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ligand-binding proteins from dose range
thermal proteome profiles
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Detecting ligand-protein interactions in living cells is a fundamental challenge in molecular
biology and drug research. Proteome-wide profiling of thermal stability as a function of ligand
concentration promises to tackle this challenge. However, current data analysis strategies use
preset thresholds that can lead to suboptimal sensitivity/specificity tradeoffs and limited
comparability across datasets. Here, we present a method based on statistical hypothesis
testing on curves, which provides control of the false discovery rate. We apply it to several
datasets probing epigenetic drugs and a metabolite. This leads us to detect off-target drug
engagement, including the finding that the HDACS inhibitor PCI-34051 and its analog BRD-
3811 bind to and inhibit leucine aminopeptidase 3. An implementation is available as an R
package from Bioconductor (https://bioconductor.org/packages/TPP2D). We hope that our
method will facilitate prioritizing targets from thermal profiling experiments.
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ARTICLE

tudying ligand-protein interactions is essential for under-

standing drug mechanisms of action and adverse effects!"2,

and more generally for gaining insights into molecular
biology by monitoring of metabolite- and protein-protein
interactions®>~10. Thermal proteome profiling (TPP)LIL12 com-
bines quantitative, multiplexed mass spectrometry (MS)!3 with
the cellular thermal shift assay!* and enables proteome-wide
measurements of thermal stability, by quantifying non-denatured
fractions of cellular proteins as a function of temperature. TPP
has been used to study binding of ligands and their downstream
effects in cultured human!? and bacterial cells!>1%, and has
recently been adapted to animal tissues and human blood!”.

In addition to temperature, non-denatured fractions of cellular
proteins can be measured as a function of other variables, such as
ligand concentration. In the two-dimensional (2D)-TPP experi-
mental design, both temperature and ligand concentration are sys-
tematically varied?. In comparison to the original proposal for TPP
that only varied a temperature range (TPP-TR), this method over-
comes the problem that different proteins may be susceptible to
stability modulation at different compound concentrations or tem-
peratures. Thus, 2D-TPP can greatly increase sensitivity and cov-
erage of the amenable proteome. However, while statistical analysis
for the TPP-TR assay is well established! 118, similar approaches for
2D-TPP have been hampered by its more complicated experimental
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design. 2D-TPP employs a multiplexed MS analysis of samples in
the presence of n ligand concentrations (including a vehicle control)
at m temperatures (Fig. 1a). Thus, for each protein i, a m x n data
matrix Y; of summarized reporter ion intensities is obtained.
However, these matrices contain non-randomly missing values,
usually at higher temperatures, due to differential thermal stability
across the proteome, i.e., some proteins may fully denature at some
of the temperatures used in the experiment and thus will not be
quantified at these temperatures.

In the approach of Becher et al.2, nonlinear dose-response
curves were fitted to each protein for each individual temperature.
Subsequently, hits were defined by applying bespoke rules,
including a requirement for two dose-response curves at con-
secutive temperatures to both have R? > 0.8 and a fold change of
at least 1.5 at the highest treatment concentration. However, this
approach, with its reliance on preset thresholds, has uncontrolled
specificity (e.g., there is no explicit control of the false discovery
rate (FDR)) and, as a consequence, may have suboptimal sensi-
tivity if, e.g., the thresholds are too stringent.

In this work, we present a statistical method for FDR-controlled
analysis of 2D-TPP data. By benchmarking our approach on a
synthetic dataset, we demonstrate that the approach controls the
FDR. Application of the approach to previously published and
newly acquired 2D-TPP datasets of epigenetic drugs showcases the
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Fig. 1 lllustration of the 2D-TPP experimental setup and our computational analysis approach. a 2D-TPP protocol: Cells are grown in the presence of
n different concentrations of a ligand of interest. Each sample is divided into m aliquots, each of which is subjected to one of m temperatures, and the
remaining soluble proteins are extracted. Proteins are digested with trypsin and labeled with TMT, such that one set of TMT labels is used for all
concentrations and two adjacent temperatures. w =m/2 MS runs are performed, peptides are identified by database search and quantified signal is
aggregated at the protein level. b Illustration of fitted curves under the null and alternative model, and how obtained residuals are used to find proteins
significantly altered in thermal stability—and thus potential ligand interactors—via an F-statistic (example fits for the null and alternative model are
shown in Supplementary Fig. 1). The g-g plot on the right compares bootstrapped and observed F-statistics. Although the majority of quantiles of the two
distributions align, the top observed F-statistics, corresponding to the true positives in the dataset, are shifted off-diagonal. The results can be
represented as volcano plots, highlighting significant hits. RSS: residual sum of squares; sign(k) x V/ RSS® — RSS': measure of effect size—how much more
variance is explained by the alternative model compared to the null—and direction, i.e., a positive sign for stabilized proteins, negative for destabilized
ones; log,(F-statistic + 1): the transformation is used for visualization purposes only, the addition of 1 guarantees that logarithm-transformed values

