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Machine learning based early warning system
enables accurate mortality risk prediction for
COVID-19
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Yang Yu1,2, Dan Liu1,2, Sen Xu1,2, Peng-Fei Cui 1,2, Shao-Qing Zeng1,2, Xin-Xia Feng5, Rui-Di Yu1,2, Ya Wang1,2,

Yuan Yuan1,2, Xiao-Fei Jiao1,2, Jian-Hua Chi1,2, Jia-Hao Liu1,2, Ru-Yuan Li1,2, Xu Zheng1,2, Chun-Yan Song1,2,

Ning Jin1,2, Wen-Jian Gong1,2, Xing-Yu Liu1,2, Lei Huang6, Xun Tian6, Lin Li7, Hui Xing7, Ding Ma1,2, Chun-Rui Li8,

Fei Ye 9✉ & Qing-Lei Gao 1,2✉

Soaring cases of coronavirus disease (COVID-19) are pummeling the global health system.

Overwhelmed health facilities have endeavored to mitigate the pandemic, but mortality of

COVID-19 continues to increase. Here, we present a mortality risk prediction model for

COVID-19 (MRPMC) that uses patients’ clinical data on admission to stratify patients by

mortality risk, which enables prediction of physiological deterioration and death up to 20 days

in advance. This ensemble model is built using four machine learning methods including

Logistic Regression, Support Vector Machine, Gradient Boosted Decision Tree, and Neural

Network. We validate MRPMC in an internal validation cohort and two external validation

cohorts, where it achieves an AUC of 0.9621 (95% CI: 0.9464–0.9778), 0.9760

(0.9613–0.9906), and 0.9246 (0.8763–0.9729), respectively. This model enables expedi-

tious and accurate mortality risk stratification of patients with COVID-19, and potentially

facilitates more responsive health systems that are conducive to high risk COVID-19 patients.
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Management of the surging infections of the coronavirus
disease (COVID-19) is a huge clinical challenge. Cur-
rently, the pandemic is pummeling the global health

system, with 18,902,735 people infected as of August 7, 20201–3.
The overwhelmed health facilities are unable to curb the
increasing mortality of COVID-193. Moreover, without proven
effective treatments to date, patients who rapidly deteriorate into
a refractory state harbor significantly higher risks of death4,5.
Third, advanced COVID-19 is characterized by heterogeneous
clinical features and multiorgan damage5,6, which requires an
effective triage and intensive monitoring. Therefore, an early
warning system that enables stratification of COVID-19 patients
by risk of death on admission holds enormous promise to assist
in the management of COVID-19.

Electronic health records (EHRs) abound with valuable infor-
mation generated from routine clinical practices7,8, which can be
useful for mortality risk prediction of COVID-19. However, data
in EHRs are complex, multidimensional, nonlinear, and hetero-
geneous. Using models more effective than traditional statistical
methods (univariate or multivariate Cox regressions and logistic
regression (LR)) for analysis can help to fully utilize the clinical
data in EHRs. Machine learning (ML), a subfield of artificial
intelligence, encapsulates statistical and mathematical algorithms
that enable facts interrogation and complex decision-making9,10.
Therefore, combinatory uses of ML algorithms and EHRs for
prognosis prediction in the context of COVID-19 pandemic are
worth exploring.

ML algorithms have been explored in myriad fields of COVID-
19 including, but not limited to, detecting outbreaks, identifica-
tion and classification of COVID-19 medical images, rapid
diagnosis, severity risk prediction, and prognosis prediction11–15.
For COVID-19 patients and clinicians, the greatest concern is
whether the patients can survive. Available ML models that focus
on this exhibit promising prognostic implications, but are still
impeded by the paucity of external validations and limited follow-
ups, and lack the capability of predicting prognosis as early as the
time of admission.

