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Pan-cancer landscape of homologous
recombination deficiency
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Homologous recombination deficiency (HRD) results in impaired double strand break repair

and is a frequent driver of tumorigenesis. Here, we develop a genome-wide mutational scar-

based pan-cancer Classifier of HOmologous Recombination Deficiency (CHORD) that can

discriminate BRCA1- and BRCA2-subtypes. Analysis of a metastatic (n= 3,504) and primary

(n= 1,854) pan-cancer cohort reveals that HRD is most frequent in ovarian and breast

cancer, followed by pancreatic and prostate cancer. We identify biallelic inactivation of

BRCA1, BRCA2, RAD51C or PALB2 as the most common genetic cause of HRD, with RAD51C

and PALB2 inactivation resulting in BRCA2-type HRD. We find that while the specific genetic

cause of HRD is cancer type specific, biallelic inactivation is predominantly associated with

loss-of-heterozygosity (LOH), with increased contribution of deep deletions in prostate

cancer. Our results demonstrate the value of pan-cancer genomics-based HRD testing and its

potential diagnostic value for patient stratification towards treatment with e.g. poly

ADP-ribose polymerase inhibitors (PARPi).
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The homologous recombination (HR) pathway is essential
for high-fidelity DNA double strand break (DSB) repair
and involves numerous genes including BRCA1 and

BRCA2. HR deficiency (HRD) due to inactivation of such genes
leads to increased levels of genomic alterations1. HRD is a
common characteristic of many tumors and is frequently
observed in breast and ovarian cancer2. Accurate detection of
HRD is of clinical relevance as it is indicative of sensitivity to
targeted therapy with poly ADP-ribose polymerase inhibitors
(PARPi)3,4 as well as to DNA damaging reagents1.

In the clinic, germline BRCA1/2 mutation status is currently
the main genetic biomarker of HRD5. However, germline testing
has its drawbacks: (i) it is dependent on the completeness and
accuracy of clinical variant annotation databases (e.g. ClinVar);
(ii) epigenetic silencing is overlooked; (iii) partial/complete
deletions of the BRCA1/2 loci are missed by current clinical
genetic testing, resulting in BRCA1/2 status reporting based on
the wild type allele from contaminating normal tissue; and (iv)
HRD can be driven purely by somatic events. Furthermore, the
focus on BRCA1/2 overlooks inactivation of other HR pathway
genes. Consequently, patients may receive incorrect treatment or
miss out on treatment opportunities, thus necessitating the
development of better biomarkers for HRD.

It was recently shown that somatic passenger mutations, which
are identified efficiently by whole-genome sequencing (WGS),
can provide insights into the mutational processes that occurred
before and during tumorigenesis, paving the way for novel
opportunities for clinical tumor diagnostics6. For the repair of
DSBs, HRD tumors are dependent on alternative more error-
prone pathways including microhomology mediated end-joining
(MMEJ)7, resulting in a characteristic mutational footprint across
the genome that can be used to detect HRD regardless of the
underlying cause (whether genetic or epigenetic). Indeed, some
mutational footprints were found to be associated with BRCA1/2
deficiency, namely deletions with flanking microhomology, as
well as several “mutational signatures” including two COSMIC
single nucleotide variant (SNV) signatures and two structural
variant (SV) signatures8. These features were used to develop a
breast cancer-specific predictor of HRD known as HRDetect9.
Application of this tool in primary tumors revealed that
the prevalence of HRD extends beyond BRCA1/2-deficient
breast cancer tumors, and occurs at varying frequencies in dif-
ferent cancer types10. However, HRD rates in advanced meta-
static cancer remain unclear, although these are the patients that
are increasingly targeted with personalized treatments including
PARP inhibitors for BRCA-deficiency5.

Here, we describe the development of a random forest-based
Classifier of HOmologous Recombination Deficiency (CHORD)
for pan-cancer HRD detection. With this model, we demonstrate
that accurate prediction of HRD is possible across cancer types
using specific SNV, indel, and SV types. We identify inactivation
of BRCA1, BRCA2, RAD51C, and PALB2 as the most frequent
genetic cause of HRD pan-cancer in both primary and metastatic
cancer, with the latter two genes resulting in the same mutational
footprints as BRCA2 (consistent with the findings of recent stu-
dies in breast cancer11,12). In addition, we find that the under-
lying genetic inactivation of these genes is cancer type specific,
but independent of tumor progression state.

Results
Random forest classifier training. For the development of
CHORD, we used WGS data of 3824 solid tumors from 3584
patients from the pan-cancer metastatic cohort of the Hartwig
Medical Foundation (HMF)13. From these, we selected tumor
samples with biallelic loss of BRCA1 or BRCA2, and non-mutated

BRCA1/2, to obtain a high confidence set of samples belonging to
three classes for classifier training (BRCA1-deficient, BRCA2-
deficient, and BRCA1/2-proficient). To this end, we screened each
sample to identify those samples with one of the following events
in BRCA1/2: (i) complete copy number loss (i.e. deep deletion),
(ii) loss-of-heterozygosity (LOH) in combination with a patho-
genic germline or somatic SNV/indel (as annotated in ClinVar, or
a frameshift), or (iii) 2 pathogenic SNV/indels. This unbiased
approach revealed 35 and 89 samples with BRCA1 or BRCA2
biallelic loss of function, respectively, which were labeled as HRD
for the training. Conversely, 1,902 samples were labeled as HR
proficient (HRP) as these samples were observed to carry at least
one functional allele of BRCA1/2. In total, 2026 out of
3824 samples (53% of the HMF dataset) were used to train the
classifier (Supplementary Fig. 1).

The occurrence of three main somatic mutation categories
were used as features for training (Fig. 1a), which included (i)
SNVs subdivided by base substitution type; (ii) indels stratified by
the presence of sequence homology, tandem repeats, or the
absence of either; and (iii) structural variants (SV), stratified by
type and length. An initial feature analysis revealed that small
deletions with ≥2 bp flanking homology were together more
predictive of BRCA1/2 deficiency versus deletions with 1 bp
flanking homology (Supplementary Fig. 3). Thus, deletions with
flanking homology were further split into these two homology
length bins. The occurrence of the 29 features together formed a
contribution profile for each sample. From this, relative
contributions per mutation category were calculated to account
for differences in mutational load across samples (Fig. 1a). These
features are henceforth collectively referred to as “mutation
contexts”.

A random forest was then trained to predict the probability of
BRCA1 or BRCA2 deficiency (Fig. 1b). Briefly, a core training
procedure performed feature selection and class resampling (to
alleviate the imbalance between the three classes). This core
procedure was subjected to 10-fold cross-validation (CV) which
was repeated 100 times to filter samples from the training set that
were not consistently HRD or HRP. A sample was considered
HRD if the sum of the BRCA1 and BRCA2 deficiency
probabilities (henceforth referred to as the HRD probability)
was ≥0.5. This core procedure was reapplied to the filtered
training set to yield the final random forest model which we refer
to as “CHORD” (Supplementary Figs. 2a, b and 4).

