonable levels of model misspecification, but a user
should be aware that issues such as substantial inaccuracies in the
genetic map or strong heterogeneity of genotyping density or
quality may lead to biases. Third, FastSMC currently does not
enable analysis of imputed data, a limitation that is shared by
other IBD detection methods. Finally, the accurate identification
of extremely short IBD segments (<1 cM) spanning hundreds of
generations remains a challenge, both computationally (as the
number of such segments increases very rapidly) and methodo-
logically (as fewer variants are available to provide signal for
distinguishing IBS from IBD). This underscores the importance
of quantifying uncertainty through estimates such as IBD seg-
ment quality, precision, and recall, which are affected by para-
meter choices for FastSMC and other IBD detection methods.
Our analysis detected an average of 1.8 IBD segments per pair in
the UK Biobank dataset within the past 50 generations. This is
consistent with a previous study focusing on longer and more
recent segments (average of 0.1 segments >2.9 cM per pair66), but
less than another recent study in a similar length range (average
1.96 segments >2 cM per pair67). Taking uncertainty of the
detected IBD segments into account may reconcile these
estimates.

In addition to algorithmic improvements to address the lim-
itations above, we believe there are a number of interesting future
extensions and interactions with other existing methods in this
area. FastSMC’s identification step currently relies on the
GERMLINE2 genotype hashing strategy. It will be interesting to
test other heuristic strategies for rapidly identifying identical
segments, such as the locality-sensitive hashing strategy recently
implemented in the iLASH algorithm (exhibiting 95% con-
cordance with GERMLINE in application to real multi-ethnic
data66), or methods that rely on the positional Burrows-Wheeler
transform (PBWT) data structure17,67,68. Several methods now
exist to reconstruct gene genealogies in large samples69–72. Two
recent methods substantially improved the scalability of this type

of analysis, but they either focus on data compression, relying on
fast heuristics to achieve scalability at the cost of deteriorating
accuracy in sparse array data71, or employ further modeling that
requires sequencing data72, with a computational cost that is
quadratic in sample size (the same computational complexity
required to run the full ASMC algorithm on all sample pairs). It is
of continued interest to identify synergies between fast heuristic
and accurate probabilistic approaches, which can lead to com-
putationally efficient methods that remain robust to real world
data heterogeneity. Although in this work we focused on large
modern biobanks comprising SNP array data, sequencing data-
sets are quickly becoming available. FastSMC may be tuned to
enable the analysis of sequencing data as well. Finally, looking at
downstream applications, a direction of future work will be to
leverage FastSMC to better control for subtle population strati-
fication for both rare and common variants in association studies.
Our results show that geographic coordinates can be effectively
inferred from recent IBD sharing, and suggest that this may be a
path towards capturing subtle environmental covariates30 that are
missed by genome-wide IBS-based approaches. FastSMC’s output
could thus account for subtle stratification even when the non-
genetic confounder has a small and sharp distribution, where
methods such as genomic control, PCA, or mixed models have
limited efficacy73.

Methods
FastSMC identification step. FastSMC’s identification step leverages genotype
hashing, a strategy that was introduced by the GERMLINE algorithm19 to obtain
substantial gains in computational scalability in the detection of pairwise shared
IBD segments. This approach restricts the search space of IBD pairs to those that
have small, identical shared segments, which are then extended to long segments
with some tolerance. This in turn reduces the IBD search from all pairs of indi-
viduals to the subset of pairs that produce a hash collision at a given segment plus
the cost of hashing the genotype data, which is linear in sample size and genome
length, thus dramatically reducing the cost of IBD detection. However, a limitation
of this strategy is that certain short haplotypes can be extremely common in the
population and result in hash collisions across a large fraction of samples, effec-
tively reverting back to a nearly all-pairs analysis and monopolizing computation
time (Supplementary Fig. 1, gray). These common haplotypes are likely due to
recombination cold-spots and typically contain little variation to classify shared
segments. The majority of computation is thus spent processing regions with the
least information content. The GERMLINE2 algorithm, which we developed in this
work, proposes an adaptive hashing approach that adjusts to local haplotype
complexity to dramatically reduce computational and memory requirements.
GERMLINE2 proceeds as follows: (1) the input haplotype data is divided into small
windows containing 16 or 32 SNPs each (depending on memory architecture); for
a given window w, (2) all haplotypes are converted to binary sequences and effi-
ciently hashed into bins of identical segments; (3) for each bin that contains more
individuals than a fixed threshold (i.e. a low complexity bin) step 2 is recursively
performed for window w+ 1 until no more low complexity bins are found; (4) all
pairs of individuals sharing within a bin are then recorded in a separate hash table
that stores putative segments; (5) pairs of individuals sharing contiguous windows
that are sufficiently long are reported for validation. The primary computation
speed-up comes from the recursive hashing step, which requires haplotypes to be
sufficiently diverse before they are explored for pairwise analysis and stored
(Supplementary Fig. 1, green). To allow for possible phasing errors, a putative
shared segment is maintained through a parameterized number of non-identical
windows, and the total number of non-identical windows within the segment is
also reported for filtering. Most phasing errors either appear as blips, where a phase
switch is immediately followed by a switch back, or by single switches followed by
long stretches of accurate phase14,15 – both of which are permitted by allowing
periodic non-matching along the putative IBD segment. This permissive treatment
of phasing is further filtered in the validation step (below). GERMLINE2 thus does
not require any backtracking and only a small number of physical windows need to
be stored in memory at any time (only enough to perform the recursion), allowing
the method to run on input data of unlimited length.