In this study, we aim to develop a mortality risk prediction
model for COVID-19 (MRPMC) that utilizes clinical data in
EHRs to stratify patients by mortality risk on admission. The
validated capability of enabling expeditious and accurate mor-
tality risk stratification of COVID-19 may facilitate more

responsive health systems that are conducive to high-risk
COVID-19 patients via early identification, and ensuing instant
intervention as well as intensive care and monitoring, thus,
hopefully assisting to save lives during the pandemic.

Results
Study design and baseline characteristics. To train and validate
the MRPMC for prognosis prediction of COVID-19, we included
2520 consecutive COVID-19 patients with known outcomes
(discharge or death) from two affiliated hospitals of Tongji
Medical College, Huazhong University of Science and Technol-
ogy, including Sino-French New City Campus of Tongji Hospital
(SF) and Optical Valley Campus of Tongji Hospital (OV), and
The Central Hospital of Wuhan (CHWH) between January 27,
2020 and March 21, 2020. As a total of 360 patients were
excluded with definite reasons, 2160 COVID-19 patients met
eligibilities. For detailed exclusions, see Fig. 1 and “Methods,”
participants. We randomly partitioned 50 and 50% of participants
from SF into the training cohort (SFT cohort) and internal vali-
dation cohort (SFV cohort), respectively. Participants from OV
and CHWH were used as two external validation cohorts (OV
cohort and CHWH cohort). Compositions of the four cohorts are
displayed in Fig. 1 and “Methods,” cohorts. The study design has
been schematically presented in Fig. 1 and Supplementary Fig. 1.

Table 1 shows the baseline characteristics of the four cohorts.
The median age of the participants was 62 years (interquartile
range [IQR]: 51–71) in the SFT cohort, 63 years (IQR: 51–70) in
the SFV cohort, 63 years (IQR: 50–70) in the OV cohort, and 62.5
years (IQR: 55–72) in the CHWH cohort. The male patients
accounted for 50.7, 50.0, 46.7, and 54.3% of all participants in the
SFT, SFV, OV, and CHWH cohorts, respectively. Hypertension
(37.1–40.3%) was the most prevalent comorbidity and fever
(61.2–86.0%) remained the most common symptom. The median
time from admission to death or discharge ranged from 17 to
23 days among all four cohorts.

Features selected by least absolute shrinkage and selection
operator (LASSO). Among 53 raw features extracted from EHRs
(Supplementary Table 1), those with a proportion of missing
values greater than or equal to 5% in each cohort were filtered
(Supplementary Fig. 2), resulting in 34 features, including 18

Development and validation of MRPMC

Model development

Patients screened (n = 1506)
Sino-French New City Campus of Tongji Hospital

January 27, 2020 to March 21, 2020

Model validation

Patients screened (n = 881)
Optical Valley Campus of Tongji Hospital

February 10, 2020 to March 21, 2020

Patients screened (n = 133)
The Central Hospital of Wuhan

January 30, 2020 to February 15, 2020

Patients excluded (n = 263)
42   Without match diagnosis
176 From Fangcang shelter hospitals
22   Died within 24 h
23   Under 18 years old, et al.

Training cohort
(SFT, n = 621)
535 Survivors

86 Non-survivors

Internal validation cohort
(SFV, n = 622)
533 Survivors

89 Non-survivors

Patients excluded (n = 80)
30  Without match diagnosis
29 From Fangcang shelter hospitals
9    Died within 24 h
12  Under 18 years old, et al.

External validation cohort
(OV, n = 801)
741 Survivors

60 Non-survivors

Patients excluded (n = 17)
0    Without match diagnosis
12  From Fangcang shelter hospitals
2    Died within 24 h
3    Under 18 years old, et al.