The presence of deletions with ≥2 bp flanking homology (del.
mh.bimh.2.5) was found to be the most important predictor of
HRD. Additionally, CHORD uses 1–10 kb and to a lesser extent
10–100 kb duplications (DUP_1e03_1e04_bp and
DUP_1e04_1e05_bp, respectively) for distinguishing BRCA1
from BRCA2 deficiency. Given that deficiencies in other HR
genes may lead to similar phenotypes, we have coined the terms
“BRCA1-type HRD” and “BRCA2-type HRD” to describe these
HRD subtypes (Fig. 1c). Together, the features that are predictive
of HRD are in line with those of a previously described HRD
classifier HRDetect9. However, the feature weights differ
markedly likely due to differences in the background mutational
landscape between the pan-cancer cohort used here compared to
the breast cancer cohort used for training HRDetect.

Performance of CHORD. Two approaches were used to assess
the performance of CHORD. In the first approach, 10-fold CV
was performed on the training data which allows every sample to
be excluded from the training set, after which unbiased HRD
probabilities can be determined (Supplementary Fig. 2c).
The probabilities of all prediction classes (i.e. HRD, BRCA1-type
HRD, BRCA2-type HRD) were highly concordant with the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19406-4

2 NATURE COMMUNICATIONS |         (2020) 11:5584 | https://doi.org/10.1038/s41467-020-19406-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


genetic annotations (Fig. 2a). The concordance between predic-
tions and annotations was quantified by calculating the area
under the curve of receiver operating characteristic (AUROC)
and precision-recall (AUPRC) curves (Fig. 2b, c). CHORD
achieved excellent performance as shown by the high AUROC
and AUPRC for all prediction classes (0.98 and 0.87, respec-
tively). Additionally, CHORD achieved a maximum F1-score
(~0.88) for predicting HRD at a cutoff of 0.5 which was thus set
to be the classification threshold (Supplementary Fig. 6).

In the second approach, performance was evaluated on two
independent datasets: the BRCA-EU dataset8 (543 primary breast
tumors) and the PCAWG dataset14 (1854 primary tumors, pan-
cancer). For both datasets, samples that (i) passed CHORD’s QC
criteria (i.e. MSI absent, ≥50 indels, ≥30 SVs if a sample was
predicted HRD; Supplementary Notes and Supplementary Figs. 26
and 27) and (ii) for which the biallelic status of BRCA1/2 could
confidently be determined were selected for validation of
CHORD. For the BRCA-EU dataset, this included the 365 samples
that were used to train and evaluate the performance of

HRDetect9. For the PCAWG dataset, this included 1172 samples
for which the same genetic criteria used for selecting samples
from the HMF dataset for training CHORD applied. Applying
CHORD on these samples revealed that the HRD probabilities
were concordant to their BRCA1/2 genetic status for both the
BRCA-EU and PCAWG datasets (Fig. 2d, g). The AUROC
(>0.98) and AUPRC (>0.93) values were comparable to those
obtained by CV on the HMF training data for all prediction
classes for both datasets (Fig. 2e, f, h, i). In the BRCA-EU dataset,
we still observed some BRCA1 deficient samples classified as HRP
by CHORD (while HRDetect classified these as HRD) and tested
whether this was due to differences in somatic calling algorithms.
Indeed, using the variants obtained from the native pipeline of the
HMF dataset (HMF pipeline13) for HRD prediction resulted in
overall higher HRD probabilities compared to using the variants
downloaded from ICGC, especially for BRCA1-deficient samples.
This was apparent for sample PD4017 which became HRD using
HMF pipeline called mutation profiles, with PD24186, PD11750,
and PD23578 having greatly increased HRD probabilities
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Fig. 1 CHORD is a random forest Classifier of HOmologous Recombination Deficiency able to distinguish between BRCA1- and BRCA2-type HRD
phenotypes in a pan-cancer context. a The features used for training CHORD are relative counts of different mutation contexts, which fall into one of three
groups based on mutation type. (i) Single nucleotide variants (SNV): six possible base substitutions (C > A, C > G, C > T, T > A, T > C, T > G). (ii) Indels:
indels with flanking microhomology (del.mh, ins.mh), within repeat regions (del.rep, del.none), or not falling into either of these 2 categories (del.none, ins.
none). (iii) Structural variants (SV): SVs stratified by type and length. Relative counts were calculated separately for each of the 3 mutation types.
b Training and application of CHORD. From a total of 3,824 metastatic tumor samples, 2026 samples were selected for training CHORD. The model
outputs the probability of BRCA1-type HRD and BRCA2-type HRD, with the probability of HRD being the sum of these 2 probabilities. The performance of
CHORD was assessed via a 10-fold nested cross-validation (CV) procedure on the training samples, as well as by applying the model to the BRCA-EU
dataset (543 primary breast tumors) and PCAWG dataset (1,854 primary tumors). Lastly, CHORD was applied to all samples in the HMF and PCAWG
dataset in order to gain insights into the pan-cancer landscape of HRD. c The features used by CHORD to predict HRD as well as BRCA1-type HRD and
BRCA2-type HRD, with their importance indicated by mean decrease in accuracy. Deletions with 2 to ≥5 bp (i.e. ≥2 bp) of flanking microhomology (del.mh.
bimh.2.5) was the most important feature for predicting HRD as a whole, with 1–100 kb structural duplications (DUP_1e03_1e04_bp, DUP_1e04_1e05_bp)
differentiating BRCA1-type HRD from BRCA2-type HRD. Boxplot and dots (n= 10) show the feature importance over 10-folds of nested CV on the
training set, with the red line showing the feature importance in the final CHORD model. Boxes show the interquartile range (IQR) and whiskers show the
largest/smallest values within 1.5 times the IQR.
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(Supplementary Fig. 7). Our results thus demonstrate that
CHORD is robust when applied to other datasets. However,
differences in variant calling pipelines can affect CHORD’s ability
to predict HRD (especially considering the still existing challenges
of indel and SV calling from WGS data, and CHORD’s
dependency on these features). Additional validation and thresh-
old optimization is thus recommended when applying CHORD
on data from other variant calling pipelines.