FastSMC validation step. Every segment detected by GERMLINE2 in the iden-
tification step is added to a buffer of candidate segments. These segments are
immediately decoded by the ascertained sequentially Markovian coalescent
(ASMC) algorithm23 once the buffer is full. ASMC is a coalescent-based
HMM24,25,27,74 that estimates the posterior of the coalescence time, or TMRCA, for
a pair of individuals at each site along the genome using either sequencing or SNP
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array platforms. It leverages a demographic model as prior on the TMRCA, which
increases accuracy in detecting regions of low TMRCA26, but would be infeasible to
apply to the analysis of all pairs of genomes, and is thus only applied with the goal
of validating previously identified candidate IBD regions. The hidden states of the
HMM are discretized intervals, corresponding to a user-specified set of TMRCA
intervals. The HMM emissions probabilities correspond to the probabilities of
observing both the genotypes of the pair of analyzed individuals and the fre-
quencies of mutations along the sequence, given the pair’s TMRCA at each site,
and the frequency of the allele27. The HMM transitions between hidden states
correspond to changes in TMRCA along the genome due to recombination events,
based on the conditional Simonsen-Churchill model75,76. The demographic history
of the analyzed haplotypes is first estimated using other methods25,27 and provided
in input, so that the initial state distribution, the transition, and the emission
probabilities can be computed. The most likely posterior sequence of TMRCAs
along the genome is inferred using a dynamic programming approach that requires
computing time linear in the number of hidden states, leading to a substantial
speed-up over an HMM’s standard forward-backward algorithm, which scales
quadratically in the number of hidden states. When decoding the buffer of can-
didate segments, ASMC computes the posterior of the coalescence time for each
candidate segment and each site from the minimum starting position to the
maximum ending position in the buffer. At each site, if the posterior of coalescence
time being between present time and the user-specified time threshold is higher
than its prior, the site is considered to be IBD and the IBD segment is extended to
the next site if the same condition is still satisfied, obtaining multiple IBD seg-
ments, all shorter than the original IBD candidate segments. The average prob-
ability of the TMRCA being between present time and the user-specified time
threshold is computed over all sites until the segment breaks. This average prob-
ability corresponds to an IBD quality score: the higher it is, the more likely the
segment is IBD. Each segment is also associated with an age estimate corre-
sponding to the average MAP along the segment. FastSMC finally outputs each
IBD segment with its corresponding IBD quality score and age estimate.

FastSMC parallelization. We divided the genome in 39 autosomal regions from
different chromosomes or separated by centromeres23. This enabled us to effi-
ciently parallelize analyses on the UK Biobank dataset, and prevented issues due to
low marker density in centromeres. In addition, FastSMC enables a user to par-
allelize the analysis by specifying the total number of computing jobs to be run in
parallel. If the user requests to run K independent parallel jobs, the total number of
N
2

� �
sample pairs to be analyzed are subdivided into K groups of approximately

equal number of pairs. More in detail, the samples are divided into S ¼ 1þ ffiffiffiffiffiffiffiffiffi
1þ8K

p
2

disjoint sets of approximately the same size, where K is such that S is an integer.
Each parallel job then processes a unique pair of sets {i, j} for 1 ≤ i ≤ j and 1 ≤ j ≤ S.
Note that only samples in sets i and j are loaded in memory, which leads to
substantially lower memory footprint when large data sets are processed. IBD
detection is then only performed for the Ni ×Nj pairs across sets i and j if i ≠ j, or

for the
Ni
2

� �
pairs within set i if i= j. We leveraged this approach to extensively

parallelize the analysis of the UK Biobank dataset.