remain bounded as F approaches O.
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discovery of novel off-targets, including leucine aminopeptidase 3
(LAP3) for the compounds PCI-34051 and BRD-3811. We pro-
vide an open-source software implementation of our method
(https://bioconductor.org/packages/TPP2D).

Results

Design of models for ligand dose range thermal profiles. We
developed an approach that fits two nested models to protein
abundances obtained from 2D-TPP. Our approach adapts and
extends a method by Storey et al.!® for the analysis of microarray
time-course experiments. The null model allows the soluble pro-
tein fraction to depend on temperature, but not concentration, as
expected for proteins with no treatment-induced change in ther-
mal stability. The alternative model fits the soluble protein fraction
as a sigmoid dose-response function of concentration, separately
for each temperature. This choice of the alternative model can be
justified biophysically, as with increasing ligand dose, a higher
fraction of a protein’s population will be amenable for stabiliza-
tion'%. To increase estimation precision, the model’s degrees of
freedom are reduced by sharing or constraining certain function
parameters across temperatures: for each protein, slope and
direction of the response (destabilization or stabilization) are set to
be the same across temperatures, and the inflection point, i.e., the
half-maximal effective concentration in —log;, space (pEC50), is
required to increase or decrease linearly with temperature (Sup-
plementary Fig. 1). The residual sums of squares of the two
models are compared to obtain, for each protein, an F-statistic. In
addition, we implemented an optional empirical Bayes modera-
tion20 of these F-statistics by shrinking the denominator towards
the average value among all proteins with similar number of
observations. This statistic has no analytically known null dis-
tribution, so we calibrate it with an adaptation of the bootstrap
approach of Storey et al.!%. Briefly, residuals from the alternative
model are resampled and added back to the null model estimate to
simulate the case where there is no concentration effect of the

ligand. This resampling scheme takes into account the noise
dependence of measurements within individual MS runs. Overall,
our approach allows the detection of ligand-protein interactions
from thermal profiles (DLPTP; Fig. 1b) and is implemented as a
package for the statistical environment and language R (https://
bioconductor.org/packages/TPP2D).

Benchmarking DLPTP on a synthetic dataset. To evaluate
whether our method implementation controlled FDR as expected
and how its sensitivity compared to the threshold-based approach
of Becher et al.2, we created a synthetic dataset. This dataset was
composed of 5000 simulated protein thermal profiles expected
under the null hypothesis of no ligand effect, with independent
Gaussian noise with standard deviations observed for real data-
sets. In addition, 80 protein profiles known to be true positives
were obtained from various datasets and spiked in. We applied
our method to this dataset using 100 rounds of bootstrapping and
compared nominal FDR to observed FDR (Fig. 2a). Although we
found that the standard version of DLPTP was well calibrated in
terms of FDR, the moderated version was conservative (Fig. 2a).
However, it was observed that the moderated variant of DLPTP,
which is the default in the software and was used for all further
analyses in this manuscript, showed a better sensitivity-specificity
tradeoff than the standard approach and the bespoke thresholds
(Fig. 2b).