The BRCA1/2 deficient samples in the training set of CHORD
primarily consisted of ovarian, breast, and prostate tumors, which
could potentially bias CHORD’s predictions if the mutation
footprint of HRD is not universal across tissue types.
We performed clustering of HMF and PCAWG samples using
the input features for CHORD which revealed a cluster in which

the majority of samples predicted HRD by CHORD resided
(Supplementary Fig. 8), suggesting that HRD mutational
footprint is not tissue type specific. Next, to test whether
CHORD is generalizable to all tissue types, we held out samples
belonging to each cancer type from the training set (but grouped
cancer types with few BRCA1/2 deficient samples), and trained
random forests in the same manner as was done for CHORD.
These models were then applied to the held out HMF samples as
well as PCAWG samples to calculate the likely prediction error
for each cancer type (Supplementary Fig. 9). Using a classification
cutoff of 0.5, we observed overall a low false positive rate (<2%)
and false-negative rate (<6%). The false-negative rate was higher
in biliary, lung and other cancer types, although these error
estimates may not be entirely accurate due to the low number of
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Fig. 2 Performance of CHORD. Performance was determined by 10-fold cross-validation (CV) on the HMF training data, as well as prediction on two
independent datasets: BRCA-EU (primary breast cancer dataset) and PCAWG (primary pan-cancer dataset). BRCA-EU and PCAWG samples shown here
all passed CHORD’s QC criteria (i.e. MSI absent, ≥50 indels, ≥30 SVs if a sample was predicted HRD). a, d, g The probability of HRD for each sample (total
bar height) with each bar being divided into segments indicating the probability of BRCA1- (orange) and BRCA2-type HRD (purple). Stripes below the bar
plot indicate biallelic loss of BRCA1 or BRCA2. In a, probabilities have been aggregated from the 10 CV folds. b, e, h Receiver operating characteristic (ROC)
and c, f, i precision-recall curves (PR) and respective area under the curve (AUC) values showing the performance of CHORD when predicting HRD as a
whole (gray), BRCA1-type HRD (orange), or BRCA2-type HRD (purple).
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BRCA1/2 deficient samples in these cancer types. Our results
indicate that CHORD likely has minimal cancer type bias.

We note that CHORD performs similarly to HRDetect based
on predictions on the BRCA-EU dataset (AUROC= 0.98 for both
models)9. In addition, the predictions of CHORD and HRDetect
on the PCAWG dataset10 were concordant for the vast majority
of samples (1506/1526; 99%) (Supplementary Fig. 10). Of the 8
HRD samples only detected by CHORD, 3 showed biallelic loss of
BRCA1/2, while none of the HRDetect-only samples could be
explained by genetic biallelic loss. Given that CHORD, unlike
HRDetect, does not rely on COSMIC SNV signatures6 and SV
signatures8, the similar performance between the two models
suggests that accurate detection of HRD is possible without using
an intermediate mutational signature extraction step15. To further
validate this, we trained a random forest model (CHORD-
signature) that uses the SNV and SV signatures as input instead
of mutation contexts. CHORD-signature performed similarly to
CHORD (Supplementary Fig. 12), which can be explained by the
reliance on similar features (Supplementary Fig. 11), namely
microhomology deletions and SV signature 3 (analogous to
1–100 kb duplications). We thus conclude that accurate detection
of HRD does not require mutational signatures, thereby
simplifying HRD calling and avoiding potential complications
associated with the fitting step required for computing signature
contributions in individual samples (for which there is currently
no consensus approach)15.

Effect of treatment on HRD predictions. The HMF dataset
comprises tumors from patients with metastatic cancer who have
been exposed (some heavily) to treatment which could potentially
affect CHORD’s predictions. Two recent studies showed that
common cancer treatments in general do not induce mutations
that may interfere with CHORD predictions16,17. However, these
two studies (as well as one by Behjati et al.18) did show that
radiotherapy had the potential to induce deletions with flanking
microhomology, which could potentially lead to false-positive
HRD classifications. To investigate this, we used random forests
to identify and compare the mutational features associated with
radiotherapy and BRCA1/2 deficiency when using clonal variants
versus subclonal variants (which are enriched for treatment
induced mutations16,19) as input features. This revealed that small
deletions with 1 bp of flanking homology (del.mh.bimh.1) are
highly associated with radiotherapy (Supplementary Fig. 14) and
less with BRCA1/2 deficiency. When we retrained CHORD with
all microhomology deletions merged into a single feature
(CHORD-del.mh.merged; Supplementary Fig. 15), there were
only few discrepant predictions (9 CHORD-specific and 5
CHORD-del.mh.merged-specific out of 3715 samples; Supple-
mentary Fig. 16). All 5 samples that were CHORD-del.mh.
merged-specifc did have radiotherapy as a previous treatment,
while of the 9 samples predicted HRD only by CHORD, 5 had
radiotherapy although 2 had evidence of BRCA1/2 biallelic loss.
These data suggest that splitting microhomology deletions into
two microhomology length bins may slightly reduce false positive
predictions resulting from radiotherapy treatment, although the
low number of discrepant samples between CHORD and
CHORD-del.mh.merged also indicates that the impact of radio-
therapy on HRD prediction is minimal, at least when using all
somatic variants (clonal plus subclonal) as input (which is likely
the default setting for routine application).

On the other hand, we observed more samples being predicted
as HRD based on subclonal variants but HRP based on clonal
variants for CHORD-del.mh.merged (97 samples) compared to
CHORD (64 samples) (Supplementary Fig. 17a, b). This indicates
that having microhomology deletions split by these two

homology length bins may mitigate false-positive predictions
when CHORD is applied to subclonal variants, whether due to
mutations induced by radiotherapy, other treatments, or noise
from variant calling algorithms. Alternatively, some samples that
are scored HRP based on clonal variants but HRD on subclonal
variants could truly be HRD, especially since 4 of these samples
had evidence of BRCA1/2 biallelic loss (deep deletion: n= 1; LOH
and a pathogenic variant: n= 1; 2 pathogenic variants: n= 2). For
these samples, it is likely that BRCA1/2 biallelic loss occurred
relatively late in the tumor progression stage which results in an
insufficient number of HRD-associated mutations for clear HRD
classification by CHORD. Furthermore, subclonal-only HRD
could potentially also be explained by transient inactivation of
HR e.g. through epigenetic silencing of key components. Thus,
CHORD predictions on subclonal variants must be interpreted
with caution, especially given the extra challenges associated with
accurately detecting subclonal variants with low variant allele
frequency (VAF).

BRCA2, RAD51C, and PALB2 are associated with BRCA2-type
HRD while only BRCA1 is associated with BRCA1-type HRD.
To gain insights into the genetic causes of HRD, we applied
CHORD to both the HMF and PCAWG datasets and selected the
samples that passed CHORD’s QC criteria (i.e. MSI absent, ≥50
indels, ≥30 SVs if a sample was predicted HRD; Supplementary
Notes). For the HMF dataset, we also selected a single tumor per
patient (based on highest tumor purity) for those with multiple
biopsies, though all patients had consistent HRD probabilities
across all biopsies (Supplementary Data 1). This yielded a total of
5122 patients (3504 from HMF and 1618 from PCAWG), with
310 (6%) being classified as being homologous recombination
deficient (CHORD-HRD). Of these, 118 were classified as having
BRCA1-type HRD and 192 as having BRCA2-type HRD. The
remaining 4,812 patients were classified as homologous recom-
bination proficient (CHORD-HRP) (Fig. 3a and Supplementary
Data 1).