Simulations. Unless otherwise specified, all simulations use the setup of Palamara
et al.23, which is described in this section. We used the ARGON simulator
(v.0.1.160615)77, incorporating recombination rates from a human chromosome 2
and a recent demographic model for European individuals (Northern European
[CEU] population27). For each dataset, we simulated 300 haploid individuals and a
region of 30 Mb. To simulate SNP array data, we subsampled polymorphic variants
to match the genotype density and allele frequency spectrum observed in the UK
Biobank dataset. We used recombination rates from the first 30Mb of chromosome
2 (average rate of 1.66 cM per Mb). No genotyping or phasing error was introduced
in our simulations. We simulated one dataset following this setup to fine-tune
parameters, and 10 other datasets (all with different seeds) for accuracy bench-
marking. The demographic model and genetic map used to simulate the data were
used when running FastSMC, unless otherwise specified. When testing FastSMC’s
robustness to demographic model misspecification, we simulated data under a
constant population size of 10,000 diploid individuals, but ran FastSMC assuming a
European demographic model.

Accuracy evaluation. We compared FastSMC to the most recent published soft-
ware version available for existing methods at the time we conducted this analysis:
germline-1-5-2, refined-ibd.23Apr18.249 and RaPID_v.1.2. Throughout this work,
we define a genomic site to be shared IBD by a pair of phased haploid individuals if
their TMRCA at the site is lower than a specified time threshold (e.g. 50 genera-
tions). This is a natural definition for IBD sharing, as it is closely related to several
other quantities that are of interest in downstream analyses, such as genealogical
relatedness or the probability of sharing rare genomic variants. We note, however,
that a number of other definitions can be found in the literature22. This is often due
to the fact that current IBD detection algorithms cannot effectively estimate the

TMRCA of a putative IBD segment. Downstream analyses of shared segments (e.g.
refs. 6,9) thus often resort to using the length of detected segments as a proxy for its
age, since a segment’s length is expected to be inversely proportional to its
TMRCA. We benchmarked all methods using several such time thresholds (25, 50,
100, 150, and 200 generations), testing all polymorphic sites for all pairs of gen-
omes in the simulated data, across 10 coalescent simulations. Accuracy was
quantified using the area under the precision-recall curve (auPRC), which effec-
tively addresses issues with class imbalance that are expected in this analysis due to
the low prevalence of IBD sites compared to non-IBD sites. Precision represents
the fraction of identified sites that are indeed IBD (following the TMRCA-based
definition of IBD), and recall represents the fraction of true IBD sites that are
successfully identified. Particularly, for a given IBD time threshold, a site inferred
to be IBD by one of the methods was considered correct (true positive) if the true
TRMCA at this site was indeed below the specified IBD time threshold, and
incorrect (false positive) if the true TRMCA at this site was above the IBD time
threshold. Similarly, a site that was not reported to be IBD by the tested method
was considered correct/incorrect (true/false negative) if the true TMRCA at the site
was found to be below/above the IBD time threshold. We used these definitions to
compute the precision and recall values for all methods. Each method presents
different parameters, which can be used to tune precision and recall, e.g. by
allowing a more or less permissive detection of IBD segments. String-matching
methods (GERMLINE and RaPID) report long, approximately IBS regions and do
not produce calibrated estimates of segment quality. A commonly used proxy for
the likelihood of a detected IBS segment being IBD is its length, with longer IBS
segments being more likely to be IBD than shorter ones. In lack of an interpretable
measure of accuracy, precision and recall for the output of GERMLINE and RaPID
was thus tuned by using different segment length cutoffs. RefinedIBD and
FastSMC, on the other hand, both provide an explicit quantification of segment
quality. RefinedIBD outputs a LOD score for each segment, while FastSMC
computes a segment’s IBD quality score, which is the posterior of the TMRCA
being between present time and the user-specified time threshold. We thus used
LOD score and IBD quality score to tune precision and recall of RefinedIBD and
FastSMC, respectively. Each method presents a number of additional parameters,
which we further optimized using a grid-search, so that each method can be run
with a set of parameters that is as close to optimal as possible. Despite the extensive
tuning, not all accuracy values could be explored by all methods. Namely, some
recall values cannot be achieved using realistic parameters, due to factors such as
the minimum allowed LOD parameter for RefinedIBD, the time discretisation
introduced in FastSMC and the minimum length parameter for all methods. We
thus evaluated all algorithms by restricting the comparison to the range of recall
values that could be achieved by all methods, which we refer to as common recall
range. Furthermore, some of these parameters affect the speed of each algorithm.
The parameters we chose for comparing methods are optimized for maximum
accuracy, although we avoided parameters that would result in degeneracies (e.g.
the minimum length in FastSMC’s identification step could be set to values below
0.1 cM, effectively disabling this step and reverting to a pairwise ASMC analysis,
which would lead to a higher accuracy and larger recall range, at the cost of
unreasonable computation).

