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Age and life expectancy clocks based on machine
learning analysis of mouse frailty
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David S. Vogel5, James R. Mitchell3, Susan E. Howlett 6, Michael S. Bonkowski1,7 & David A. Sinclair 1,8✉

The identification of genes and interventions that slow or reverse aging is hampered by the

lack of non-invasive metrics that can predict the life expectancy of pre-clinical models. Frailty

Indices (FIs) in mice are composite measures of health that are cost-effective and non-

invasive, but whether they can accurately predict health and lifespan is not known. Here,

mouse FIs are scored longitudinally until death and machine learning is employed to develop

two clocks. A random forest regression is trained on FI components for chronological age to

generate the FRIGHT (Frailty Inferred Geriatric Health Timeline) clock, a strong predictor of

chronological age. A second model is trained on remaining lifespan to generate the AFRAID

(Analysis of Frailty and Death) clock, which accurately predicts life expectancy and the

efficacy of a lifespan-extending intervention up to a year in advance. Adoption of these clocks

should accelerate the identification of longevity genes and aging interventions.
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Aging is a biological process that causes physical and
physiological deficits over time, culminating in organ
failure and death. For species that experience aging, which

includes nearly all animals, its presentation is not uniform;
individuals age at different rates and in different ways. Biological
age is an increasingly utilized concept that aims to more accu-
rately reflect aging in an individual than the conventional
chronological age. Biological measures that accurately predict
health and longevity would greatly expedite studies aimed at
identifying genetic and pharmacological disease and aging
interventions.

Any useful biometric or biomarker for biological age should
track with chronological age and should serve as a better pre-
dictor of remaining longevity and other age-associated outcomes
than does chronological age alone, even at an age when most of a
population is still alive. In addition, its measurement should be
non-invasive to allow for repeated measurements without altering
the health or lifespan of the animal measured1. In humans, bio-
metrics and biomarkers that meet at least some of these
requirements include physiological measurements such as grip
strength or gait2,3, measures of the immune system4,5, telomere
length6, advanced glycosylation end-products7, levels of cellular
senescence8, and DNA methylation clocks9. DNA methylation
clocks have been adapted for mice but unfortunately these clocks
are currently expensive, time consuming, and require the
extraction of blood or tissue.

Frailty index (FI) assessments in humans are strong predictors
of mortality and morbidity, outperforming other measures of
biological age including DNA methylation clocks10,11. FIs quan-
tify the accumulation of up to 70 health-related deficits, including
laboratory test results, symptoms, diseases, and standard mea-
sures such as activities of daily living12,13. The number of deficits
an individual shows is divided by the number of items measured
to give a number between 0 and 1, in which a higher number
indicates a greater degree of frailty. The FI has been recently
reverse-translated into an assessment tool for mice which
includes 31 non-invasive items across a range of systems14. The
mouse FI is strongly associated with chronological age14,15, cor-
related with mortality and other age-related outcomes16,17, and is
sensitive to lifespan-altering interventions18. However, the power
of the mouse FI to model biological age or predict life expectancy
for an individual animal has not yet been explored.

In this study, we track frailty longitudinally in a cohort of aging
male mice from 21 months of age until their natural deaths and
employ machine learning algorithms to build two clocks:
FRIGHT age, designed to model chronological age, and the
AFRAID clock, which is modeled to predict life expectancy.
FRIGHT age reflects apparent chronological age better than FI
alone, while the AFRAID clock predicts life expectancy at mul-
tiple ages. These clocks are then tested for their predictive power
on cohorts of mice treated with interventions known to extend
healthspan or lifespan, enalapril and methionine restriction. They
accurately predict increased healthspan and lifespan, demon-
strating that an assessment of non-invasive biometrics in inter-
ventional studies can greatly accelerate the pace of discovery.