Re-analysis of previously published datasets using DLPTP. We
applied our approach by re-analyzing previously published 2D-
TPP datasets. For the pan-HDAC inhibitor panobinostat?! pro-
filed in intact HepG2 cells?, we recovered all previously reported
on- and off-targets of the drug based on this dataset>: HDACI,
HDAC2, TTC38, PAH, FADSI, and FADS2 (Fig. 3a, Supple-
mentary Figs. 2a, c and 3a, b, and Supplementary Data 1), except
HDACS6, which showed a noisy, non-sigmoidal profile in this
dataset (Supplementary Fig. 3e and Supplementary Data 1). In
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Fig. 2 Benchmarking of DLPTP on a synthetic dataset confirms FDR control and high sensitivity. a Observed FDR versus nominal FDR for 3 random
seeds for bootstrapping (B =100) with the standard and moderated DLPTP method applied to a synthetic dataset. b Observed TPR versus observed FDR
curves for the standard and moderated DLPTP method and the threshold-based approach. Shown is the average of three different random seeds for both
DLPTP methods with 100 bootstraps. Vertical lines correspond to observed FDR at 1, 5, and 10%, x represents results obtained with different DLPTP
versions at 1%, + at 5%, and * at 10% nominal FDR. FDR: false discovery rate; TPR: true positive rate.
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addition, we detected two zinc-finger transcription factors,
ZNF148 and ZNF384, and the oxidoreductase DHRS1 to sig-
nificantly stabilize upon panobinostat treatment (Supplementary
Fig. 3¢, d and Supplementary Data 1). These observations are in
line with a recent report stating that panobinostat can bind zinc-
finger transcription factors and that products arising through
metabolism of the drug can stabilize DHRS1!7.

Next, we re-analyzed a dataset probing the BET bromodomain
inhibitor JQ122 in THP1 cell lysate?3. We recovered all previously
reported targets: BRD2, 3, 4, and HADHA, an enzyme with
acetyltransferase activity (Fig. 3b, Supplementary Fig. 2b, d, and
Supplementary Data 1). These analyses showcase that DLPTP can
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be applied to 2D-TPP experiments acquired in intact cells as well
as in lysates.

Thermal profiling of the HDACS inhibitor PCI-34051 reveals
LAP3 as a potent off-target. Next, we performed a 2D-TPP
experiment in HL-60 cells with the epigenetic inhibitor PCI-34051
(Fig. 4a), a compound reported to selectively inhibit HDACS
that was suggested as a potential treatment for multiple types of
T-cell leukemia?“. Analysis of the dataset with DLPTP revealed 154
proteins significantly changing in thermal stability which enriched
for the biological processes—oxidation-reduction process and
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Fig. 3 DLPTP recovers known drug-protein interactions from published datasets. a \Volcano plot for the 2D-TPP dataset acquired upon treatment of
HepG2 cells with the HDAC inhibitor panobinostatZ. b Analogous to a, for the JQ1 2D-TPP dataset acquired in THP1 lysate23. a, b Blue points represent
proteins that were detected as stabilized by the drug treatment and orange as destabilized, at 10% FDR. Axes are outlined in Fig. 1b.
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Fig. 4 DLPTP reveals LAP3 as a target of PCI-34051 and BRD-3811. a Chemical structure of the HDACS inhibitor PCI-34051. b Volcano plot of the 2D-
TPP experiment with PCI-34051 in HL-60 cells. ¢ Chemical structure of BRD-3811, an analog of PCI-34051 in which the Zn2+ chelating hydroxamic acid
(HA) group is sterically hindered by a methyl group (highlighted in red). d Volcano plot of the 2D-TPP experiment with BRD-3811 in HL-60 cells.

e Fluorescence intensity measured over time in a fluorometric leucine aminopeptidase assay with recombinant LAP3 in the presence of PCI-34051,

BRD-3811, or vehicle control. Axes in b and d are outlined in Fig. 1b.
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Fig. 5 DLPTP recovers annotated GTP and ATP interactors from a 2D-TPP experiment profiling GTP-protein interactions. a \VVolcano plot for the
analysis of the GTP gel-filtered lysate dataset. b Upset plot of set intersections of annotated nucleotide-binding proteins, stabilized hits found with the
threshold-based approach, and stabilized hits found by DLPTP. Axes in a are outlined in Fig. 1b.