Fine-tuning of methods. For each method (FastSMC, GERMLINE19, Refine-
dIBD20, and RaPID21) and each IBD time threshold (25, 50, 100, 150, and 200
generations), we performed a grid-search over possible parameter values to opti-
mize the accuracy on one simulated dataset and select the best set of parameters.
For each method, we then explored the obtained set of parameters to make the
algorithm faster while negligibly compromising the accuracy (in most cases, this
resulted in a slightly smaller recall range but with a substantial gain in speed). We
finally used 10 independent simulated datasets to validate the accuracy and the UK
Biobank dataset to measure running time and memory usage (Supplementary
Figs. 4–5). Unless otherwise specified, the parameters presented in Supplementary
Table 1 were used in all analysis.

Computing confidence intervals. Unless otherwise indicated, confidence intervals
(CIs) were computed by bootstrap using 39 genomic regions as resampling unit.
The use of genomic regions as resampling unit, rather than individuals, ensures
that approximately independent bootstrap replicates are utilized. These 39 genomic
regions were obtained by dividing the genome (autosomal chromosomes only) in
regions from different chromosomes or separated by centromeres.

Estimating the age of an IBD segment. A common way to estimate the age of an
IBD segment is to use its length to obtain a maximum likelihood estimator (MLE).
When the time in generations g to the most recent common ancestor is known, the
total length of a randomly chosen shared IBD segment follows an exponential
distribution with rate 1/2g per Morgan6. The likelihood function is thus given by
LðgÞ ¼ ð2gÞe�2lg , where l denotes the segments length in Morgans. As
dL
dg ðgÞ ¼ 2e�2lg ð1� 2lg Þ, the MLE is given by ĝ ¼ 1

2l. FastSMC does additional

modeling and provides a different age estimate, which consists in the average MAP
estimate of the TMRCA along the segment. We sometimes report segment age
estimates in years, rather than generations, assuming 30 years per generation.
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Effective population size estimate. Assuming a constant effective size Ne, the
probability of finding a common ancestor at a given site for a pair of individuals is
exponentially distributed with mean Ne. The probability of finding a common

ancestor before any time threshold T is thus given by PðtTMRCA ≤TjNeÞ ¼R T
0

1
Ne
e
�t
Ne dt ¼ 1� e

�T
Ne ’ T

Ne
for Ne → ∞ i.e Ne ¼ T

PðtTMRCA ≤TjNeÞ for T > 0. We esti-

mate this probability using the fraction of genome shared by IBD segments denoted
by fT. Let Γ denote the set of sites along the genome and θ the demographic model.

Eðf T jθÞ ¼ E 1
jΓj
P

γ2Γ1θðtTMRCA at site γÞ
� �

¼ 1
jΓj
P

γ2ΓE 1θðtTMRCA at site γÞð Þ ¼
1
jΓj
P

γ2ΓPðtTMRCA ≤T at site γjθÞ ¼ PðtTMRCA ≤TjθÞ. We finally estimate the

effective population size Ne using N̂e ¼ T
f T

for any T > 0, where f T is the sample

mean for the fraction of genome shared fT. Note that, for simplicity, we infer a
single aggregate effective population size across the past T generations rather than
comparing more complex demographic models.