We then sought to identify the key mutated genes underlying
the HRD phenotype by performing an enrichment analysis of
biallelically inactivated genes in CHORD-HRD vs. CHORD-HRP
patients. For this analysis, we started from a list of 781 genes that
are cancer related (based on the catalog of genes from Cancer
Genome Interpreter) and/or HR related (manually curated based
on the KEGG HR pathway, as well as via literature search)
(Supplementary Data 3). For these genes, we considered likely
pathogenic variants (according to ClinVar) as well as predicted
impactful variants such as nonsense mutations to contribute to
gene inactivation (see “Methods”). This revealed that, in addition
to BRCA1 and BRCA2 (q < 10−5 for both genes, one sided Fisher’s
exact test), RAD51C and PALB2 (q < 0.001 and q < 0.05
respectively) were also significantly enriched amongst HRD
patients using a q-value threshold of 0.05 (Fig. 3b).

Of all CHORD-HRD HMF patients, ~60% (184/310) could be
explained by biallelic inactivation of either BRCA2 (cluster 1; n=
117), BRCA1 (cluster 5; n= 54), RAD51C (cluster 2; n= 6), or
PALB2 (cluster 3; n= 7), which was most often caused by LOH in
combination with a pathogenic variant or frameshift, or a deep
deletion (Fig. 3c and Supplementary Data 4). RAD51C and
PALB2 were recently linked to HRD as incidental cases using
mutational signature-based approaches11,20 and our results now
confirm that biallelic inactivation of these two genes results in
HRD and is actually a common cause of HRD (albeit to a lesser
extent than for BRCA1/2). RAD51C and PALB2 deficient patients
shared the BRCA2-type HRD phenotype (absence of duplica-
tions) with BRCA2 deficient patients (clusters 1–3; Fig. 3c),
consistent with previous studies11,12. On the other hand, only
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BRCA1 deficient patients (cluster 5) harbored the BRCA1-type
HRD phenotype (1–100 kb duplications).

Of note, we observed one patient (Fig. 3c; patient #6) bearing a
known pathogenic frameshift mutation in BRCA1 (Supplemen-
tary Data 4; patient HMF001925, c.1961dupA), which based on
current practices for detecting HRD in the clinic (testing for
pathogenic SNVs/indels)5 would be considered the driver
mutation. However, our genetic analysis indicates that the deep
deletion in BRCA2 (which would be missed by testing for SNVs/
indels) was the cause of HRD, which is supported by the lack of
LOH in BRCA1, as well as the BRCA2-type HRD phenotype of
this patient.

In ~40% of CHORD-HRD patients (126/310; clusters 4 and 6,
Fig. 3c), there was no clear indication of biallelic loss of BRCA1/2,
RAD51C or PALB2 (henceforth referred to as the “HRD
associated genes”). However, 109 of these patients had a
deleterious event in a single allele of one of the HRD associated
genes (the majority due to LOH (including copy number neutral
LOH)), with a similar cancer type distribution in these patients as
in the biallelically affected patients (Supplementary Fig. 21). Some
samples had, as a second hit, variants not known to be
pathogenic, but could potentially be novel pathogenic variants
(Supplementary Notes and Supplementary Fig. 28 and Supple-
mentary Data 7). We also found enrichment of LOH in BRCA1,
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predicted HRD while 4812 were predicted HRP by CHORD. b A one-tailed Fisher’s exact test identified enrichment of BRCA1 (q= 9.4e-51), BRCA2 (q=
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testing correction was performed using the Hochberg procedure. c Biallelic inactivation of BRCA2, RAD51C and PALB2 was associated with BRCA2-type
HRD, whereas only BRCA1 inactivation was associated with BRCA1-type HRD. Top: BRCA1- and BRCA2-type HRD probabilities from CHORD. Middle: SV
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without clear biallelic inactivation of these 4 genes. Tiles marked as “Known pathogenic” refer to variants having a “pathogenic” or “likely pathogenic”
annotation in ClinVar. “Other” variants include various low impact variants such as splice region variants or intron variants (these are fully specified in
Supplementary Data 4). LOH: loss-of-heterozygosity. Only data from samples that passed CHORD’s QC criteria are shown in this figure (MSI absent, ≥50
indels, and ≥30 SVs if a sample was predicted HRD).
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BRCA2, as well as RAD51C in HRD samples (Supplementary
Fig. 22), which implies the involvement of LOH in the
inactivation of these genes for the patients in clusters 4 and 6.
This is consistent with the finding by Jonsson et al.21 that LOH is
enriched in tumors with BRCA1/2 germline pathogenic variants
or somatic loss-of-function variants. Davies et al.9 showed that
promoter methylation of BRCA1 was present in 22% of ovarian
and 16% of breast primary cancers with HRD (Supplemen-
tary Table 1). BRCA1 and RAD51C promoter methylation with
loss of the other allele was also reported in HRD tumors in other
studies11,12,20. Thus, BRCA1 and RAD51C promoter methylation,
likely in combination with LOH, may have led to the HRD
phenotype for a sizable portion of the ovarian and of breast
cancer patients with no clear biallelic loss of the HRD associated
genes, and potentially for patients with other cancer types as well
(Supplementary Fig. 23). Unfortunately, we could not directly
assess this as methylation data was not available for the HMF nor
the PCAWG dataset.

We also cannot rule out the possibility that deficiencies in
other HR genes that did not reach significance in our enrichment
analysis, underlie the HRD phenotype for a small number of
patients in clusters 4 and 6. We indeed identified 17 patients with
biallelic inactivation of a HR gene other than BRCA1/2, RAD51C
or PALB2, and 1 patient with a likely inactivating biallelic event
(LOH in combination with a nonsense variant in CHEK1)
(Supplementary fig. 24). Notably, the 4 patients with RAD51B (n
= 2) and XRCC2 (n= 2) deficiency were all predicted to have
BRCA2-type HRD, a phenotype shared with RAD51C deficient
patients22. Given that these three genes all belong to the RAD51
paralog complex BCDX223, the BRCA2-type HRD suggests that
RAD51B and XRCC2 deficiency could have led to HRD in these
patients. Likewise, the 4 patients with deficiencies in the BRCA1-
binding proteins, BARD124 (n= 1), BRIP125 (n= 1), FAM175A26

(n= 1) and FANCA27 (n= 1), were all predicted as having
BRCA1-type HRD. Thus, while we could not conclusively
determine the cause of HRD for patients in clusters 4 and 6,
we postulate that HRD in these patients may have been a result of
epigenetic silencing of BRCA1/2 or RAD51C, deficiencies in other
HR genes (not associated to HRD in our analysis), or possibly a
result of other unknown regulatory mechanisms.