Results
Frailty correlates with and is predictive of age. We measured FI
scores (Supplementary Fig. 1) approximately every 6 weeks in a
population of naturally aging male C57BL/6Nia mice (n= 60)
until the end of their lives. These mice had a normal lifespan, with
a median survival of 31 months and a maximum (90th percentile)
of 36 months (Fig. 1a and Supplementary Fig. 2). As expected, FI
scores increased with age from 21 to 36 months at the population
level (Fig. 1b). At the individual level, frailty trajectories displayed

significant variance, representative of the variability in how
individuals experience aging even within a population of inbred
animals (Fig. 1c). As FI score was well correlated with chron-
ological age, we sought to determine the degree to which FI score
could model chronological and biological age. We performed a
linear regression on FI score for age with a training dataset and
evaluated its accuracy on a testing dataset (Fig. 1d–e). FI score
was able to predict chronological age with a median error of
1.8 months, a mean error of 1.9 months, and an r2 value of 0.642
(p= 3.4e−38). We hypothesized that the error may be repre-
sentative of biological age, with healthier individuals having a
predicted age younger than their true age. We calculated this
difference between predicted age and true age, termed delta age,
and used remaining time until death as our primary outcome to
compare with. For some individual age groups (24, 34.5, and
36 months), delta age did indeed have a negative correlation with
survival, with biologically younger mice (those with a negative
delta age) living longer at each individual age than biologically
older mice (those with a positive delta age) (Fig. 1f and Table 1).
For other groups this correlation is a trend, and more power may
detect an association (Table 1). This suggests that the FI score is
able to detect variation in predicted chronological age for mice of
the same actual age, and this may represent biological age.

Individual frailty items vary in their correlation with age.
While a simple linear regression on overall frailty score was
somewhat predictive of age, we hypothesized that by differentially
weighting individual metrics, we could build a more predictive
model, as has been done with various CpG sites to build
methylation clocks9. To this end, we calculated the correlation
between each individual FI item and chronological age (Table 2).
Some parameters, such as tail stiffening, breathing rate/depth, gait
disorders, hearing loss, kyphosis, and tremor, are strongly cor-
related (r2 > 0.35, p < 1e−30) with age (Fig. 2), while others show
very weak or no correlation with age (Table 2 and Supplementary
Fig. 3). The fact that some parameters were very well correlated
and others poorly correlated suggested that by weighting items we
could build an improved model for biological age prediction.

Multivariate regressions of frailty items to predict age. We
compared FI score as a single variable and four types of multi-
variate linear regression models to predict chronological age:
simple least-squares regression, elastic net regression, random
forest regression, and the Klemera–Doubal biological age

Table 1 Correlation between survival and delta age at
individual ages.

Age n Delta age: FI
score, Fig. 1f

Delta age:
FRIGHT age,
Fig. 3g

Survival:
AFRAID clock,
Fig. 4g

r2 (p value) r2 (p value) r2 (p value)

21.0 14 0.021 (0.623) 0.010 (0.728) 0.035 (0.519)
22.5 12 0.039 (0.537) 0.005 (0.831) 0.015 (0.708)
24.0 13 0.390 (0.023*) 0.296 (0.054) 0.447 (0.012*)
25.5 18 0.142 (0.124) 0.012 (0.659) 0.121 (0.157)
27.0 26 0.103 (0.109) 0.004 (0.753) 0.218 (0.016)
28.5 23 0.109 (0.124) 0.031 (0.422) 0.191 (0.037*)
30.0 20 0.062 (0.291) 0.019 (0.567) 0.363 (0.004*)
31.5 15 0.003 (0.859) 0.011 (0.706) 0.229 (0.071)
33.0 12 0.305 (0.063) 0.276 (0.079) 0.292 (0.069)
34.5 7 0.686 (0.021*) 0.661 (0.026*) 0.653 (0.028*)
36.0 5 0.881 (0.018*) 0.396 (0.256) 0.201 (0.448)