UK Biobank dataset and definition of postcodes. The UK Biobank cohort2

contains 487,409 samples, which were phased at a total of 678,956 autosomal
biallelic SNPs using Eagle215. In all, 49,960 of these individuals were also exome-
sequenced resulting in ~4 million polymorphic variants, 98.4% of which have
frequency <1%49. We used the same sets of unrelated individuals (N= 407,219)
and individuals of self-reported and inferred White British ancestry (N= 408,974)
as defined by Bycroft et al.2. Related individuals refer here to ≤3rd degree relatives,
e.g. first degree cousins, estimated using the software KING78. The UK Biobank
cohort predominantly contains samples of White British ancestry2 and the inclu-
sion of non-White British samples did not result in substantial biases for analyses
of population structure and natural selection. We thus decided not to exclude
samples based on ancestry, unless otherwise specified, so that results are repre-
sentative of the average UK Biobank participant. FastSMC was run on the UK
Biobank data set using the optimal set of parameters for IBD detection within the
past 50 generations, using the demographic model for CEU individuals inferred by
Terhorst et al.27. We note that several candidate demographic models could be
adopted9 and that simultaneous estimation of IBD sharing and demographic model
are an attractive direction of future investigation.

Birth coordinates (all within the UK) were available for 432,968 individuals in
the cohort in the Ordnance Survey Great Britain 1936 (OSGB36) Eastings and
Northings system. We refer to these coordinates as X and Y coordinates, which can
be converted into longitude and latitude. Home addresses at assessment were
available for 482,832 samples in the OSGB36 Eastings and Northings system. We
refer to these coordinates as home addresses. We analyzed population structure
using 120 postcodes in the UK, only looking at the first one or two letters
indicating the city or region. Postcodes BT, BF, BN, and CR were not included due
to lack of samples.

Hierarchical clustering. We constructed a similarity matrix for all individuals with
birth coordinates in the UK Biobank dataset (432,968 samples) using the sharing of
IBD segments within the past 10 generations. This resulted in a sparse 432,968 ×
432,968 matrix, where entry (i, j) corresponds to the fraction of genome shared by
common ancestry in the past 10 generations between individuals i and j. We
computed the largest connected component of this matrix, which comprised all but
102 individuals, which we excluded from further analysis. We then applied an
Agglomerative Hierarchical Clustering algorithm for Sparse Similarity Matrices
using average linkage with the sparseAHC library. We obtained a dendrogram with
432,866 leaves (one for each sample) and a single root. Each node is annotated with
a distance from the root, ranging from 0 (the root itself) to 1 (the leaves). A node’s
distance from the root corresponds to the fraction of genome shared by individuals
whose TMRCA is such a node. To visualize clustering of individuals in Fig. 2, we
cut the tree at increasingly large distances from the root, corresponding to
increasingly fine-grained clusters in terms of both genetic and geographic proxi-
mity of the samples. In each case, we only highlight large clusters containing at
least 500 individuals. To plot results, we divided each submap into 10,080 grid cells
(80 lines along the X-axis and 126 lines along the Y-axis). In each cell, we com-
puted the most represented cluster (i.e the cluster with the largest number of
individuals in that cell) and individuals from that cluster are shown in the corre-
sponding color. The transparency of all points within a cell (ranging from 0 to 1)
was set to the fraction of individuals from that cell corresponding to the most
represented cluster. All light gray dots correspond to individuals that are either in
clusters containing <500 samples or part of a cluster different from the one
represented in the grid cell. Including/excluding individuals of non-White British
ancestry has a negligible impact on this analysis, as most of these samples belong to
smaller clusters not represented in Fig. 2 (in light gray).