External validation cohort
(CHWH, n = 116)

97 Survivors
19 Non-survivors

Fig. 1 Study design. MRPMC mortality risk prediction model for COVID-19, SFT training cohort of Sino-French New City Campus of Tongji Hospital, SFV
internal validation cohort of Sino-French New City Campus of Tongji Hospital, OV Optical Valley Campus of Tongji Hospital, CHWH The Central Hospital
of Wuhan.
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categorical features and 16 continuous ones (Supplementary
Fig. 3 and 4) that underwent feature selection by the LASSO
(Fig. 2a). Only 14 of the 34 features were eventually chosen for
modeling (Fig. 2b), among which 8 features had a positive
association with mortality (high risk: consciousness, male sex,
sputum, blood urea nitrogen [BUN], respiratory rate [RR], D—
dimer, number of comorbidities, and age) and 6 features were
negatively correlated with mortality (low risk: platelet count
[PLT], fever, albumin [ALB], SpO2, lymphocyte, and chronic
kidney disease [CKD]). Multivariable Cox analysis using raw data
of the 34 features proved that the features selected by LASSO
exhibited similar prognostic implications (Supplementary Fig. 5
and Supplementary Table 2). High-risk features identified by
LASSO were also significant unfavorable prognostic indicators
recognized via multivariable Cox analysis (hazard ratio [HR] > 1
and p < 0.05). Similarly, low-risk features accorded with favorable
prognostic indicators (HR < 1 and p < 0.05).

Model performance. In general, six ML models including LR,
support vector machine (SVM), gradient boosted decision tree
(GBDT), neural network (NN), K-nearest neighbor (KNN), and
random forest (RF) all displayed varying but promising per-
formances to predict mortality risk in the three validation
cohorts in terms of discrimination and calibration. To build a
predictive model with augmented prognostic implications, we

integrated the top four best predictive models (LR, SVM,
GBDT, and NN) to create an ensemble model called MRPMC.
MRPMC outputted a normalized probability of mortality risk
ranging from 0 to 1. We selected the threshold of 0.6 to assign
the predicted mortality risk label by optimizing F1 score on the
training cohort (Supplementary Fig. 6). Probabilities of less
than 0.6 were assigned to low risk and otherwise to high risk for
all ML methods across all cohorts. The procedures of estab-
lishing the MRPMC are elaborated in Methods, Model devel-
opment. As expected, MRPMC exhibited greater capability of
predicting mortality risk of COVID-19 than the four con-
tributive models alone in the SFV and CHWH cohorts, though
the differences between SVM and MRPMC were nuanced in the
OV cohort (Fig. 3a–c).

MRPMC achieved an area under the receiver operating
characteristics (ROC) curve (AUC) of 0.9621 (95% confidence
interval [CI]: 0.9464–0.9778) in identification of nonsurvivors
with an accuracy of 92.4% (95% CI: 90.1–94.4%) in SFV cohort.
For OV cohort, MRPMC demonstrated an AUC of 0.9760 (95%
CI: 0.9613–0.9906) and an accuracy of 95.5% (95% CI:
93.8–96.8%) to predict prognosis of COVID-19. An AUC of
0.9246 (95% CI: 0.8763–0.9729) and an accuracy of 87.9% (95%
CI: 80.6–93.2%) for prognosis prediction were observed for
CHWH cohort (Table 2). The calibration curve of MRPMC in the
three validation cohorts are depicted in Supplementary Fig. 7,
showing that MRPMC displayed a Brier score of 0.051 for SFV

Table 1 Baseline characteristics of individuals by cohort.

SFT cohort SFV cohort OV cohort CHWH cohort

Characteristics (n= 621) (n= 622) (n= 801) (n= 116)

Age 62 (51–71) 63 (51–70) 63 (50–70) 62.5 (55–72)
Sex

Female 306 (49.3%) 311 (50.0%) 427 (53.3%) 53 (45.7%)
Male 315 (50.7%) 311 (50.0%) 374 (46.7%) 63 (54.3%)