These data are for the testing dataset, and delta age is determined by either FI score or FRIGHT
age, or AFRAID clock. Correlation (r2) determined by Pearson correlation coefficients. *p < 0.05.
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estimation method (Eq. (1))19. We employed the bootstrap
method on the training dataset to compare models. Only frailty
items that had a significant, even if weak, correlation with age
(p < 0.05) were included in the analysis (21 items, see Table 2).
The multivariate models, particularly elastic net, the random
forest, and the Klemera–Doubal methods (KDMs), were superior
to FI as a single variable, with lower median error (p < 0.0001,
F= 49.46, d.f.= 499) and mean error (p < 0.0001, F= 68.37,
d.f.= 499, Supplementary Fig. 4a), higher r2 values (p < 0.0001,
F= 57.1, d.f.= 499), and smaller p values (p < 0.0001, F= 26.29,
d.f.= 499) when compared with one-way ANOVA. For further
analysis, we selected the random forest regression model as it had
the lowest median error (Fig. 3a–c). Random forest models can
also represent complex interactions among variables, which linear
regressions cannot do, and may perform better in datasets where
the number of features approaches or exceeds the number of
observations20. We term the outcome of this model FRIGHT age
for Frailty Inferred Geriatric Health Timeline.

When assessed on the testing dataset, FRIGHT age had a
strong correlation with chronological age, with a median error of
1.3 months, a mean error of 1.6 months, and an r2 value of 0.748
(p= 1.1e−50) (Fig. 3d, e). The items that were the largest
contributors to FRIGHT age included breathing rate, tail
stiffening, kyphosis, and total weight change (Fig. 3f). While
FRIGHT age was superior to the FI score at predicting
chronological age (Fig. 3a–c), the error from the predictions
(delta age) were not well correlated with mortality (Fig. 3g). For
the majority of individual age groups the r2 values of the

correlation between FRIGHT age and survival were <0.1,
indicating poor correlation (Table 1). Interestingly, the correla-
tions were stronger for mice aged 34 months or greater,
indicating that perhaps FRIGHT age is predictive of mortality
only in the oldest mice (Table 1). This may be because the
individual parameters that correlate well with chronological age
are not necessarily the same as those that correlate well with
mortality at all ages. Thus FRIGHT age has value as a predictor of
apparent chronological age (e.g. this mouse looks 30 months old)
but it is not yet clear whether it can serve as a predictor of other
age-related outcomes.

Multivariate regressions of frailty items to predict lifespan. As
FRIGHT age was not predictive of mortality at most ages, we
sought to build a model based on individual FI items to better
predict life expectancy. We began by calculating the correlation
between each individual parameter and survival (number of days
from date of FI assessment to date of death). Chronological age
was the best predictor of mortality (r2= 0.35, p= 1.9e−27), fol-
lowed by FI score (r2= 0.31, p= 2.7e−23), tremor, body condi-
tion score, and gait disorders (Table 3). However, many of these
individual parameters appeared to be better predictors than they
were, as a result of their covariance with chronological age. Their
correlation with survival was largely only for mice of different
ages, and not of the same age.