K-NN prediction of birth location. We randomly sampled two subsets of 10,000
individuals each from the UK Biobank cohort and used the sharing of recent
common ancestors in the past 600 years with the remaining 412,866 individuals in
the UK Biobank dataset to predict their birth locations, applying the K Nearest
Neighbors algorithm. One dataset was used to find the optimal value for the
parameter K, while the second one was used to validate the results (details shown in
Supplementary Fig. 16). We computed pairwise genetic similarity across

individuals using either FastSMC-estimated pairwise IBD sharing, or using a
standard estimate of kinship based on genome-wide allele sharing. This kinship
estimator was obtained by computing the product XX⊤, where X is the N × S
genotype matrix (N= 432,866 samples and S= 716,175 autosomal SNPs), stan-
dardized to have mean 0 and variance 1 for each column. Sharing of very close
relatives is highly informative of geographic proximity. We thus excluded ≤3rd
degree relatives2 from the dataset to bypass this source of information and test the
generality of this approach. Prior to the exclusion of close relatives, the IBD-based
predictor obtained an average error of 86 km (95% CI= [83,88], optimal K= 1),
while the allele sharing distance predictor obtained an average mean error of 118
km (95% CI= [115,121], optimal K= 1). After removing close relatives (which
brought sample size down to 8226), the IBD-based predictor obtained an average
error of 95 km, 95% CI= [93,97], optimal K= 5 compared to 137 km, 95% CI=
[135,139], optimal K= 5 for allele sharing. Note that this analysis focused on mean
error, which is larger than median error (e.g. as in Fig. 3) due to the presence of
outliers.

We regressed the true X (resp. Y) birth coordinates on the predicted X (resp. Y)
birth coordinates using either IBD sharing in the past 20 generations allele sharing,
for the set of 8226 random samples we obtained after excluding 3rd degree
relatives2. The estimated coefficient for the IBD-based predictor was 0.91, 95% CI
= [0.88, 0.94], (resp. 0.96, 95% CI= [0.94, 0.98]), substantially larger than the
estimated coefficient for the allele sharing predictor (0.12, 95% CI= [0.09,0.16];
resp. 0.12, 95% CI= [0.09, 0.15]). Finally, after excluding close relatives, we
computed the correlation between true and predicted coordinates for both
methods, obtaining a stronger correlation when using IBD sharing (r= 0.6 for X
coordinate and r= 0.74 for Y coordinate) than when using allele sharing (r= 0.31
for X coordinate and r= 0.43 for Y coordinate, respectively). Correlation for IBD
sharing was also stronger without removing close relatives (r= 0.63 for X
coordinate and r= 0.77 for Y coordinate, compared to r= 0.40 and r= 0.42
respectively for allele sharing). We did not exclude individuals from these analyses
based on their inferred or reported ancestry, so that these results are reflective of
the average UK Biobank participant. Prediction accuracy for non-White British
individuals will be lower due to a smaller sample size. We thus expect that
restricting these analyses to White British samples will lead to slightly improved
accuracy.

Detection of recent positive selection. In order to identify genomic regions with
an usually high density of coalescence times, we computed the Density of Recent
Coalescence (DRCT) statistic within the past T generations23. FastSMC does not
output the posterior of the TMRCA but provides an IBD quality score, corre-
sponding to the sum of posterior probabilities between generations 0 and T, where
T is the user-specified threshold. As the UK Biobank dataset was analyzed for T=
50, the DRC50 statistic at a given site along the genome was estimated by averaging
all IBD quality scores obtained from all analyzed pairs of samples (assuming a score
of 0 if no segment is present for a pair). The DRC50 statistic reflects the probability
that a random pair of individuals coalesced at a given genomic site during the past
50 generations. We averaged it within windows of 0.05 cM along the genome.
Results are presented in Fig. 4 and Supplementary Table 4.

Given n samples from a population of recent effective size N, the DRC50 statistic
is approximately Gamma-distributed under the null for n≪N23. We then built an
empirical null model using the database of regions under positive selection used by
Palamara et al.23. We fitted a Gamma distribution (using the Scipy library79) to the
estimated DRC50 values within putative neutral regions (after excluding the regions
of known positive selection and 500 kb windows around them), and used this
model to obtain approximate one-sided p-values throughout the genome. We
analyzed 52,003 windows, using a Bonferroni significance threshold of 0.05/52,003
= 9.6 × 10−7. When multiple candidate genes were found, we only retained the one
nearest to the top SNP (i.e with smallest p-value). Three of the genome-wide
significant signals we detected (MRC1 locus, chr10:17.43-18.10 Mb; HYDIN locus,
chr16:70.10-72.69 Mb, and EFTUD2 locus, chr17:41.84-44.95 Mb) fell within the
putative neutral regions of the genome. We thus iterated this procedure, excluding
these loci from the set of putative neutral loci. Once again, one of the genome-wide
significant loci (BANP locus, chr16:88.25-88.48Mb) overlapped with the putative
neutral regions. We excluded this locus and iterated the procedure again. Results
from the empirical null model fitting are presented in Supplementary Fig. 18.
Finally, we verified that the genome-wide significant peaks detected using this
approach are not found in regions of extremely high recombination rate or low
marker density, which may introduce systematic biases in IBD detection
Supplementary Table 5. This analysis was replicated after excluding samples of
non-White British ancestry but resulted in the same set of genome-wide
significant loci.