The incidence and genetic cause of HRD varies in different
tissue types and cancer stage. We next investigated the differ-
ences in the incidence and genetic causes of HRD based on pri-
mary tumor location in both primary (PCAWG) and metastatic
(HMF) cancer datasets (Fig. 4). HRD was most prevalent in
ovarian, breast, prostate and pancreatic cancer (85% combined),
and only occurred sporadically in other cancer types (15%)
(Supplementary Data 5). Compared to metastatic cancer, HRD is
found much more often in primary ovarian (52% vs 30%) and
breast (24% vs 12%) cancers, and less often in primary prostate
(5.6% vs 13%) and pancreatic (7.3% vs 13%) cancer (Fig. 4a).
Notably, in metastatic cancer, prostate and pancreatic cancer have
a similar incidence of HRD to breast cancer (all ~13%). However,
the observed differences in HRD rates between the primary and
metastatic cohorts may not necessarily be conclusive as we can
not rule out confounding factors such as patient inclusion criteria.

Across different cancer types, we observed pronounced
diversity in HR function loss (Fig. 4b). BRCA2-type HRD
deficiencies (including BRCA2, RAD51C, PALB2 deficiencies)
were more frequent in pancreatic and prostate cancer. On the
other hand, BRCA1-type HRD deficiencies were found more
often in ovarian and breast cancer. Interestingly, for ovarian and
prostate cancer, BRCA1-type HRD deficiencies were more
prominent in primary cancer compared to metastatic cancer.

Whether these differences in gene deficiencies in different cancer
types can be linked to a biological cause or have prognostic value
remains to be determined.

In 94% (292/310) of all CHORD-HRD patients, we found
mono- or biallelic inactivation of at least one of the four HRD
associated genes (BRCA1, BRCA2, PALB2, RAD51C; Fig. 4c). In
the case of biallelic inactivation, we observed LOH to be the
dominant secondary event, occurring in combination with a
germline SNV/indel (33%) or with a somatic SNV/indel (14%) of
CHORD-HRD patients. LOH of BRCA1/2, RAD51C or PALB2
was also found as a monoallelic event, mainly in ovarian (47%)
and breast (49%) cancer patients (Supplementary Data 5). As
indicated earlier, the other allele may be inactivated by epigenetic
mechanisms in these patients (or alternatively HRD was caused
by inactivation of another HR gene). Interestingly, we find that
deep somatic deletions do frequently contribute to biallelic loss of
BRCA2 or RAD51C, occurring in 10% of CHORD-HRD patients
pan-cancer (Supplementary Data 5). However, deep deletions
(primarily of BRCA2; Supplementary Fig. 23) occurred much
more frequently in prostate cancer (33%) compared to other
cancer types, consistent with previous observations28. Never-
theless, deep deletions of HRD genes did occur in every cancer
type with a high frequency of CHORD-HRD patients indicating
that complete somatic gene loss is a common and underestimated
cause of HRD in both primary and metastatic cancer.

We find that biallelic gene loss is often associated with
germline predisposition (Fig. 4d) in ovarian (32%), breast (36%),
and pancreatic (56%) cancer patients, but to a lesser extent in
prostate cancer patients (24%) (Supplementary Data 5). On the
other hand, biallelic gene loss exclusively by somatic events
occurs in sizable proportion of CHORD-HRD patients (35% pan-
cancer), being most frequent in prostate cancer (54%) (Supple-
mentary Data 5) mainly due to the deep deletions (Supplemen-
tary Fig. 23). Although these frequencies may not be fully
representative for each cancer type due to the proportion of
patients with unknown mutation status in at least one allele
(indicated as “Unknown” in Fig. 4d), these observations do
emphasize that somatic-only events should not be overlooked as a
mechanism of HR gene inactivation.

Discussion
Here we describe a classifier (CHORD) that can detect HRD (as
well as HRD sub-phenotypes) across cancer types based on
mutation profiles. By using this tool in systematic pan-cancer
analysis, we reveal novel insights into the mechanisms and inci-
dence of HRD across cancer types with potentially important
clinical relevance.

HRD targeted therapy with PARPi is mostly restricted to breast
and ovarian cancer5, though its use for treating pancreatic cancer
was recently approved by the FDA (US Food and Drug Admin-
istration)29. However, we show that HRD is common not only in
ovarian and breast cancer, but also in prostate and pancreatic
cancer. The incidence of HRD was relatively higher in metastatic
prostate and pancreatic cancer, and lower for ovarian and breast
cancer as compared with primary tumors. This may reflect more
intensive familial (germline) testing for BRCA1/2 mutations in
ovarian and breast cancer30 and consequently earlier diagnosis
and treatment with fewer cases of progression to metastatic
cancer as a result. However, we cannot formally exclude that
these observations originate from differences in cohort inclusion
criteria that could skew numbers (e.g. due to more recruitment of
patients with triple negative breast cancer which has higher HRD
rates12).

We show that HRD is also found sporadically in cancer types
other than breast, ovarian, prostate or pancreatic, but collectively

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19406-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5584 | https://doi.org/10.1038/s41467-020-19406-4 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


this constitutes a sizable group of patients (15% of all patients).
We do acknowledge that there may be underestimation of HRD
frequency in these other cancer types due to the low prevalence of
BRCA1/2 deficient samples, which served as examples of HRD
samples for training CHORD (Supplementary Fig. 23). On the
other hand, we have shown that the HRD mutational footprint is
not tissue type specific (Supplementary Fig. 8) suggesting that

cancer type biases in the training set should not impact CHORD
predictions. Our results thus indicate that a large number of
patients who would potentially benefit from PARPi therapy still
remain unnoticed. Since the mutational phenotype of HRD is
independent of cancer type, mutational scar based HRD detection
such as with CHORD would be valuable for cancer type agnostic
patient stratification for future PARPi trials31. This is particularly

a

b

c

d

Fig. 4 Percentage breakdown of the incidence and genetic causes of HRD in CHORD-HRD patients pan-cancer and by cancer type. Left and right bars
represent the HMF and PCAWG datasets respectively. The vertical split in the figure separates cancer types with (left side) and without (right side) ≥10
CHORD-HRD patients in at least one of the datasets. a Frequency of HRD. Cancer types where no frequency of HRD is displayed contain no data in either
the HMF or PCAWG datasets. b The gene deficiency associated with HRD. Bar segments are grouped into BRCA2-type HRD genes (BRCA2, RAD51C,
PALB2) and BRCA1-type HRD genes (BRCA1 only). c The likely combination of biallelic events in BRCA1/2, RAD51C or PALB2 causing HRD. d Whether the
genetic cause of HRD was purely due to somatic events, due to germline predisposition, or unknown. In c, d, “Unknown” and/or “LOH+ unknown” bar
segments refer to patients where no clear biallelic loss of the aforementioned BRCA1/2, RAD51C, or PALB2 was identified (i.e. clusters 4 and 6 of Fig. 3c).
LOH: loss-of-heterozygosity. Only data from samples that passed CHORD’s QC criteria are shown in this figure (MSI absent, ≥50 indels, and ≥30 SVs if a
sample was predicted HRD).
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important for metastatic patients (who depend on systemic
treatments and benefit most from targeted treatments like
PARPi), as well as for cancer types currently lacking good mar-
kers for patient stratification for such treatment (such as pros-
tate32 and biliary33 cancer).

