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Changing travel patterns in China during the early
stages of the COVID-19 pandemic
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Understanding changes in human mobility in the early stages of the COVID-19 pandemic is

crucial for assessing the impacts of travel restrictions designed to reduce disease spread.

Here, relying on data from mainland China, we investigate the spatio-temporal characteristics

of human mobility between 1st January and 1st March 2020, and discuss their public health

implications. An outbound travel surge from Wuhan before travel restrictions were imple-

mented was also observed across China due to the Lunar New Year, indicating that holiday

travel may have played a larger role in mobility changes compared to impending travel

restrictions. Holiday travel also shifted healthcare pressure related to COVID-19 towards

locations with lower healthcare capacity. Network analyses showed no sign of major changes

in the transportation network after Lunar New Year. Changes observed were temporary

and did not lead to structural reorganisation of the transportation network during the

study period.
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The COVID-19 pandemic was first identified in Wuhan,
China, in late 2019, and came to prominence in January
2020, and quickly spread within the country. January is

also a major holiday period in China, and the 40-day period
around Lunar New Year (LNY), or Chunyun, marks the largest
annual human movement in the world, with major travel flows
out of large cities1. The purpose of this holiday travel is often to
visit family members. The temporary displacement from resi-
dential addresses as a result of this holiday travel could last one to
two weeks, up to a month. In 2019, nearly 3 billion individual
journeys were made during Chunyun2. In 2020, Chunyun lasted
from 10th January to 18th February3, with the first day of the
LNY holidays on 24th January, followed by the first day of LNY
on 25th January. This period coincided with the initial phase of
the COVID-19 pandemic, and there has been speculation that
holiday travel may have accelerated the propagation of COVID-
19 both within China and internationally4.

As part of initial efforts to contain the outbreak, the Chinese
government announced a cordon sanitaire for the city of Wuhan,
Hubei Province, starting on 23rd January 2020, one day before
LNY holidays. This intervention restricted all non-essential
movement into and out of the city. Services at airports, train
stations, long-distance bus stations, and commercial ports were
all suspended5. Several studies have focused on assessing the
effectiveness of the cordon sanitaire in Wuhan and other
domestic travel restrictions in China in the context of COVID-19
control6–8. As other affected regions worldwide begin imple-
menting similar travel restrictions9, it is critical to understand
human mobility patterns during the initial phase of the COVID-
19 pandemic and their potential implications for other countries.

Out-going traffic from Wuhan was reduced by 89% within two
days of the cordon sanitaire, according to data from Baidu Hui-
yan, an internet service company in China which uses location
targeting to provide services to users. Baidu’s Location Based
Service (LBS)10 provides travel fluxes between prefectures in
China during the annual Chunyun period to allow monitoring of
movement of people using their services.

Previous analyses of Baidu movement data have used mobility
data in transmission models6,11, and others have examined the
changes in patterns around Wuhan7. A key unknown is to what
extent the observed travel patterns in Wuhan and the rest of
China were part of regular seasonal movements or were responses
to the emerging epidemic or interventions against it, including
the cordon sanitaire. Relying on a range of data scientific tech-
niques, we examine human movement between Chinese pre-
fectures on multiple geographic scales to provide a detailed
examination of travel patterns during the early stages of the
COVID-19 pandemic in China. We combine analyses of travel
patterns from Wuhan, where the first COVID-19 epidemic was
identified, and the first Chinese city to introduce large scale
movement restrictions, with an analysis of the effects on the
overall Chinese travel network. We further explore the relation-
ship between travel patterns during the LNY holidays and
regional healthcare capacity, to understand the impact of the
human movements on the healthcare pressure caused by the
spreading epidemic. This research is intended to provide a
complete picture of the overall movement dynamics in China,
and the public health implications of those movements, and has
relevance to other countries implementing travel restrictions in
an effort to limit the spread of COVID-19.