To build a model to predict mortality, we trained a regression
using FI as a single variable, and multivariate regressions using the
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Fig. 1 Frailty correlates with and is predictive of age in mice. a Kaplan–Meier survival curve for male C57BL/6 mice (n= 60) assessed longitudinally for
Frailty Index (FI) (indicated by arrows). b Box and whisker plots displaying median FI scores for mice from 21 to 36 months of age. Colors indicate different
ages (n= 24, 27, 20, 29, 43, 36, 32, 25, 18, 11, 6). Box plots represent median, lower and upper quartiles, and 95 percentile. c FI score trajectories for each
individual mouse from 21 months until death. d Univariate regression of FI score for chronological age on a training dataset, and e a testing dataset. For
training and testing datasets, data were randomly divided 50:50, separated by mouse rather than by assessment, n= 106 datapoints for training and n=
165 for testing. Correlation determined by Pearson correlation coefficients. f Residuals of the regression (delta age), plotted against survival for individual
ages (as demonstrated by different colors). Regression lines are only graphed for ages where there is an r2 value >0.1. Source data are provided as a Source
Data file.
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FI items and chronological age with the simple least squares, elastic
net, and random forest methods. All frailty items plus chronological
age were included as variables in this analysis (32 items, see
Table 3). As before, we compared these models using bootstrapping
on the training set, and one-way ANOVA with Dunnett’s post hoc
test of r2 value, p value, median, and mean error (Fig. 4a–c and
Supplementary Fig. 4). For prediction of survival, the elastic net and
random forest regression models were the superior models, with
higher r2 values (p < 0.0001, F= 36.62, d.f.= 399), lower p values
(p < 0.0001, F= 32.65, d.f.= 399), and median errors (p < 0.0001,
F= 73.55, d.f.= 399) than FI score alone (Fig. 4a–e and
Supplementary Fig. 4). Similar results were obtained when
chronological age was replaced with FRIGHT age, demonstrating
that life expectency can be accurately predicted with frailty
measures alone (Supplementary Fig. 4c–f). We selected the random
forest regression model (with chronological age) for further analysis,
and we termed the outcome of this model the AFRAID clock for
Analysis of Frailty and Death. The most important variables in the
model were total weight loss, chronological age, and tremor,
followed by distended abdomen, recent weight loss, and menace
reflex (Fig. 4f). In the testing dataset, the AFRAID clock was well
correlated with survival (r2= 0.505, median error= 1.7 months,
mean error= 2.3 months, p= 1.1e−26) (Fig. 4e). The AFRAID
clock was also correlated with survival at individual ages (Fig. 4g)
with r2 > 0.3 and p value <0.05 at 24, 30, and 34.5 months of age
(Table 1). Plotting the survival curves of mice with the lowest and
highest AFRAID clock scores at given ages, as determined by the

top and bottom quartiles, demonstrated a clear association with
mortality risk for all age groups (Fig. 4h–k). These results suggest
that the AFRAID clock may be useful for comparing the lifespan
effects of interventional studies in mice many months before their
death.

Effect of interventions on FRIGHT age and AFRAID clock.
One ultimate utility for biological age models would be to serve as
early biomarkers for the effects of interventional treatments, which
are expected to extend or reduce healthspan and lifespan. A recently
published study measured FI in 23-month-old male C57BL/6 mice
treated with the angiotensin-converting enzyme (ACE) inhibitor
enalapril (n= 21) from 16 months of age, or age-matched controls
(n= 13)21. As previously published, enalapril reduced the average
FI score compared to control-treated mice (Fig. 5a). When FRIGHT
age was calculated for these mice, the enalapril-treated mice
appeared to be a month younger than the control mice (control
27.8 ± 1.1 months; enalapril 26.8 ± 1.4 months, p= 0.046, t= 2.1,
d.f.= 32) (Fig. 5b). When the data were converted to a prediction of
survival with the AFRAID clock, the enalapril-treated mice were not
predicted to live longer (control 5.9 ± 0.7 months; enalapril 6.2 ±
0.9 months, p= 0.29, t= 1.09, d.f.= 32) (Fig. 5c). This is interesting
in light of the fact that enalapril has been shown to improve health,
but not maximum lifespan, in mice21,22.

Methionine restriction is a robust intervention that extends the
healthspan and lifespan of C57Bl/6 mice23–25. We placed mice on
a methionine restriction (0.1% methionine, n= 13) or control
(n= 11) diet, from 21 months of age. We assessed frailty at
27 months of age and calculated FI, FRIGHT age and AFRAID
clock. The methionine-restricted mice had significantly lower FI
scores (control 0.37 ± 0.30; MR 0.30 ± 0.04, p= 0.0009, t= 3.8,
d.f.= 22) (Fig. 5d), as well as a FRIGHT age 0.7 months younger
than control-fed mice (control 29.8 ± 0.9 months; MR 29.1 ±
0.6 months, p= 0.039, t= 2.19, d.f.= 22) (Fig. 5e). Using the
AFRAID clock, the methionine-restricted mice were predicted to
live 1.3 months longer than controls (control 3.0 ± 1.0 months;
enalapril 4.3 ± 1.0 months, p= 0.006, t= 3.02, d.f.= 22) (Fig. 5f).
These analyses demonstrate that the FRIGHT age and AFRAID
clock models are responsive to healthspan and lifespan-extending
interventions.