Comorbidity number 1 (0–2) 1 (0–2) 1 (0–2) 2 (1–3)
Comorbidity

Hypertension 245 (39.5%) 244 (39.2%) 321 (40.3%) 43 (37.1%)
Diabetes 110 (17.7%) 110 (17.7%) 121 (15.2%) 16 (13.8%)
CHD 72 (11.6%) 59 (9.5%) 68 (8.5%) 16 (13.8%)
CLD 26 (4.2%) 19 (3.1%) 33 (4.1%) 7 (6.0%)
Tumor 22 (3.5%) 21 (3.4%) 20 (2.5%) 51 (44.0%)
HBV 16 (2.6%) 13 (2.1%) 24 (3.0%) 1 (1.0%)
CKD 13 (2.1%) 8 (1.3%) 11 (1.4%) 1 (0.9%)
COPD 4 (0.6%) 7 (1.1%) 7 (0.9%) 1 (0.9%)
Fever 533 (86.0%) 527 (84.9%) 584 (73.0%) 71 (61.2%)
Temp (max)≥ 39 °C 169 (27.4%) 194 (31.5%) 158 (19.8%) 16 (14.2%)
Cough 450 (72.6%) 436 (70.2%) 601 (75.1%) 63 (54.3%)
Dyspnea 313 (50.5%) 283 (45.6%) 274 (34.2%) 37 (31.9%)
Sputum 233 (37.6%) 228 (36.7%) 344 (43.0%) 32 (27.6%)
Fatigue 253 (40.8%) 233 (37.5%) 250 (31.2%) 43 (37.1%)
Diarrhea 186 (30.0%) 167 (26.9%) 135 (16.9%) 9 (7.8%)
Myalgia 133 (21.5%) 144 (23.2%) 129 (16.1%) 20 (17.2%)
Vomiting 30 (4.8%) 31 (5.0%) 32 (4.0%) 3 (2.6%)
Conscious at admission 595 (95.8%) 600 (96.5%) 786 (98.1%) 79 (68.1%)
Respiratory rate, per min 20 (20–22) 21 (20–24) 21 (20–24) 21 (20–24)
MAP, mmHg 96.7 (88.7–104.7) 97.2 (89.7–105.6) 96.3 (87.7–106.7) 93.3 (86.9–101.5)
SpO2, % 95 (91–97) 95 (91–97) 96 (94–97) 95.5 (93–97.3)

Vital status
Death 86 (13.8%) 89 (14.3%) 60 (7.5%) 19 (16.4%)
Discharge 535 (86.2%) 533 (85.7%) 741 (92.5%) 97 (83.6%)
Follow-up, days 23 (15–30) 21 (15–29) 19 (14–26) 17 (12–24)

Continuous variables are presented as median (interquartile ranges [IQR]), while categorical variables as counts and percentages (%).
SFT cohort training cohort of Sino-French New City Campus of Tongji Hospital, SFV cohort internal validation cohort of Sino-French New City Campus of Tongji Hospital, OV cohort external validation
cohort of Optical Valley Campus of Tongji Hospital, CHWH cohort external validation cohort of The Central Hospital of Wuhan, Follow-up time from admission to death or discharge, CHD coronary heart
disease, CLD chronic liver disease, HBV hepatitis B virus, CKD chronic kidney disease, COPD chronic obstructive pulmonary disease, MAP mean arterial pressure.
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cohort, 0.029 for OV cohort, and 0.083 for CHWH cohort.
Performances of four contributing algorithms are listed in Table 2,
and that of the other two ML models (KNN and RF) in
Supplementary Fig. 8 and Supplementary Table 3.

Moreover, with the time from admission to death or discharge
as the endpoint, Kaplan–Meier analysis further confirmed that
MRPMC could robustly stratify patients by mortality risk. High-
risk COVID-19 patients labeled by MRPMC were significantly
less likely to survive than low-risk patients in the SFV, OV, and
CHWH validation cohorts (Fig. 3d–f; p < 0.0001) with an HR of
26.85 (95% CI: 17.41–41.42), 32.83 (95% CI: 19.70–54.70), and
12.81 (95% CI: 5.09–32.24), respectively, highlighting the
capability of MRPMC to accurately predict prognosis of
COVID-19.