Results
Human movement surrounding Wuhan, Hubei. We used daily
prefecture-level movement data across China provided by Baidu
Huiyan10 to understand the spatial and temporal characteristics

of movement patterns before, during and after the COVID-19
epidemic in Wuhan. Before the cordon sanitaire and during the
initial phase of the COVID-19 epidemic, outbound travel volume
from Wuhan was marked by an early-January peak, followed by a
sharper second peak in the days before the LNY holidays
(Fig. 1a). The first peak was not observed in 2019, while the
second peak was higher in 2020 than 2019. Because the start of
Wuhan’s cordon sanitaire and the beginning of LNY holidays
were only one day apart, we refer only to LNY while describing
our results.

Using k-means clustering of the timeseries of daily outbound
travel from Wuhan to other prefectures, we identified four
general temporal patterns that captured the travel patterns from
Wuhan (Fig. 1e, Supplementary Table 1). Two of these clusters
exhibited an increase in flow immediately before LNY (clusters A
and B). Members of clusters A and B are geographically closer to
Wuhan (Fig. 1d), with fewer residents and overall lower
population density (Fig. 1e, Supplementary Tables 2–3). Cluster
C exhibited two peaks around 7 and 22 January 2020,
respectively. Cluster D showed one peak in early-January 2020,
with no peak immediately preceding the LNY holidays. The
findings are not sensitive to the number of clusters, (Supplemen-
tary Figs. 1–5).

The earliest detection of COVID-19 outside of Wuhan was
17th January 2020 (Fig. 1b). By late March, over 90% of
prefectures and province-level cities (further detail on adminis-
trative levels included in “Methods” section) in mainland China
had at least one confirmed case of COVID-19. Most prefectures
confirmed their first COVID-19 cases between 23rd and 26th
January 2020.

Among the four clusters identified, cluster membership was
associated with COVID-19 detection timing (p-value= 0.0004).
Members of cluster D tended to have earlier COVID-19
detection. Such association persisted after adjusting for surveil-
lance bias (p-value= 0.00002, see also Supplementary Fig. 6).
Cluster membership was also associated with differences in
prefecture-level population sizes (Fig. 1c). Cluster D includes
large population centres (e.g., Beijing, Shanghai, Guangzhou and
Shenzhen) (Fig. 1d). After the possible arrival of infected
individuals from Wuhan, these highly connected cities could
have contributed to the further spread of COVID-19 to places less
directly connected to Wuhan. There were also a small number of
prefectures that did not have any confirmed cases until 3 weeks
after the cordon sanitaire in Wuhan.

We repeated the same analyses for other large cities in China,
finding that despite the different numbers of clusters identified,
the general patterns in movement flows observed in Wuhan were
seen elsewhere in mainland China, with an early January peak in
travel, and another increase in travel volume preceding LNY
(Supplementary Figs. 6–10). The association between the
population size of destinations and geographic distance, however,
was less apparent. The early-January peak in Wuhan coincided
with the beginning of winter break for university students in
China12, approximately one million of whom study in Wuhan13.
Without information about the age composition of travellers at
this time, we cannot provide a definite explanation of this
observation.

There is anecdotal evidence implying an association between
the announcement of a cordon sanitaire on 23rd January and
temporarily increased outbound travel from Wuhan14. This
relationship, if true, could have hindered the effectiveness of the
cordon sanitaire. Focusing on the six-day period preceding LNY,
we compared the outbound travel patterns from Wuhan with the
rest of mainland China using 2019 as the baseline. We used two
variability metrics to investigate potential outbound travel surges:
(1) a proportion-based matric, Eq. (3), that captures the relative
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between-year difference; and (2) an anomaly-based metric Eq. (4)
that captures the deviation observed in 2020 compared to 2019.
We found that although there is evidence of an increase in
outbound travel from Wuhan during this period, a similar
increase was also observed in many other prefectures. Wuhan was
ranked 46 (top 13%) and 88 (top 24%) of 305, by the two metrics
for the change in flow (Supplementary Fig. 12).