carboxylic acid metabolic process (hypergeometric test, odds ratio:
3.5, adjusted p=>5x 107! and odds ratio: 2.8, adjusted p=7 x
1079, respectively), likely reflecting the cellular response to the
drug treatment and not direct drug targets. Apart from proteins
reflecting these gene sets, we found the reported target HDACS8
(PECso,pc1-34051 = 6-4) and LAP3 (pECsgpcr 34051 = 5.9) among
the top stabilized hits (Fig. 4b and Supplementary Fig. 4a). The
expression of LAP3 correlates with hepatocellular carcinoma cell
proliferation?® and its inhibition suppresses invasion of ovarian
cancer?®. To follow-up our identification of LAP3, as a potential
off-target of PCI-34051, we turned to an analog of the drug: BRD-
3811 (Fig. 4c), in which the Zn?>* chelating hydroxamic acid (HA)
group is sterically hindered from binding HDAC8 by an additional
methyl group. A 2D-TPP experiment in HL-60 cells with BRD-
3811 showed no significant stabilization of HDACS, as expected.
However, we again found LAP3 as a significant target (Fig. 4d and
Supplementary Fig. 4b). To investigate whether LAP3 function was
inhibited by binding of either compound, we performed an in vitro
fluorometric leucine aminopeptidase assay using a recombinant
LAP3 enzyme. Both compounds inhibited recombinant LAP3
peptidase activity (Fig. 4e). However, BRD-3811 showed a smaller
effect, in line with a 10-fold lower EC50 measured in the 2D-TPP
experiment (pECsoprp—3811 = 5.0), which suggests that the bind-
ing of both molecules to LAP3 might be mediated via the HA
group, but dampened by the additional methyl group in the case of
BRD-3811.

In conclusion, 2D-TPP of the analog compounds PCI-3405
and BRD-3811 and DLPTP analysis revealed their intracellular
target space (Supplementary Data 2) and showed that both bind
and inhibit LAP3, a potentially interesting ovarian cancer and
hepatocellular carcinoma target.

DLPTP recovers GTP- and ATP binders from a 2D-TPP
experiment profiling GTP. So far, we focused on the application
of DLPTP to detect drug—protein interactions. To evaluate whether
our approach generalized to 2D-TPP datasets profiling small
molecules comprising a broad range of affinities to their target
proteins, such as metabolites, we performed a 2D-TPP experiment
in gel-filtered lysate of Jurkat cells treated with a concentration
range from 0 to 0.5mM of NaGTP (guanosine 5-triphosphate
sodium salt). The gel filtration leads to a depletion of endogenous
metabolites and thus makes metabolite-interacting proteins, which
often otherwise remain bound to metabolites in lysates, particularly
susceptible to bind to externally supplied metabolites. We applied
DLPTP to the acquired dataset and called hits at 10% FDR. Among
the significantly stabilized proteins, proteins annotated for the Gene

Ontology terms “GTP binding” (hypergeometric test p<2.2 X
10716, odds ratio: 4.6) and “ATP binding” (hypergeometric test p =
10712, odds ratio: 2.2) were significantly enriched (Fig. 5a, Sup-
plementary Fig. 5a, and Supplementary Data 3). This finding is in
line with recent reports showing that many ATP binders may bind
to both ATP and GTP>S. In comparison to a threshold-based
approach, DLPTP recovered more annotated nucleotide binders
and other plausible protein groups, such as nucleic acid binders,
and GTPase and kinase regulatory subunits, which have been
observed to co-stabilize with catalytic subunits® (Fig. 5b). Overall,
DLPTP recovered nucleotide binders with smaller maximal thermal
stability fold changes in addition to the vast majority of the hits with
high fold change found by a threshold-based approach (Supple-
mentary Fig. 5b).

Discussion
We present DLPTP, a method for the detection of proteins whose
thermal stability is modulated by the presence of a ligand from
2D-TPP data. Our approach builds upon the method of Storey
et al.1% for the detection of time-variable genes from time-course
microarray data and, in particular, it compares for each protein a
null and an alternative smooth curve fit via an F-statistic. Addi-
tional features of our approach include the following: (i) empirical
Bayes moderation of the F-statistics by sharing variance infor-
mation across proteins2%; (ii) use of a domain-specific parametric
model: the alternative model is a sigmoidal dose-response curve
based on biophysical and assay-specific knowledge that constrains
certain parameters while allowing other variables to be fit flexibly.
This more specialized model makes more parsimonious use of
data than non-parametric curve smoothing such as used by Storey
et al. and thus may be expected to provide better statistical per-
formance. (iii) To achieve FDR control, we adapted the bootstrap
approach of Storey et al.l° to the specific noise and replication
structure of 2D-TPP experiments, namely, we restricted resam-
pling to data obtained from the same MS run and introduced
stratification of the set of proteins by number of measurements.
Our approach has the advantage of not relying on bespoke
thresholds that have no clear performance characteristics (spe-
cificity and sensitivity) and are difficult to choose objectively
across datasets with potentially different levels of noise and signal.
The detection threshold of DLPTP is measured in terms of the
FDR, which is an intuitive quantity that is comparable across
experiments. We show that DLPTP indeed controls FDR by
applying it to a synthetic dataset. However, for the moderated
version of DLPTP, a conservative FDR estimation was observed,
which may, in part, be due to the finite nature of the dataset. Yet,
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DLPTP including moderation showed the best sensitivity-
specificity tradeoff of all methods we compared.