Analyzing features included in models. Eight continuous fea-
tures included in MRPMC exhibited correlation to varying
degrees (Fig. 4a). Relative importance rank of all 14 variables for
mortality prediction in MRPMC and the four contributive models
are illustrated in Fig. 4b and Supplementary Table 4. The top
weighted features (elevated D-dimer, decreased SpO2, increased
RR, and lymphocytopenia) coincided with previously reported
risk factors that were highly correlated with poor outcome in
COVID-194,5. Standard box plots presented all differential con-
tinuous variables between survivors and nonsurvivors (Fig. 4c).
Nonsurvivors had significantly (p < 0.001) advanced age, higher
levels of BUN and D-dimer, and lower levels of SpO2, lympho-
cyte, ALB, and PLT (Fig. 4c and Supplementary Table 5). These
findings were also parallel to risk factors of mortality of COVID-
19 delineated previously16, indicating that the selected features
were highly relevant to prognosis.

Discussion
In this multicenter retrospective study, we built the MRPMC, an
ensemble model derived from four ML algorithms (LR, SVM,
GBDT, and NN), that enabled accurate prediction of physiolo-
gical deterioration and death for COVID-19 patients up to
20 days in advance using clinical information in EHRs on
admission, and validated it both internally and externally.
Importantly, the MRPMC displayed an AUC ranging from 0.9186
to 0.9762 in the three validation cohorts. The prognostic impli-
cations of MRPMC might facilitate more responsive health sys-
tems that are conducive to high-risk COVID-19 patients via early
identification, and ensuing instant intervention as well as inten-
sive care and monitoring, thus, hopefully assisting to save lives
during the pandemic.

Generalizability was the first advantage of MRPMC. Initially,
the SFV and OV cohorts comprised patients from two designated
campuses for COVID-19, where 40 top-level medical teams
across China collaborated to eradicate the crisis. Patients in the
CHWH cohort were treated in a general hospital. Therefore,
medical records on admission were more comprehensive in SFV
and OV cohorts than in CHWH, and the treatments that patients
received throughout hospitalization were more parallel between
SFV and OV cohorts. Second, 44% of participants in CHWH
cohort were COVID-19 patients with malignancy who were more
vulnerable to COVID-19 and less likely to survive than non-
cancerous COVID-19 patients17,18. Validation of MRPMC in the
CHWH cohort offered us opportunities not only to predict
mortality risk in COVID-19 patients with cancer, a group where
prognosis prediction is particularly pivotal and challenging, but
also to assess MRPMC in an external validation cohort with
heterogenous baseline characteristics. Importantly, although the
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settings of the validation cohorts varied, MRPMC exhibited an
AUC of 0.9186 (95% CI: 0.8686–0.9687) to identify high-risk
patients in the CHWH cohort, indicating that the prognostic
implications of MRPMC were not confined to cohorts similar to
SFT, but could also be successfully validated in an inhomoge-
neous cohort.

Strengths of MRPMC also include its stability and practic-
ability upon COVID-19 patients with several missing features. To
begin with, the 14 features for prognosis prediction were readily
accessible and frequently monitored in routine clinical practice.
Age and sex were basic information. Fever, sputum, and con-
sciousness were easily observed symptoms, while RR and SpO2

were physical signs available at hand. Presence of CKD and
number of comorbidities could be ascertained by referring to
previous EHRs and patients or their family doctors. PLT, BUN,
D-dimer, ALB, and lymphocytes were low-cost laboratory tests
and conveniently determined. Unlike self-reported symptoms,
these features were relatively more objective and solid, and less

susceptible to memory bias. Though the 14 features were readily
accessible, we appreciated the differences in medical procedures
and uneven distribution of medical resources among different
regions, countries, and continents. The missing features may
thwart those who imminently need MRPMC. Importantly, with
the imputation method we adopted (see Methods), MRPMC
could still perform well in patients with several missing features.