Movement patterns across China. We explored the existence of
hierarchical patterns of movement between differently-sized
prefectures in mainland China, in an effort to understand dif-
ferences in the connectivity between more and less populated
prefectures during heightened travel during the LNY holidays.
We divided prefectures and province-level cities into four
population quartiles (i.e., Low (2000 to 1.44 million residents),
Medium-low (1.45 to 2.96 million residents), Medium-high (2.98
to 4.90 million residents) and High (4.92 to 24.20 million resi-
dents). We found that the trends of inbound and outbound travel
volume over time were relatively consistent across population
quartiles (Supplementary Fig. 13). The flow between all pairs of
quartiles, measured in Baidu’s migration index, increased prior to
LNY and dropped sharply after Wuhan’s cordon sanitaire, with
an increase in within-quartile flow following 23rd January for all
quartiles. However, the underlying composition of these in- and
outbound travel flows differed substantially by population quar-
tile (Fig. 2).

Before LNY, all regions saw increased inbound travel from
highly populated prefectures (Fig. 2a–d). These changes were
more marked in prefectures of lower population sizes. After LNY,
the contribution to inbound travel by prefectures in the middle

quartiles stabilised at higher levels compared to pre-LNY. As the
volume of inbound travel recovered through February (Supple-
mentary Fig. 15), the relative proportion of travellers from the
most populated quartiles remained low. For outbound travel, a
higher proportion of travellers from the most populated
prefectures travelled to the middle quartiles before LNY, and a
higher proportion from medium-sized prefectures travelled to
low-population prefectures (Fig. 2e–h). Travel volumes and
distance patterns in Beijing, Shanghai, and Guangzhou began to
return to normal more quickly than in Wuhan, and outbound
travel generally recovered more after LNY (Supplementary
Fig. 14).

This analysis of origin or destination locations revealed
diverging hierarchical effects, rather than a simple cascading
flow of travellers from larger to smaller population prefectures.
Travellers from large prefectures more often travelled to other
large or medium size prefectures; travellers from medium and
small prefectures more often travelled between medium and small
prefectures. Holiday travel immediately preceding LNY can be
considered an indicator of long-term migration in China, as
people travel back along their long-term migration route
temporarily to visit family. The patterns we observed are
consistent with the migration step effect along the urban
hierarchy, in which geographic regions of similar population size
exchange members more often15,16. The divergence in hierarch-
ical flow between high and low population prefectures means that
middle population prefectures could play a key role in limiting
the spread of COVID-19 to prefectures with fewer residents.
Non-pharmaceutical interventions could target these medium-
sized prefectures to prevent epidemics from reaching the
relatively rural parts of China.
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Fig. 1 Travel patterns between Wuhan and other connected prefectures. The identified patterns of outbound travel from Wuhan: (a) the daily total
outbound travel from Wuhan in 2019 and 2020; (b) timing of first case detection stratified by clusters of similar time series; (c) distribution of resident
population sizes of individual prefectures (points); (d) map of prefectures and province-level cities showing the spatial distribution of timeseries clusters;
(e) outbound travel trends from Wuhan to the most connected prefectures in China, stratified by clusters with similar time series. The clusters are defined
by k-means clustering of the timeseries of outbound travel volume (see “Methods” section). For clusters in panels b and c, n= 22 (Cluster A), 34 (Cluster
B) 33 (Cluster C), 36 (Cluster D). Boxplots in panels b and c display Median, IQR, and whiskers +/− 1.5 times IQR. The timeseries have been normalised
by the total flow of each, to allow comparison of the profile. Inset pie charts show the total travel flux out of Wuhan prefecture by destinations in each
cluster. The red dashed lines in panels a, b and e mark the beginning of LNY holidays. The colours in panels b, c, d and e indicate cluster membership
(Cluster A, B, C or D).
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Healthcare capacity and COVID-19-related healthcare pres-
sure. Before the LNY, the move away from larger population
centres was also a move away from high healthcare capacity,
measured by the number of Grade II and III hospitals per 100,000
residents (Fig. 3). Prefectures with higher healthcare capacity had
more outgoing than incoming travellers, and after LNY, travellers
gradually returned to high healthcare capacity settings, but the
overall geographic distribution of residents had not recovered to
its pre-LNY conditions by 1st March 2020 (Fig. 3a). This pattern
persisted when we used an alternative healthcare capacity mea-
sure of the number of Grade II and III hospitals without adjusting
for background population size (Supplementary Fig. 16).