We note that computing significance for the DRC50 statistic using this approach
relies on several simplifying assumptions. Specifically, we assume that all pairs of
individuals coalesce independently within the past 50 generations, which is not
conservative and may be violated in practice. On the other hand, we fit the null
model using real data, which likely contains regions under weak selection, and
neglect the correlation across DRC estimates in different bins, applying a
Bonferroni correction; both are conservative choices. Overall, using this approach
to assess significance for the DRC statistic within small time windows was observed
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to not lead to significant inflation23 (Supplementary Fig. 18), although the resulting
approximate p-values should be interpreted with care.

Association analyses. We used each IBD segment between exome-sequenced LoF
carrying individuals and non-sequenced individuals as a surrogate for the latter
carrying an untyped LoF mutation, which we then tested for association with
phenotype. For a given gene and a given non-sequenced individual, we define a
LoF-segment as any IBD segment shared with an exome-sequenced LoF mutation
carrier. We then compute a LoF-segment burden for each individual as the sum of
probabilities (IBD quality scores) of all LoF-segments involving that individual,
under the assumption that increased IBD probability and incidence corresponds to
increased probability of sharing the LoF variant. Finally, this burden is tested for
association with each target phenotype (rank-based inverse normal transformed) in
a linear regression with covariates for age, sex, BMI, smoking status, and four
principal components (two-sided test), similarly to the study from Van Hout
et al.49.

Although this test captures uncertainty about the sharing of IBD segments
through the use of IBD quality scores, it makes use of all LoF-segments, regardless
of their age. As a result, it may be suboptimal in cases where the LoF arose after the
TMRCA, for which a LoF-segment is independent of underlying LoF sharing, and
thus do not contribute signal to the burden test. We thus augmented the LoF
burden test by separately considering only LoF-segments older than a specified
threshold. For each gene, we divided all LoF-segments into deciles based on IBD
quality score. For instance, segments with IBD quality scores in the tenth decile
(which corresponds to the IBD quality score interval [0.47, 1]), strongly suggest the
sharing of common ancestors that lived recently and have therefore transmitted
extremely recent variation. We then constructed 10 separate LoF-segment burdens,
with increasingly more stringent quality score cutoffs (referred as time
transformations in our analysis), and performed 10 association tests for each gene,
taking the test that resulted in the lowest p-value after adjusting significance
thresholds by conservatively assuming independence for all tests. Not all genes
contained shared LoF-segments for testing, which reduced the total number of
tested genes to 14,249. This resulted in a Bonferroni-corrected exome-wide
significance threshold of 0.05/(10 × 14,249) for our LoF-segment burden analysis.
We note that this approach does not rely on phasing information and that the IBD
segment shared with a carrier is equally likely to involve or not the haplotype that
harbors the LoF variant. In principle it may be possible to leverage phasing
information to increase the accuracy of this approach. Phasing of rare exome
sequencing variants is however challenging80 and we do not attempt that in
this work.

Although gene-based burden tests are meant to implicate specific genes with a
known directional effect on the trait, the observed signal may not always be driven
by a causal variant, and instead be due to tagging of causal variants in nearby genes.
In this case, it is possible that the underlying rare causal variant is tagged by a
common variant, which may have been detected in a previous GWAS, leading to
synthetic associations – an effect similar to that hypothesized in the context of
common variant association81. In particular, these common variants may provide
better tagging of the underlying true causal variation than our LoF-segment burden
score, and would thus remove or significantly reduce the association signal if
included as covariates in the test. Based on this principle, for each gene and each
trait, we selected up to three genotyped SNPs that were in proximity (±1 Mb from
the gene), which were significantly (p < 1 × 10−8) associated by Loh et al.82, and
used them as covariates. We observed that this approach often improves the
association signal (Supplementary Fig. 20), removing signals that were likely caused
by tagging common variants. We refer to analyses that include top associated SNPs
as covariates as SNP-adjusted, for either the LoF-segment or WES-LoF burden test;
results without the SNP-adjustment are shown in Supplementary Fig. 20 and
Supplementary Table 7.