In addition, MRPMC had certain interpretability. Features
contributing to mortality risk prediction in this study were tan-
gible and many of them had been proven intimately correlated
with mortality in COVID-19 patients. Advanced age, male sex,
and presence of multiple comorbidities were identified as risk
factors associated with death in COVID-19 patients4,5. Sputum,
supraphysiologic RR, and decreased SpO2 were directly related to
pulmonary abnormalities in COVID-19. Elevated BUN, increased
D-dimer, and lymphocytopenia might indicate extrapulmonary
disorders and were potentially correlated with multiorgan damage
caused by COVID-194,5.
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Available ML-based studies on prognosis prediction of
COVID-19 patients are impeded by limited sample size, category
of variables for prediction, short-term follow-ups for outcomes,
and paucity of independent external validation19–26. To overcome
these obstacles, we included 2520 consecutive inpatients with
definite outcomes and detailed baseline characteristics within a
specific time period for training and multiple validations of
MRPMC to avoid overfitting and ensure general applicability,
reproducibility, and credibility. Meanwhile, the features con-
tributing to prognosis prediction were collected and proposed by
a multidisciplinary team including experienced clinicians, epide-
miologists, and informaticians, which guaranteed the repre-
sentativeness of features. Importantly, time from admission to
death or discharge was 21 (IQR: 15–29) days, 19 (IQR: 14–26)
days, and 17 (IQR: 12–24) days in the SFV, OV, and CHWH
validation cohorts, respectively. As MRPMC displayed impressive
AUCs to predict mortality risk in the validation cohorts, it could

predict death ~20 days in advance. Last, since the characteristics
of datasets could affect the validity of the classification strategies
of ML algorithms, we proposed an ensemble model derived from
four ML algorithms for more accurate prediction of mortality risk
in COVID-19 patients.

Although most cases of COVID-19 are not life-threatening,
those that underwent physiological deterioration harbored sig-
nificantly higher mortality (49.0% for critically ill patients versus
2.3% for overall patients)27. As the pandemic causes more
infections, our understandings of the risk factors for mortality
and the role that supportive, targeted, and immunological
therapies play in treating COVID-19 continue to improve16,28,29.
The aim of developing MRPMC is to mitigate the huge burden
derived from COVID-19 on global health system and help to
optimize clinical decision makings. MRPMC could automatically
identify patients having high mortality risk as early as the time of
admission when related symptoms are mild and nonspecific. This
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group of patients needs intensive monitoring and instant treat-
ment when unfavorable prognostic indicators are observed, thus,
hopefully improving patient outcomes. However, multiple eva-
luations of MRPMC in larger cohorts, prospective settings, and
clinical trials are needed before elucidating its contribution to
improving outcome of COVID-1915.

This study had some limitations. Patients included were pri-
marily local residents from Wuhan, China. The predictive per-
formance of the ML models merits investigation in other regions
and ethnicities. Besides, the prognostic implications of MRPMC
have not been evaluated in prospective cohorts due to the ret-
rospective nature of this study.

In conclusion, combinatorial applications of MRPMC and
EHRs with readily available features can enable timely and
accurate risk stratification of COVID-19 patients on admission.
MRPMC can potentially assist clinicians to promptly target the
high-risk patients on admission, and accurately predict physio-
logical deterioration and death up to 20 days in advance.

Methods
Participants. We included 2520 consecutive COVID-19 patients with known
outcomes (discharge or death) from two affiliated hospitals of Tongji Medical
College, Huazhong University of Science and Technology (Sino-French New City
Campus of Tongji Hospital, SF and Optical Valley Campus of Tongji Hospital,
OV) and The Central Hospital of Wuhan (CHWH) between January 27, 2020 and
March 21, 2020. A total of 360 patients were excluded for various reasons,
including 72 patients who failed to accord with the defined diagnosis of COVID-19
in the 7th edition of the Diagnosis and Treatment Protocol of COVID-19 released
by the National Health Commission of China30, 217 patients who were transferred
from Fangcang shelter hospitals for isolation, 33 patients who died within 24 h of
admission, and 38 patients who were under 18 years of age, were pregnant, or were
re-hospitalized or discharged for special reasons such as dialysis (Fig. 1). Even-
tually, 2160 patients were included for model training and validations.