We demonstrate the method’s performance on primary data by
applying it to previously published®?3 and novel 2D-TPP data-
sets. We show that DLPTP is more sensitive than a previously
proposed threshold-based approach and finds cognate targets and
off-targets of multiple drugs and a metabolite. Application of
DLPTP to 2D-TPP datasets profiling the HDACS inhibitor PCI-
34051 and its analog BRD-3811 let us discover that both com-
pounds inhibit LAP3, an interesting ovarian and liver cancer
target. This opens the possibility of developing specific LAP3
inhibitors on the basis of BRD-3811.

Similar to any screening method, DLPTP may not detect all
interactors of a ligand, i.e., allow false negatives. For instance, in
the analysis of the panobinostat dataset, it missed HDAC6 at our
chosen FDR. This misdetection is due to a small number of noisy
measurements in the thermal profile of this protein, which pre-
vented the alternative model from obtaining low residual errors,
in spite of a visible dose-response trend (Supplementary Fig. 3e,
especially at 51.9°C). In general, such situations may arise for
proteins quantified by only a small number of peptides. In the
future, such problems are expected to be diminished with new MS
instruments that provide greater protein coverage depth and, with
the use of TMTpro?’, that allows multiplexing eight different
ligand dosages at each temperature, while maintaining the same
throughput.

In conclusion, we hope that the presented computational
method will deliver high sensitivity for detecting ligand-protein
interactions from TPP experiments with drugs and other ligands
at low FDR, and will help make analyses of different datasets
more comparable and more objective.

Methods

2D-TPP experiments. 2D-TPP experiments for profiling PCI-34051 and BRD-
3811 were performed as described” HL-60 (DSMZ, ACC-3) cells were grown in
Iscove’s modified Dulbecco’s medium supplied with 10% fetal bovine serum (FBS).
Cells were treated with a concentration range (0, 0.04, 0.29, 2, 10 uM) of PCI-34051
(Selleckchem) or BRD-3811 (synthesized in-house?8 with >99% purity as deter-
mined by HPLC-UV254 nm) for 90 min at 37 °C, 5% CO,. The samples from each
treatment concentration were split into 12 portions, which were then heated each
at a different temperature (42-63.9 °C) for 3 min and then incubated at room
temperature for 3 min. Next, 30 pl of ice-cold phosphate-buffered saline (PBS)
(2.67 mM KCl, 1.5 mM KH,PO,, 137 mM NaCl, and 8.1 mM NaH,PO, pH

7.4) were supplemented with 0.67% NP-40 and protease inhibitors were added to
the samples. Subsequently, cells were frozen in liquid nitrogen for 1 min, briefly
thawed in a metal block at 25 °C, and then placed on ice and resuspended by
pipetting. Samples were then incubated with benzonase for 1 h at 4 °C, followed by
centrifugation at 100,000 x g for 20 min at 4 °C. Then, 30 pl supernatant were
transferred into a new tube and were subjected to gel electrophoresis and sample
preparation for MS analysis.

The 2D-TPP experiment to assess GTP-binding proteins was performed using
gel-filtered lysate as described?. In short, Jurkat E6.1 cells (ATCC, TIB-152) were
cultured in RPMI (GIBCO) medium supplemented with 10% heat-inactivated FBS.
The cells were collected and washed with PBS. The cell pellet was resuspended in
lysis buffer (PBS containing protease inhibitors and 1.5 mM MgCl,) equal to ten
times the volume of the cell pellet. The cell suspension was lysed by mechanical
disruption using a Dounce homogenizer (20 strokes) and treated with benzonase
(25 U/ml) for 60 min at 4 °C on a shaking platform. The lysate was ultracentrifuged
at 100,000 x g, 4 °C for 30 min. The supernatant was collected and desalted using
PD-10 column (GE Healthcare). The protein concentration of the eluted lysate was
measured using Bradford assay. The protein concentration of the lysate was
maintained at 2 mg/ml for the assay. The lysate was treated using a concentration
range of GTP (0, 0.001, 0.01, 0.1, 0.5 mM) for 10 min at room temperature. The
samples from each GTP concentration were split into 12 portions, which were then
heated each at a temperature (42-63.9 °C) for 3 min. Post-heat treatment, the
protein aggregates were removed using ultracentrifugation at 100,000 x g, 4 °C for
20 min. Subsequently, the supernatants were processed as described above.