We validated our approaches, both LoF-segment and not SNP-adjusted LoF-
segment, which seek to implicitly impute ultra-rare LoF variation between
sequenced and non-sequenced individuals, by testing for association between rare
variation and seven blood-related phenotypes recently analyzed by Van Hout
et al.49, and comparing to the results of that same study. However, because
summary association statistics for this analysis are not available, we performed our
own exome-wide burden testing. Specifically, we used the same testing framework
we used in our LoF-segment burden analysis to test for association between
phenotypes and burden of LoF variants within a gene in exome-sequenced
individuals, adjusting for the same covariates and using the same rank-based
inverse normal transformation for the phenotype. We refer to this analysis as WES-
LoF burden analysis.

Both LoF-segment burden and WES LoF burden analyses were restricted to
unrelated individuals of White British ancestry, as defined by Bycroft et al.2, and
the LoF-segment burden analysis was further restricted to individuals for which
exome sequencing data is not available. This resulted in 303,125 individuals for the
two LoF-segment burden tests and 34,422 individuals for the WES LoF. Finally, we
note that the UK Biobank has recently released a statement regarding incorrectly
mapped variants in the 50k WES Functionally Equivalent (FE) dataset (available
online at https://www.ukbiobank.ac.uk/wp-content/uploads/2019/12/Description-
of-the-alt-aware-issue-with-UKB-50k-WES-FE-data.pdf.), which we however
believe did not introduce any significant biases in our analyses.

Applying our WES-LoF burden analysis, we detected 10 out of 14 exome-wide
significant associations also reported by Van Hout et al.49. We also detected three
additional associations that were not reported by Van Hout et al.49: MAPK8 and
APOC3 with red blood cell distribution width (two-sided t-test p= 1.33 × 10−6 and
p= 2.13 × 10−7 respectively), and TET2 with eosinophil count (two-sided t-test
p= 1.79 × 10−8). Results are summarized in Fig. 5b. These differences are likely
ascribed to the slightly different testing strategy we adopted, e.g. the use of a linear
model, rather than a linear mixed model, and the exclusion of related samples.
Detailed results for these analyses are reported in Supplementary Tables 7 and 8. A
QQ-plot verifying the calibration of our test for the SNP-adjusted LoF-segment
burden analysis is shown in Supplementary Fig. 26 and, as explained at that point,
rare variant stratification is likely to be included in our results73 but addressing this
issue goes beyond the scope of the current study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The main data items presented in this manuscript (simulation data, UK relatedness
matrices, DRC selection annotations, association summary statistics) are available on
Zenodo (DOI: 10.5281/zenodo.4012676)83. The interactive map with results on
population structure is publicly available online at https://ukancestrymap.github.io/.
Genomic data sets and annotations analysed in this study include: UK Biobank http://
www.ukbiobank.ac.uk/, genetic maps ftp://1000genomes.ebi.ac.uk/vol1/ftp/technical/
working/20110106_recombination_hotspots/, gene coordinates http://hgdownload.cse.
ucsc.edu/goldenPath/hg19/database/refGene.txt.gz, natural selection annotations ftp://
jjwanglab.org/dbPSHP/curation/dbPSHP_20131001.tab, association summary statistics
https://data.broadinstitute.org/alkesgroup/UKBB/, allele age estimates http://human.
genome.dating, population sizes in UK regions https://www.nomisweb.co.uk/census/
2011/qs102ew and https://www.scotlandscensus.gov.uk/ods-web/data-warehouse.html.
Data analyses are based on open-source libraries and software programs that are
available online: Scipy79, Matplotlib84, NumPy85,86, Pandas87,88, Seaborn89, BCFtools
(http://samtools.github.io/bcftools/), Basemap (https://matplotlib.org/basemap/index.
html) and sparseAHC (https://github.com/khabbazian/sparseAHC/).

Code availability
The FastSMC software is freely available at https://github.com/PalamaraLab/FastSMC.
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