The movement observed was associated with COVID-19-
related healthcare pressure (see “Methods” section), a measure of
confirmed cases compared with healthcare capacity (Fig. 3b).
From the week before LNY to two weeks after, locations with low
healthcare capacity experienced significantly higher pressure
compared to locations with high healthcare capacity. Therefore
Chunyun not only increased the chance of infection along
mobility networks, but also shifted healthcare pressure caused by
COVID-19 to regions with low healthcare capacity, an effect seen
in other countries and during natural disasters17–19. Using the
alternative healthcare capacity measure that considers number of
hospitals only, we found similar relative associations (Supple-
mentary Fig. 16).

Changes in overall travel network structure. In order to
understand broad changes in the Chinese transportation network,
we identified communities of highly connected prefectures and
assessed the change in these communities during LNY and the
introduction of local interventions in Chinese prefectures. We
determined the community structure of the local travel network
by calculating the daily modularity, Q, of the directed network20

from 1st January to 1st March 2020. Each community (or mod-
ule) has more connections within vs. between communities, and
modularity is one method for measuring community structure in

networks. The changing modularity provides a holistic view of
transport throughout the country, highlighting macroscopic
changes in the network, e.g., rerouting behaviour or increased
linkages between new prefectures, as the movement network
adjusted to travel restrictions in Wuhan.

Preceding the implementation of travel restrictions, there was a
stable pattern of communities connected to large cities, with
significant flows between communities (Fig. 4). A lower
Modularity value (Q) indicates weaker connections between
prefectures within a community, or higher volumes of travel
between different communities, rather than within the same
communities. The low values of Q preceding LNY indicate a high
volume of travel between communities, with increased inter-
connection of the movement network. Early January before LNY
represents typical travel in China with flow between major
population centres. During this period, travel within China was
generally structured into well-defined communities, with high
modularity, Q (Fig. 4, time point 1). Major cities had consistent,
distinct communities which remained fairly steady even as
outflows began to increase from major cities for LNY (Fig. 4, time
point 2; see Supplement 6 for full time series).

Immediately following the implementation of travel restric-
tions, we identified a marked peak in modularity where the Q-
value for Wuhan City increased, indicating that it temporarily
became more integrated into the travel network (Fig. 4a, time
point 3). This increase in modularity indicated relatively more
connectivity between Wuhan and other communities, although
there was decreased flow, so the actual number of travellers was
much lower. This could also reflect the large movement of
medical and other resources to Wuhan following the implemen-
tation of restrictions21.

Overall connectivity decreased across China after the cordon
sanitaire in Wuhan (Fig. 4, time point 4). This coincided with the
implementation of disease control interventions in other
prefectures, and a decrease in travel following LNY. Consistent
with a country-wide policy of restricted movement, we did not
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find large rerouting or the increasing importance of other
transport connections after the restrictions in Wuhan. This is
critical as countries attempt to determine the efficacy of large-
scale movement restrictions.

Discussion
The cordon sanitaire in Wuhan was an intensive travel restriction
that completely stopped all non-essential incoming and outgoing
traffic. Previous studies have demonstrated that it may have
had low effectiveness in preventing or delaying transmission to
other regions of mainland China during the early phase of the
COVID-19 pandemic7,22. There is however potential for infectious
disease control and prevention, especially when timeliness and
the necessary scope of restrictions can be achieved23. Travel
restrictions will likely continue to be considered an important
infectious disease intervention option against COVID-19 during
the pandemic, and better understanding the mechanisms in play
at different stages of travel restrictions is crucial to effective
implementation.