Genetic based detection of HRD in the clinic is commonly
done by testing for pathogenic BRCA1/2 germline mutations5.
However, such hereditary mutations are only present in 30% of
CHORD-HRD patients (Supplementary Notes and Supple-
mentary Fig. 29) indicating that germline testing likely misses a
substantial number of HRD patients. Germline variant testing is
particularly unsuitable for prostate cancer where gene inacti-
vation is frequently caused by somatic deep deletions, which
prevent the identification of any SNVs/indels at the affected
locus when using panel- or PCR-based sequencing methods
(exon scanning). This problem also exists for other cancer types
where deep deletions also make up a non-negligible fraction of
HR gene inactivation cases. While somatic mutation testing
improves diagnostic yield and is indeed increasingly performed
in the clinic5, WGS based genetic testing is ultimately necessary
to capture the full spectrum of genetic alterations and to
accurately determine the mutational status of HR genes.
However, even such broad genetic testing with focus on biallelic
gene inactivation still potentially misses roughly 50% of all
HRD patients (Supplementary Notes and Supplementary
Fig. 29).

We do acknowledge that mutational scars represent genomic
history and not current on-going mutational processes that can
result in false positive CHORD predictions, which could be for
example due to reversion of HRD by secondary frameshifts34,35,
or recent acquisition of the HRD phenotype. False-positive
predictions could also arise from treatments producing similar
mutational scars (in particular microhomology deletions) to
HRD. The most common cancer treatments have been shown
to have little or no contribution to microhomology deletions,
with the exception of radiotherapy16–18. However, we showed
that radiotherapy itself likely does not lead to false-positive
predictions. We cannot exclude the possibility however
that clonal expansion of a radiotherapy resistant tumor cell
leads to sufficient enrichment of radiotherapy associated
microhomology deletions in the tumor, resulting in a false
positive prediction. Ultimately, the ability for CHORD to
improve patient stratification and treatment outcome will need
to be evaluated in direct comparisons and prospective clinical
trials.

Thus, while CHORD can detect HRD independent of the
underlying cause, genetic testing of HRD genes is complementary
and can provide supporting information for making a final ver-
dict on a patient’s HR status. The unique advantage of using
WGS, although not routine in clinical diagnostics yet, but likely in
the near future36, is that both genetic testing and mutational scar
based HRD detection with CHORD can be performed simulta-
neously with the same assay. We envision that the findings from
our analyses incentivizes improvements to current clinical prac-
tices for detecting HRD, and that the application of genomics-
based approaches, like CHORD, in the clinic will support these
endeavors and provide additional treatment options for patients.
CHORD is freely available as an R package at https://github.com/
UMCUGenetics/CHORD.

Methods
Datasets. We have used patient data for which re-use for cancer research was
consented by the patients as part of two clinical studies (NCT01855477,
NCT02925234) unrelated to the current work. Matched tumor/blood samples from
these patients were sequenced and uniformly analyzed by the Hartwig Medical
Foundation (HMF; https://www.hartwigmedicalfoundation.nl/en/appyling-for-

data/). The data transfer agreement (Data Request 10 and 47) were approved by the
medical ethical committees (METC) of the University Medical Center Utrecht. We
received germline and somatic VCF files of the 3,824 metastatic tumor samples
from 3,584 patients in May 2019. For patients with multiple biopsies that were
taken at different timepoints, patient IDs were suffixed by “A” for the first biopsy,
“B” for the second biopsy, etc (e.g. HMF001423A, HMF001423B). A detailed
description of the whole patient cohort has been described in detail in Priestley
et al.13.

Somatic variant TSV files of the 560 breast cancer (BRCA-EU) dataset were
downloaded from the International Cancer Genome Consortium (ICGC; https://dcc.
icgc.org/repositories) in August 2017. BAM files for the 44 BRCA-EU samples are
available from EGA (datasets: EGAD00001000063, EGAD00001001322,
EGAD00001001337). BRCA1/2 status annotations for this dataset being obtained from
the supplementary data in Davies et al.9.

Somatic variant VCF files and somatic copy-number TSV files for the ICGC
portion of the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset
(consisting of 1854 patient tumors) were downloaded from https://dcc.icgc.org/
releases/PCAWG on 3 March 2020. PCAWG access for germline data has been
granted via the Data Access Compliance Office (DACO) Application Number
DACO-1050905 on 6 October 2017 and via https://console.cancercollaboratory.org
download portal on 4 December 2017. Germline VCF files were downloaded from
the cancer collaboratory download portal on 21 March 2018.

Variant calling. Variant calling in the HMF dataset was performed previously by
HMF (https://github.com/hartwigmedical/pipeline)13. Briefly, reads were mapped
to GRCh37 using BWA-MEM v0.7.5a with duplicates being marked for filtering.
Indels were realigned using GATK v3.4.46 IndelRealigner. GATK Haplotype Caller
v3.4.46 was used for calling germline variants in the reference sample. For somatic
SNV and indel variant calling, GATK BQSR3 was first used to recalibrate base
qualities, followed by Strelka v1.0.14 for the variant calling itself. Somatic SV calling
was performed using GRIDSS v1.8.0. Copy-number calling was performed using
PURity & PLoidy Estimator (PURPLE), that combines B-allele frequency (BAF),
read depth, and structural variants to estimate the purity and copy number profile
of a tumor sample37 as well as VAF and clonality (either clonal, subclonal or
inaccurate) estimates of each variant.

Determining gene biallelic status. For samples in the HMF and PCAWG
cohorts, biallelic status was determined for 781 genes (Supplementary Data 3)
which included genes associated with cancer, according to Cancer Genome
Interpreter (https://www.cancergenomeinterpreter.org/genes), as well as a manu-
ally curated set of genes involved in HR (based on the KEGG HR pathway (https://
www.genome.jp/), as well as via a literature search). This was performed using an
in-house pipeline that interprets copy-number, and germline and somatic SNV/
indel data from the HMF variant calling pipeline to determine biallelic gene status
(https://github.com/UMCUGenetics/hmfGeneAnnotation).

First, the copy number status in the gene region was determined. If the
minimum copy number was <0.3, the gene was considered to have a deep deletion
(and by default biallelically inactivated). Else, the gene was screened for 2 mutation
events, which included following combinations: (i) loss-of-heterozygosity (LOH)
with a germline or somatic SNV/indel; (ii) a germline and somatic SNV/indel; or
(iii) 2 somatic SNV/indels.

LOH was considered pathogenic and was automatically given a pathogenicity
score (P-score) of 5. LOH occurred if the minimum minor allele copy number
within a gene region was <0.2.