Cohorts. We randomly partitioned 50 and 50% of participants from SF into
training cohort (SFT cohort) and internal validation cohort (SFV cohort),
respectively. Participants from OV and CHWH were used as two external vali-
dation cohorts (OV cohort and CHWH cohort). Specifically, as Fig. 1 indicates,
SFT cohort comprised 621 patients (535 survivors and 86 nonsurvivors); SFV, 622
patients (533 survivors and 89 nonsurvivors); OV, 801 patients (741 survivors and
60 nonsurvivors); and CHWH, 116 patients (97 survivors and 19 nonsurvivors).
Patients with malignancy were reportedly more susceptible and vulnerable to
COVID-19 owing to their immunocompromised states caused by the cancer itself,
cachexia, and antitumor treatment31. They were also less likely to survive than
noncancerous COVID-19 patients17,18, making COVID-19 patients with cancer an
intriguing group of population for prognosis prediction. To investigate the cap-
ability of ML models to predict prognosis in this population, we consecutively
included 54 malignant COVID-19 patients from the Cancer Center of CHWH and
62 noncancerous COVID-19 patients from the Department of Respiratory of
CHWH to constitute another external validation cohort. The detailed baseline
characteristics of the cohorts are shown in Table 1.

Ethics. This study was approved by the Research Ethics Commission of Tongji
Medical College, Huazhong University of Science and Technology (TJ-
IRB20200406) with waived informed consent by the Ethics Commission mentioned
above. This study was part of the observational clinical trial titled “A retrospective
study for evolution and clinical outcomes study of novel coronavirus pneumonia
(COVID-19) patients,” which was registered in the Chinese Clinical Trial Registry
(ChiCTR2000032161). The clinical trial partly aimed to investigate the independent
risk factors for adverse outcomes of COVID-19. The detailed information can be
accessed in http://www.chictr.org.cn/showprojen.aspx?proj=52561.

Data collection. Under the guidance of a multidisciplinary team including
experienced clinicians, epidemiologists, and informaticians, we extracted 53 fea-
tures including epidemiological, demographic, clinical, laboratory, radiological, and
outcome data from EHRs using identical data collection forms on the first day of
admission (Supplementary Table 1). Trained researchers entered and double-
checked the data independently. To ensure the alarming function and subjective
initiative of models, we abandoned variables generated in the late admission and
variables regarding treatment. For patients with multiple features, we included only
the first episode in various categories at admission.

Feature filtering and imputation. First, we removed 19 features that harbored a
proportion of missing values greater than or equal to 5% in each cohort

(Supplementary Fig. 2). Filtering features with a large fraction of missing entries is
common when dealing with clinical data32. Then, we imputed the missing entries
with R-package missForest in the three cohorts separately33. Imputation of clinical
data with RF has been widely adopted34,35, which displayed the capability of
handling mix-type missing values including continuous and categorical variables.
Although we visualized the imputation result of categorical and continuous vari-
ables separately (Supplementary Fig. 3 and 4), the imputation was conducted with
the 34 mix-type features together for three validation cohort, respectively.

Feature selection. After filtering 19 features and data imputation, there were 34
features remaining for feature selection. To eliminate redundant collinear features
and diminish cost of clinical testing, we performed feature selection by recognizing
the most predictive variables using LASSO LR (Fig. 2a)32,36. LASSO added the L1
norm of the feature coefficients as a penalty term to the loss function, which forced
the coefficients corresponding to those weak features to become zero. Herein, we
considered features whose coefficients were equal to zero as redundant features and
abandoned them, resulting in 14 selected features for model constructions (Fig. 2b).