We found a limited relationship between spatial proximity and
epidemic spread where larger, distant populations detected their
first COVID-19 cases earlier than smaller locations that are closer
to Wuhan. We also observed a hierarchical divergence of
movement between prefectures of different populations sizes,
with larger prefectures more connected to other large prefectures,
and smaller prefectures more connected to other small pre-
fectures. Due to the highly connected modern mobility network,
spatial proximity is not the only measure for closeness between
two cities24 We found a limited relationship between spatial
proximity and epidemic spread where larger, distant populations
detected their first COVID-19 cases earlier than smaller locations
that are closer to Wuhan. Due to the highly connected modern
mobility network, spatial proximity is not the only measure for
closeness between two cities24. While planning for travel
restrictions, either domestic or international, it may be worth-
while to consider other functional connectivity measures, such as
human mobility studied here. Although outbreaks may appear to
have single source location in the beginning, such as the case in
Europe25, focussed travel restrictions around epicentres and their
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immediate geographic surroundings may lead to missed oppor-
tunities for epidemic control.

The timing of LNY and the initial stage of the COVID-19
epidemic makes it difficult to untangle regular holiday travel from
travel in response to the outbreak or to impending travel
restrictions. The increased outflow from Wuhan that we observed
was not unique to the city, as similar patterns of outflow were
observed in a large number of other prefectures, and so likely
represents increased holiday travel. We therefore did not find
evidence of an association between the announcement of the
cordon sanitaire and the number of outbound travellers leaving
Wuhan. Data from other countries not confounded by holiday
travel (e.g., France26) may yield insights on public responses to
travel restrictions. In addition, although the overall number of
travellers leaving Wuhan was not exceptionally high before LNY,
the composition of travellers may have changed, such as a shift
from business to family travel, which could contribute to the
spread of COVID-19 and could have implications for healthcare
demand in destination locations27. Finer resolution mobility data,
including traveller characteristics such as age and occupation,
could improve our understanding of the potential outbreak risk
and the likely impacts of different interventions in the future.

Human mobility during Chunyun was marked by the general
trend of people leaving large population centres for less populated
locations. This is a move by the population away from locations
with high healthcare capacity. During the peak of the epidemics
in mainland China, areas with low healthcare capacity experi-
enced significantly higher healthcare pressure related to COVID-
19 compared to elsewhere. Temporarily mobilising resources
such as medical personnel and equipment could aid epidemic
control in places receiving a higher-than-normal number of tra-
vellers from places with potentially high COVID-19 prevalence,
and thus could be evaluated as a potential public health inter-
vention under similar circumstances28.

The structure of the overall transportation network in China
did not demonstrate compensatory responses to the cordon
sanitaire. There was a brief alteration of the network structure
immediately following the restrictions, before the network settled
quickly back into the same relatively stable communities that

existed before the restrictions, albeit at markedly lower flow. This
implies that the overall transportation network did not undergo
structural reorganisation as a result of Wuhan’s cordon sanitaire
and other regional travel restrictions. Short-term travel restric-
tions may therefore not incur lasting impacts on the mobility
network, but assessing long-term impacts will require longer
time-series analyses.

Mobility data from Baidu Huiyan has some limitations. For
example, travel volumes were collected on an eight-hourly basis
between each pair of prefectures and then aggregated to day-level
and prefecture-level, which does not allow analysis of trips longer
than a day. In a country the size of China, such trips may be
relatively frequent. Pairwise travel patterns before 1 January 2020
are not available, which makes it challenging to determine base-
line travel patterns. In addition, movement patterns from Baidu
Huiyan reflect the movement of Baidu users, which may be a
non-random subset of the general population in mainland
China29.