Pathogenicity of SNVs/indels was assessed based on pathogenicity annotations
from ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/; GRCh37, database date
2020-02-24). For variants without an entry in ClinVar, pathogenicity was assessed
based on variant type as determined by SnpEff (http://snpeff.sourceforge.net/; v4.1
h). Briefly, variants can be given one of the following annotations from ClinVar:
pathogenic, likely pathogenic, variant of unknown significance (VUS), likely
benign, and benign. A P-score of 1–5 was also assigned to each annotation, with 1
= benign and 5= pathogenic. In addition, variant types as determined by SnpEff
were assigned similar annotations and scores: out-of-frame frameshifts were
considered pathogenic (P-score= 5); nonsense and splice variants were considered
likely pathogenic (P-score= 4); missense variants, essential splice variants, and
inframe frameshifts were considered VUS’s (P-score= 3); the remaining variant
types were considered likely benign or benign (P-score ≤ 2). The final P-score of a
variant was the ClinVar P-score if a ClinVar annotation exists for that variant, and
if not, the SnpEff P-score was used. See Supplementary Data 6 for details on
pathogenicity scoring.

P-scores from pairs of mutation events (i.e. SNV, indel, or LOH) were summed
to yield a biallelic pathogenicity score (BP-score), giving a maximum possible score
of 10. Deep deletions were automatically given a score of 10. Per gene, the biallelic
event with the highest score was taken the biallelic status of the gene. If multiple
events had the same score, a biallelic event was greedily selected.

Extracting mutation contexts. The counts of three types of mutation contexts
(SNV, indel, and structural variant (SV) contexts) were determined from the
somatic variant data from the HMF, PCAWG and BRCA-EU cohorts
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(Supplementary Data 2). This was performed using the R package mutSigExtractor
(https://github.com/UMCUGenetics/mutSigExtractor).

The SNV contexts comprised of 96 trinucleotide contexts, which are composed
of one of six classes of base substitutions (C > A, C > G, C > T, T > A, T > C, T > G)
in combination with the immediate 5′ and 3′ flanking nucleotides.

The indel contexts comprised of 6 types based on the presence of: short tandem
repeats (ins.rep, del.rep); short stretches of identical sequence at the breakpoints,
also known as microhomology (ins.mh, del.mh); or the presence of neither (ins.
none, del.none). Indels in repeat regions were defined as the presence of ≥1 copy of
the indel sequence downstream (i.e. in the 3′ direction) from the breakpoint, where
sequence length must be <50 bp. Indels with flanking microhomology were defined
as the presence of the following sequence features up or downstream from the
breakpoint: (i) ≥1 copy of the indel sequence if the indel sequence length is ≥50 bp;
(ii) ≥2 bp sequence identity to the indel sequence; or (iii) ≥1 bp sequence identity if
the indel sequence length is ≥3 bp. For (ii) and (iii) the number of up or
downstream bases searched was equal to the length of the indel. The 6 indel
contexts types were further expanded into 30 indel contexts by stratifying ins.rep,
del.rep, ins.none, and del.none by indel sequence length (1–4 bp and ≥5 bp); and
ins.mh and del.mh by the number of bases in microhomology (“bimh”; 1–4 bp
and ≥5).

The 16 SV contexts were composed of the SV type (deletion, duplication,
inversion, translocation) and the SV length (1–10 kb, 10–100 kb, 100kb–1Mb,
1–10Mb, >10Mb). Note that SV length is not applicable for translocations.

Random forest training
Features. To construct the features for training the CHORD, the 96 trinucleotide
contexts were simplified to six base substitution contexts by discarding the 5′ and 3′
flanking nucleotide information. For CHORD-del.mh.merged, the 30 indel con-
texts were simplified to the 6 indel types. For CHORD and CHORD-signature, the
del.mh indel type was split into 2 bins: del.mh with 1 bp homology and 2 to ≥5 (i.e.
equivalent to ≥5 bp) homology (del.mh.bimh.1 and del.mh.bimh.2.5 respectively).
Then, relative contribution was calculated for each feature per mutation context
type (i.e. SNV, indel and SV contexts separately). For CHORD-signature, the 96
trinucleotide contexts were fitted to the 30 COSMIC SBS signatures9 using the non-
negative least squares algorithm (incorporated in mutSigExtractor). The SV con-
texts were fitted in the same manner to the 6 SV signatures9. The relative con-
tribution of the SBS signatures, SV signatures, and indel contexts was then
calculated per mutation type.

Training set. The training set consisted of samples which we could confidently
consider BRCA1/2 deficient or proficient based on the P-scores/BP-scores as
described in Determining gene biallelic status and Supplementary Data 6. BRCA1/2
deficiency was defined as having a BP-score= 10. This includes samples with: (i)
a deep deletion, (ii) LOH in combination with a pathogenic SNV/indel or an out-
of-frame frameshift, or (iii) two pathogenic SNV/indels and/or or out-of-frame
frameshifts. Within the BRCA1/2 deficient group, samples where the absolute
frequency of indels within repeat regions was >14,000 were considered to have
microsatellite instability (MSI) and were removed. This filtering step was done as
the relative contribution of indels in repeat regions are grossly overrepresented in
samples with MSI, thereby masking the contribution of microhomology deletions.
This sample group ultimately consisted of 35 BRCA1 (“BRCA1’” class) and 89
BRCA2 (“BRCA2’” class) deficient samples which were both considered HRD
during the training. Conversely, BRCA1/2 proficiency required the following cri-
teria: (i) Absence of deep deletions or LOH; (ii) all SNV/indels had a P-score ≤ 3
(VUS or lower in impact); (iii) for the highest impact pair of SNV/indels (i.e.
highest BP-score), both variants had a P-score ≤ 3 (VUS or lower in impact). This
BRCA proficient group (‘“none” class) consisted of 1902 samples which were
considered HRP during the training (Supplementary Fig. 1).

Training procedure. The training procedure for CHORD (as well as other models
described in this study) is illustrated in Supplementary fig. 2. A core training
procedure, which performs feature selection and class resampling, forms the basis
for the full training procedure (Supplementary Fig. 2a). Feature selection was done
to retain mutation contexts which were significantly higher (p < 0.01, determined
by one-tailed Wilcoxon tests) in BRCA1/2 deficient versus proficient samples. Class
resampling serves to reduce the difference in the number of samples between each
class (i.e. class imbalances). Here, a grid search was performed to determine the
optimal pair of the following parameters: (i) down-sampling of the “none” class: 1x
(i.e. no down-sampling), 2x or 4x; (ii) up-sampling of the “BRCA1” class: 1x (i.e. no
up-sampling), 1.5x or 2x. For each iteration of the grid search, 10-fold cross-
validation (CV) was performed, after which the AUPRC was calculated. The
parameter pair with the highest AUPRC was chosen. With the selected features and
resampling parameters, a random forest was then trained that predicts the prob-
ability of a new sample being in one of the aforementioned three classes (i.e.
“BRCA1”, “BRCA2” or “none”). We defined the HRD probability as the sum of the
probability of belonging to the “BRCA1” and “BRCA2” classes, where a sample was
considered HRD if the HRD probability was ≥0.5. Random forests were trained
using the randomForest R package.