Protein identification and quantification. Raw MS data were processed with
Isobarquant!! and searched with Mascot 2.4 (Matrix Science) against the human
proteome (FASTA file downloaded from Uniprot, ProteomeID: UP000005640)

extended by known contaminants and reversed protein sequences (search para-
meters: trypsin; missed cleavages 3; peptide tolerance 10 p.p.m.; MS/MS tolerance
0.02 Da; fixed modifications were carbamidomethyl on cysteines and TMT10-plex
on lysine; variable modifications included acetylation on protein N terminus,
oxidation of methionine, and TMT10-plex on peptide N termini). Protein FDR was
calculated using the picked approach?’.

Reporter ion spectra of unique peptides were summarized to the protein level to
obtain the quantification s;,, for protein i measured in condition u = (j, k), i.e., at
temperature j and concentration k. Isobarquant additionally computes robust
estimates of fold change r;, for each protein i in condition u relative to control
condition ' using a bootstrap approach. We used these to obtain per-condition
log2 signal intensities computed as y; , = log,((r; /> r;)> ;). This is one
particular choice of protein quantification; we expect that our method can be used
equivalently with input from other quantification methods.

In the resulting abundance table Y = (y;,,), entries for which the value r;, was
obtained by not more than one peptide were marked as unreliable (i.e., set to not
available (NA) in the software). For each protein i we computed the total number
of non-NA measurements p; and only retained proteins with p; > 20 for subsequent
analysis. In other words, proteins had to be quantified at least at four different
temperatures and five different ligand concentrations each to be included in our
analysis.

The MS experiment comprising the temperatures 54 and 56.1 °C was excluded
from the analysis of the PCI-34051 dataset as we noticed that it contained
unexpectedly high noise levels. In particular the relative reporter ion intensities at
54 °C showed about ten times higher variance than all other temperatures, likely
due to a drop in instrument performance during the time this sample was
measured.

Moreover, in the PCI-34051 and BRD-3811 datasets, we noted that measured
profiles of some proteins appeared to have been affected by carry-over from
previous experiments. These profiles exhibited a characteristic pattern as depicted
in Supplementary Fig. 4c in which apparent stabilization of these proteins was
observed only in half of the TMT channels corresponding to every other
temperature. These proteins were filtered out by manual inspection.

Data pre-processing of public datasets. The panobinostat and JQ1 datasets were
downloaded from the publisher websites as spreadsheets provided as supplemen-
tary data together with the publications>?3. Abundance tables Y were computed
and filtered as described above.

Model description. Two nested models were fitted to the abundance values of each
protein i at temperature j and ligand concentration k. The null model is:

0 0
Yiik = ﬁf) + gg,j?k' (1)
Here, the base intensity level at temperature j is ,853), and efs)k is a residual noise
term. The alternative model is:
0 %;,0;

Yijk = ﬁi.] + 1+ eXP(*Ki(Ck - (;‘(Tj)))

a
+ ei,j,>k' 2

Here, ,ij) is again the base intensity level at temperature j, the parameter J;
describes the maximal absolute stabilization across the temperature range, a;; €
[0, 1] indicates how much of the maximal stabilization occurs at temperature j and
«; is a common slope factor fitted across all temperatures. Finally, {;(T}) is the
concentration of the half-maximal stabilization (i.e., pEC50), with

(1) =¢ 9+ a,T, where a; is a slope representing a linear temperature-dependent

decay or increase of the inflection point, and ¢? is the intercept of the linear model.

Again, ef?k is a residual noise term. Both models were fit by minimizing the sum of
2 2
squared residuals RSS?O) = ijk(efg?k) and RSSSO) = ijk(efj)k) using the L-

BFGS-B algorithm3? through R’s optim function.