This study analysed the human mobility patterns around
China during different stages of the local COVID-19 epidemics,
from early Chunyun to Wuhan’s cordon sanitaire and other travel
restrictions. Using a range of techniques, we assessed the patterns
of movement specific to Wuhan and the characteristics of the
travel network throughout China considering the implications of
changing travel patterns on the spread of COVID-19. We also
explored the impact of travel patterns on Chinese prefectures,
assessing the changes in healthcare pressure due to varying pat-
terns of human mobility typically associated with LNY, which
coincided with the early stages of the COVID-19 pandemic.
Many countries have now implemented similar travel restrictions
to reduce disease transmission. Understanding the implications of
travel patterns before, during, and following travel restrictions is
valuable for informing public health interventions, surveillance,
and healthcare demand planning globally.

Methods
Geographic information. The geographic unit of analysis in this study is pre-
fecture, which is administrative level two in mainland China, just below the pro-
vince (level one). There are currently more than 360 prefecture-level units in
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China. However, the four provincial level cities (Beijing, Tianjin, Shanghai and
Chongqing) are exceptions. They do not have a level two unit - level one directly
manages level three administrative units (i.e., counties) in these locations30. In this
study, we analysed these province-level cities with prefectures for spatial
completeness.

Mobility data. The mobility data is publicly available through Baidu Huiyan10, a
web service that supports government agencies and businesses with big-data spa-
tio-temporal analytics. Estimates are based on over 120 billion location-based
service (LBS) enquiries each day from over 1.1 billion mobile devices, while taking
into consideration more than 1.5 billion points of interests (POI). We obtained two
variables directly from Baidu Huiyan: overall migration index (specific to each
prefecture) and percentage of travellers arriving in or leaving specific locations
(specific to each pair of prefectures). Note that migration index is a relative
measure of the magnitude of human mobility, scaled relative to the total volume of
movement across the network. Baidu movement flow index is collected in 8-h
windows and is provided as origin-destination flows between pairs of prefectures.
We further processed these data to produce symmetrical matrices of daily travel
between all Chinese prefectures.

We calculate the volume of human mobility between each pair of prefectures on
each day between 1st January 2020 and 1st March 2020 using the following
equation:

Tij;t ¼ Fi;outbound;t ´ pij;outbound;t ð1Þ
where, for a given day, Tij,t is the volume of mobility from location i to location j on
day t, F is the overall Baidu migration index with direction (inbound or outbound)
at location i, and pij;outboundis the proportion of all outbound travel that originated
in i and ended in j. References to inbound and outbound travel are made in regards
to a specific origin or destination location. We further validated this measure by
assuming that inbound and outbound were equal, as:

Tij;t ¼ Fi;outbound;t ´ pij;outbound;t ¼ Fj;inbound;t ´ pij;inbound;t ð2Þ
where pij;inbound;t is the proportion of all inbound travel that end in j and originate
in i. Note that pij;outbound;t and pij;inbound;t are only available for the top 100
connected prefectures. In other words, pij;outbound;t is only available for the top 100
destinations originating in i; pij;inbound;t is only available for the 100 origins with the
most travellers to j. We were not able to validate for Tij,t in the cases where
pij;outbound;t and pij;inbound;t are not simultaneously available. Using data from Baidu
Huiyan, we created a symmetric, 366 × 366 connectivity matrix for each day
between 1 January 2020 and 1 Mar 2020 (61 days).

Demographic and healthcare system data. The 2018 population sizes were
retrieved from the China Statistics Yearbook31. This metric accounts for migrant
population, and thus is expected to may fluctuate during the holiday seasons. The
geographic boundaries of prefectures and province-level cities were obtained from
the Institute of Geographic Sciences and Natural Resources Research (Chinese
Academy of Sciences)32. The original source of daily confirmed incidence is the
COVID-19 dashboard published by DXY.cn, which updates in near-real time based
on government press releases33. In addition, the package ‘nCoV2019‘34 and ‘DXY-
COVID-19-Crawler‘35 have reduced the time required for data gathering and data
cleaning. Records of first case arrivals were cross-checked with news articles also
found throughon DXY.cn33. Information on the Grade II and III hospitals in China
was retrieved from the National Health Commission36 and was then geo-
referenced using the non-commercial Amap API37.