Model development. We trained the models to predict mortality risk with the 14
variables and outcomes of COVID-19 patients. During model training, we fitted six
baseline ML models, including LR, SVM, KNN, RF, GBDT, and NN, into the SFT
cohort with tenfold cross validation to fine-tune the model parameters. Increasing
the weight of minority categories in the model can increase the punishment for
wrong classification of minority categories during training, and improve the
model’s ability to recognize minority categories37. Therefore, we adopted weighted
cross-entropy and increased the weight of class death for probability-based clas-
sifiers (LR, RF, GBDT, and NN). Subsequently, an ensemble model derived from
four baseline models of best predictive performance (LR, SVM, GBDT, and NN),
named MRPMC, was proposed by weighted voting. Specifically, the mortality risk
probability of each individual estimator (LR, SVM, GBDT, and NN) was integrated
by manually assigning weights with 0.25, 0.3, 0.1, and 0.35, respectively. After all
ML models were well fitted, they were internally and externally evaluated in SFV,
OV, and CHWH cohorts. Herein, we modeled the mortality prediction task as a
binary classification problem. All included ML models output a normalized
probability of mortality risk range from 0 to 1. We selected the threshold of 0.6 to
assign the predicted mortality risk label by optimizing F1 score on the training
cohort (Supplementary Fig. 6). Probabilities of less than 0.6 were assigned to low
risk and otherwise to high risk for all ML methods across all cohorts. R library caret
was utilized for model training and prediction. The LR, SVM, KNN, RF, GBDT,
and NN models were called with method bayesglm, svmLinear, knn, rf, gbm, and
avNNet with default settings, respectively. We standardized the features data with
BoxCox, center, and scale function before training and prediction. Especially, we
first adopted BoxCox transformation to make the data distribution more Gaussian-
like38, and then standardized features by subtracting the mean and scaling to unit
variance. Variable z was calculated as: z ¼ ðx � uÞ=s, where u was the mean and s
was the standard deviation of the variable.

Model evaluation. The predictive performance of the models was evaluated by
ROC curve, Kaplan–Meier curve, calibration curve, and evaluation metrics
including area under the ROC curve (AUC), accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), F1 score, Cohen’s
Kappa coefficient (Kappa), and Brier score. The relative feature importance of each
model was calculated using varImp function in caret R package. As SVM and KNN
classifier had no built-in importance score, the AUC for each feature was utilized as
the importance score.

Statistical analysis. Statistical analysis was performed in R (version 3.6.2). For
descriptive analysis, median (IQR) and frequencies (%) were assessed for con-
tinuous and categorical variables, respectively. The ROC curve and AUC analysis
were conducted with R pROC package. Accuracy, sensitivity, specificity, PPV,
NPV, Kappa, and F1 score were calculated with R caret and epiR packages. The
calibration curve and Brier score were obtained with R-package rms. Relative
feature importance was calculated using R-package caret. Survival curves were
developed by Kaplan–Meier method with log-rank test, and plotted with R-package
survival and survminer. Comparison of continuous variables was achieved by the
Mann–Whitney U test using R-package table1. Odds ratio and corresponding 95%
CI from LR were calculated with R-package stats. The significance level was set at a
two-sided p value below 0.05. Univariate and multivariate Cox regression was
utilized to calculate the HR with R-package survival. All dry-lab experiments were
conducted in three different computing servers with consistent result.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data pertaining to the patients’ features used for modeling are available to researchers
upon reasonable request via contacting the corresponding author. Patient current vital
status and follow-up information are not publically available due to privacy concerns.
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The remaining data are available in the article and supplementary files. Source data are
provided with this paper.

Code availability
The code used to develop and evaluate the model is available on GitHub with R (version
3.6.2)39, https://doi.org/10.5281/zenodo.3991113.
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