The start values for the parameter and ,Bf(;) and [35? in the iterative fit of
the respective models were initialized with the mean abundance y;; of protein i at
temperature j; a;; was initialized as «;; = 0 for all i and j; §; was set to the maximal
difference between abundance values within a temperature for protein i k; was
initialized as the slope estimated by a linear model across temperatures; { ? was set
to the mean log;o drug concentration used; and a; was set to 0. The two fitted
models can be compared using the F-statistic:

_ Rss\” —rss!" d,

F, = (3)
rss!)  d;’

1
with the degrees of freedom d, = v, — vy and d, = p; — v;, where p; is the number of
observations for protein i that were fitted, and v, and v, are the number of
parameters of the null and alternative model, respectively.

For inference, we used an empirical Bayes moderated version of (3), as
implemented in the squeezeVar function in the R/Bioconductor package

1imma®l. squeezeVar uses the observed variances s2 = RSS" /d, to identify a
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common value sj and shrinks each s? towards that value. The motivation for such
moderation is to accept a small cost in increased bias for a large gain of increased
precision. To do so, squeezeVar assumes that the true o7 are drawn from a
scaled inverse y? distribution with parameter s2:

1 1

o2
o? dosgx' @)

Using the assumption that the residuals follow a normal distribution, Bayes’
theorem and the scaled inverse Chi-squared prior, it can be shown?0 that the
expected value of the posterior of 0? given s? is

o doss +dyst

7=t 5)

Here, the hyperparameters s3 and d; are estimated by fitting a scaled F-distribution

with s? ~ s2F; , . Details are described by Smyth et al.?. Thus, we computed
2:%0

moderated F-statistics with

0 1
5 Rrss(® — rss!)
—
s;d,

(6)

FDR estimation. To estimate the FDR associated with a given threshold 6 for the
F-statistic obtained for a protein i with m;n; observations, we adapted the bootstrap
approach of Storey et al.!” as follows. To generate a null distribution the following
was repeated B times: (i) resample with replacement the residuals €], obtained
from the alternative model fit for protein i in MS experiment w to obtain €}, and
add them back to the corresponding fitted estimates of the null model to obtain
Vi = ), + €y, (i) Fit null and alternative models to y;,, and compute the
moderated F-statistic . An FDR was then computed by partitioning the set of
proteins {1, . . ., P} into groups of proteins with similar number D(p) of mea-
surements, e.g., y(p) = Dl—%’) +1] and then

S HE) 2 0]y(p) = g}
B-#{F, > 0|y(p) =g}

The proportion of true null events 7, in the dataset of proteins in group g was
estimated by:

FDR, (6) = 7t (6) ()

X B #{F,<0|y(p) =g}
fiog(6) = ~ob : (8)
o= #{F, <01y(p) =g}
In the case of the standard DLPTP approach, the same procedure as above was
performed using non-moderated F-statistics.

Fluorometric aminopeptidase assay. LAP3 activity was determined using the
Leucine Aminopeptidase Activity Assay Kit (Abcam, ab124627) and recombinant
LAP3 (Origene, NM_015907). Recombinant LAP3 enzyme was dissolved in the kit
assay buffer and incubated for 10 minutes at room temperature with vehicle (dimethyl
sulfoxide) or 100 uM of either PCI-34051 or BRD-3811. All other assay steps were
performed as described in the kit. Fluorescent signal (Ex/Em = 368/460 nm) was
detected over 55 min.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All acquired mass spectrometry datasets (2D-TPP experiment of GTP treated gel-filtered
Jurkat lysate, PCI-34051 and BRD-3811 treated HL-60 cells) were deposited on PRIDE
(accession number: PXD016640). Re-analyzed datasets profiling Panobinostat and JQ1
were downloaded from the publishers” websites (https://doi.org/10.1038/nchembio.2185
and https://doi.org/10.1016/j.cell.2018.02.030). Supplementary Data 1-3 provide raw
data used for analysis and interpretation. A reporting summary for this article is available
as a Supplementary Information file. All other data supporting the findings of this study
are available from the corresponding authors on reasonable request. Source data are
provided with this paper.

Code availability

The software is available free and open source as an R package from Bioconductor:
https://bioconductor.org/packages/TPP2D. All code used to perform the analyses
presented in this manuscript is available at: https://github.com/nkurzaw/
TPP2D_analysis; https://doi.org/10.5281/zenodo0.4061271.
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