Time series analysis and surge evaluation. The patterns of movement out of
Wuhan between 1st and 23rd January were analysed using cluster analysis of the
magnitude-normalised timeseries of outflow over time. Outflow timeseries were
selected using a threshold of journeys with an average flow index greater than 0.005
for the entire period. This threshold removed prefectures with negligible con-
nectivity with the origin.

In order to characterise the shape of the outflow from Wuhan, rather than the
magnitude of certain outflows, we calculated the normalised flow, N, between
origin (i) and destination (j) prefectures on each day (t), by dividing the outflow
measured by the travel index T, by the total movement between the 1st and 23rd
January 2020, as:

Nij;t ¼
Tij;t

Pt¼23
t¼1 Tij;t

ð3Þ

We classified the time series using k-means clustering with four clusters38. The
number of clusters was chosen using a plot of average silhouette width against
number of clusters, for between 4 and 12 clusters. The silhouette width decreased
significantly at four clusters, and a similar number of time series were allocated to
each cluster (Supplementary Figs. 1–5). Furthermore, when using a greater number
of clusters, we observed the same four overall temporal patterns with smaller
differences between time series defining each cluster. We also observed an
increasingly large number of clusters containing a small number of time series.
Plots of the time series clustered using 2, 3, 4, 5 and 6 clusters are included in

Supplementary Figs. 1–5. K-medioids, and Agglomerative Clustering were also
explored as alternatives to K-means clustering. The different clustering methods
did not result in substantial differences and identified similar patterns among
outflow time series.

We quantified the peak outflow from each prefecture in the five-day window
before LNY (i.e., two to seven days before LNY, zero to five days before the cordon
sanitaire). We used two parameters to characterise the magnitude of the change in
outflow in 2020 compared to 2019 in each prefecture i:

V1;i ¼
mean Fi;τ2020

� �

mean Fi;τ2019

� �� 1 ð4Þ

V2;i ¼
mean Fi;τ2020

� �
�mean Fi;τ2019

� �

std Fi;τ2019

� � ð5Þ

where Fi,τ is the total Baidu outflow from prefecture i in the time period τ. τ in 2019
corresponds to 29 January–3 February 2019, and in 2020 corresponds to 18
January–23 January. The dates are different each year because they are aligned to
the date of LNY in 2019 and 2020.

The Relationship between First Case Detection and Cluster Membership: We
explored the association between average population size and first case detection
for prefectures in each cluster. There is potential confounding due to surveillance
bias such that larger prefectures may detect COVID-19 cases earlier due to better
public health infrastructure resulting in earlier and greater use of diagnostic tests.
However, there is no intuitive indicator that can capture surveillance efforts, and
therefore we used population size as a proxy for surveillance effort. The implicit
assumption is that places with larger populations are more equipped for detecting
COVID-19, which is supported because early testing capacity relied on biosafety
level 2+ laboratories, which are only found in large hospitals and universities39.

We adjust for this potential confounding effect using a linear regression model:

Detection date � βo þ β1 ´ popþ β2 ´ ðclustermembershipÞ ð6Þ
where pop represents the prefecture level population size as of 2018 and (Cluster
membership) is a nominal unordered categorical variable with levels A through D.

Assessing the healthcare capacity and COVID-19-related healthcare pres-
sure. In this study, prefecture-level healthcare capacity was measured by the
number of Grade II and III hospitals per 100,000 residents. In mainland China,
Grade II and III hospitals have 100–499 or 500+ hospital beds, respectively, and
are equipped with ventilators40. Thus, they are more important compared to
community hospitals and clinics for COVID-19 management. Healthcare capacity
in prefecture i (HCi), therefore, can be expressed as:

HCi ¼
nhospital;i

Popresidential;i
ð7Þ

where nhospital,i is the number of Grade II and III hospitals in prefecture i, and
Popresidential,i is the residential population of prefecture i. We use the size of the
residential population in 2018 from the China Statistics Yearbook29. HCi is stra-
tified into high and low by taking the upper and lower 50% of prefectures with
available data. Note that this metric cannot accurately reflect the prefecture level
population sizes during LNY due to population movement. For example, the
residential population size of Beijing is approximately 22 million, and over 10
million left the city for LNY41.