The full training procedure was split into two stages (Supplementary Fig. 2b).
The first stage serves to filter “BRCA1” or “BRCA2” samples from the which are

likely not HRD (e.g. due to reversal of biallelic inactivation via a second frameshift
bringing the gene in frame), or “none” samples, which are likely not HRP (e.g. due
to deficiencies in other HR genes). Here, the core training procedure is
encapsulated by a 10-fold CV loop to allow every sample to be excluded from the
training set to subsequently calculate an unbiased HRD probability. This was
repeated 100 times and the number of times each sample was HRD or HRP was
calculated. “BRCA1” or “BRCA2” samples that were predicted HRD < 60 times
were blacklisted while “none” samples that were predicted HRD > 40 times were
blacklisted. In the second training stage, the core training procedure was performed
on a training set without the blacklisted samples. This yielded the final random
forest model.

The performance of the final random forest model was assessed using two
approaches: (i) 10-fold CV of the training set by further encapsulating the full
training procedure in a 10-fold CV loop; (ii) applying the final random forest
model to an external dataset (BRCA-EU dataset). An AUPRC was then calculated
for both approaches. In the case of the BRCA-EU dataset, BRCA1/2 deficiency
annotations were obtained from Davies et al.9. All performance metrics were
calculated using the mltoolkit R package (https://github.com/UMCUGenetics/
mltoolkit).

Determining the genetic cause of HRD. To determine the genetic cause of HRD,
tumors were first selected from the HMF cohort based on the absence of MSI,
having ≥50 indels, and ≥30 SVs for HRD predicted samples (Supplementary
Data 1). Furthermore, for patients with multiple biopsies, a single tumor per
patient was selected (based on the one with highest tumor purity). In total, 3504
tumors were selected (from the 3824 in total) to represent each patient. The fol-
lowing procedure was then employed for identifying biallelic loss in each of the 781
cancer/HR associated genes. First, high-frequency germline SNV/indels (Supple-
mentary Fig. 18) were marked as benign (P-score= 0). Then, each gene was
screened for the following events: (i) a deep deletion; (ii) LOH in combination with
a germline SNV/indel with a P-score ≥ 4 (likely pathogenic or higher in impact);
(iii) LOH in combination with a somatic SNV/indel with a P-score ≥ 3 (VUS or
higher in impact); or (iv) two SNVs/indels (germline+ somatic, or 2x somatic)
both with a P-score= 5 (pathogenic). See Supplementary Data 6 for details of the
P-score thresholds used.

After applying CHORD to the HMF cohort, we then determined whether each
of the 781 genes was significantly more frequently deficient in CHORD-HRD vs.
CHORD-HRP patients using a one-tailed Fisher’s exact test, with multiple testing
correction performed with the Hochberg procedure using the p.adjust() function in
R. This was done to determine the genes most likely to cause HRD when
inactivated. Six genes were found with a q-value < 0.1 and had at least five patients
with a deficiency in the corresponding gene: BRCA1, BRCA2, RAD51C, PALB2,
NF1, and STARD13 (Supplementary Fig. 19). NF1 and STARD13 have not been
reported to be involved in HR, and thus further analyses were performed to
validate the enrichment for these two genes.

Since BRCA1 and NF1 are both located on Chr17, we reasoned that copy
number alterations (CNA; in this case referring to deep deletions or LOH) that
affect BRCA1 also affect NF1. This leads to frequent biallelic loss of NF1 even
though the gene is likely not associated with HRD. A similar situation was
suspected for BRCA2 and STARD13 which are both located on Chr13. Thus, one-
tailed Fisher’s exact tests were performed to determine whether CNAs in each of
the 781 genes significantly co-occurred more often with a CNA in BRCA1 or
BRCA2. Multiple testing correction was performed using the Hochberg procedure.
Indeed, enrichment in the co-occurrence of BRCA1 and NF1 CNAs was found, and
was similarly the case for BRCA2 and STARD13 (Supplementary Fig. 20). We thus
concluded that biallelic loss of NF1 and STARD13 are likely not associated with
HRD and were therefore excluded from Fig. 3a.

Clustering of CHORD-HRD samples. Clustering of CHORD-HRD samples based
on biallelic inactivating events (as in Fig. 3c) is illustrated in Supplementary Fig. 25.
First, samples were split into 4 groups according to their HRD subtype and whether
a sample had an impactful biallelic event (P-score pair of 5 and ≥3).

For each of these groups, the HRD associated gene with the max BP-score
was greedily determined per sample and assigned a score of 1, with the
remaining genes being assigned a score of 0. Genes were prioritized as follows
BRCA2, BRCA1, RAD51C, PALB2. This was based on highest to lowest
enrichment of gene deficiency in CHORD-HRD vs. CHORD-HRP as described
above. With the resultant (1,0) matrix, a sorting operation was performed. A
post-processing step (done purely for cosmetic purposes) ensured that samples
with deep deletions, LOH+ frameshift, and LOH+ other SNV/indels in the
corresponding gene were ranked first. The sorted (1,0) matrices from the
4 sample groups were combined, and consecutive rows of 1s were considered a
cluster. For the 2 groups representing samples with no impactful biallelic event,
all samples were considered to be in one cluster. These 2 groups corresponded to
clusters 4 and 6 in Fig. 3c, and samples in these clusters were considered to have
an unknown cause of HRD.

For Supplementary Fig. 23, samples were first split by cancer type before
performing the above procedure.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Metastatic WGS data and corresponding metadata have been obtained from the Hartwig
Medical Foundation and provided under data request numbers DR-010 and DR-047.
Both WGS data and metadata is freely available for academic use from the Hartwig
Medical Foundation through standardized procedures and request forms can be found at
https://www.hartwigmedicalfoundation.nl. WGS data for the 560 primary breast cancer
(BRCA-EU) dataset and Pan-Cancer Analysis of Whole Genomes (PCAWG) primary
cancer dataset are publically available from the International Cancer Genome
Consortium (ICGC) (https://dcc.icgc.org/repositories; https://dcc.icgc.org/releases/
PCAWG). For access to identifying data (e.g. germline or raw read data) for the PCAWG
or BRCA-EU datasets, researchers will need to request access via the ICGC Data Access
Compliance Office (DACO). All other data are available within the article,
Supplementary Information or available from the authors upon request.

Code availability
CHORD is available as an R package at https://github.com/UMCUGenetics/CHORD
(DOI: 10.5281/zenodo.4020925). The code used for data processing and generating the
figures is also available in this repository.
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