Healthcare pressure in prefecture i during week w (Hpi,w) was calculated by
dividing weekly confirmed COVID-19 cases31 by the healthcare capacity:

HPi;w ¼ nconfirmed;w

HCi
ð8Þ

where nconfirmed,w is the number of confirmed COVID-19 cases during week w.
We also performed a sensitivity analysis on the metric and considered an

alternative measure of healthcare capacity that did not adjust for the background
residential population sizes:

HCi ¼ nhospital;i ð9Þ
The distributions of healthcare pressure were non-Gaussian. We therefore used

non-parametric one-tailed Mann–Whitney U tests to compare the differences of
healthcare pressure between low and high healthcare capacity settings. The null
hypothesis was that the healthcare pressures in low healthcare capacity settings are
comparable to that in high healthcare capacity settings; the alternative hypothesis
was that healthcare pressures in low healthcare capacity settings are higher than
those in high healthcare capacity settings (n1= 157, n2= 153). This test was
repeated for each week from week three to nine (i.e., starting on 15 Jan 2020).
Results were verified using two-tailed Mann–Whitney U tests, as well as one-tailed
Mann–Whitney U tests with the opposite null hypotheses.

Network analysis. Using the weighted movement flows between locations, we
calculated community structure in the network using the Leiden algorithm20. The
Leiden algorithm maximises the modularity, Q, on directed, weighted, time sliced
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networks with an inter-slice weighting of 10−5, which is the order of magnitude of
minimum intra-slice weight across all times42. Modularity is a metric of within-
community vs. between-community connectivity, and the algorithm detects com-
munities by optimising the within vs. between, thereby assigning nodes to com-
munities. Using the community structure from this algorithm, we identified the
relative contributions to modularity, Q, of 4 key communities: the community
containing Wuhan prefecture, and then the communities of four other major cities
in China: Beijing, Shanghai, Guangzhou, and Shenzhen. The latter two were always
assigned to the same community and are marked together in Fig. 4. We presented
4 snapshots of communities in the travel network, but all are shown in Supple-
mentary Fig. 17, and the spatial locations of those networks in Supplementary
Fig. 18.

Distance Kernels. To determine how the relationship between distance and travel
flow changed over Chunyun and in response to the cordon sanitaire, we calculated
the frequency of journeys of at least distance n kilometres, for n up to the max-
imum distance 4185 km, on each day of the study period. These plots are shown for
Beijing, Guangzhou, Shanghai and Wuhan, for both inflow and outflow in Sup-
plementary Fig. 14.

Sensitivity analyses. We repeated clustering of temporal traveller flow time series
to validate the method for assessing travel flux out of Wuhan between January 1st
and January 23rd. Employing the same method of thresholding prefectures with
little connectivity, the volume of travel to individual destination locations over time
were normalised by dividing by the total flow along each route in the period. These
normalised time series were then clustered using the same k-means clustering
procedure discussed above. The number of clusters was determined using a sil-
houette plot in order to isolate the dominant temporal patterns of traveller
movement to individual destinations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. Analyses were conducted using a
symmetrical matrix of movement flux data collected from the Qianxi Baidu 2020
movement map: https://qianxi.baidu.com/. The processed movement dataset is included
in a publicly accessible repository: https://github.com/yangclaraliu/
pandemic_travel_china. This research also relies on Covid-19 case count data and
prefecture level hospital resource data from China, C. D. C. Public Health Science Data
Centre, as well as prefecture level population data from China Statistical Yearbook 2018.
Covid-19 case count data, prefecture level hospital resource data, and prefecture level
population data require applications for use.

Code availability
Code is publicly available in a Github repository, https://github.com/yangclaraliu/
pandemic_travel_china.
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