Discussion
This is the first study to measure the clinical FI longitudinally in a
population of naturally aging mice that were tracked until their
natural deaths in order to predict healthspan and lifespan. We
show that the FI is not only correlated with but is also predictive
of both age and survival in mice, and we have used components
of the FI to generate two clocks: FRIGHT age, which models
apparent chronological age better than the FI itself, and the
AFRAID clock, which predicts life expectancy with greater
accuracy than the FI. In essence, FRIGHT age is an estimation of
how old a mouse appears to be, and the AFRAID clock is a
prediction of how long a mouse has until it dies (a death clock).
Finally, FRIGHT age and the AFRAID clock were shown to be
sensitive to two healthspan or lifespan-increasing interventions:
enalapril treatment and dietary methionine restriction.

The major advantage of the FI, and our models of the FI items,
as aging biometrics is their ease of use. FI is quick and essentially
free to assess, requires no specialized equipment or training, and
has no negative impact on the health of the animals. We
encourage future longevity studies to incorporate periodic frailty
assessments as a routine measure into their protocols. This will
help further determine the utility of frailty itself, as well as our
FRIGHT age and AFRAID clock models, for predicting outcomes
of interest, and may eventually be used as a screening tool to

Table 2 Correlation coefficients (r2) and p values for frailty
items with chronological age.

Item r2 p value

Tail stiffening 0.58 <0.001
Breathing rate/depth 0.50 <0.001
Gait disorders 0.42 <0.001
Hearing loss 0.38 <0.001
Kyphosis 0.38 <0.001
Tremor 0.38 <0.001
Body condition score 0.26 <0.001
Forelimb grip strength 0.20 <0.001
% twc 0.12 <0.001
Menace reflex 0.11 <0.001
Alopecia 0.10 <0.001
Tumors 0.08 <0.001
Diarrhea 0.05 <0.001
Penile prolapse 0.05 <0.001
Microphthalmia 0.05 <0.001
Dermatitis 0.05 <0.001
Rectal prolapse 0.04 <0.001
Distended abdomen 0.04 <0.001
Eye discharge/swelling 0.04 <0.001
Coat condition 0.04 <0.001
Body weight score 0.02 0.01
Threshold % rwc 0.01 0.05
Loss of fur color 0.01 0.06
Piloerection 0.01 0.07
Mouse grimace scale 0.01 0.08
Vestibular disturbance 0.01 0.16
Vision loss 0.00 0.30
Loss of whiskers 0.00 0.33
% rwc 0.00 0.49
Cataracts 0.00 0.68
Corneal capacity 0.00 0.72
Nasal discharge 0.00 1.00

Twc total weight change, rwc recent weight change. Correlation (r2) determined by Pearson
correlation coefficients.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18446-0

4 NATURE COMMUNICATIONS |         (2020) 11:4618 | https://doi.org/10.1038/s41467-020-18446-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


decide whether to continue expensive interventional longevity
studies after a short duration. Additionally, use of these non-
invasive frailty measures in longevity studies will enable
researchers to detect not only possible changes in lifespan, but
also healthspan, arguably a more important outcome. We have
created a website that automatically calculates and graphs
FRIGHT age and AFRAID scores based on uploaded FI data,
along with additional details of how to assses the frailty items in
mice including a video demonstration (http://frailtyclocks.
sinclairlab.org/) (Supplementary Fig. 6). Code for our clock cal-
culators is also available on github (https://github.com/
SinclairLab/frailty).

DNA methylation clocks are also promising biomarkers of
biological age. In humans, these clocks are highly correlated with
chronological age, and are able to predict, at the population level,
mortality risk and risk of age-related diseases11,26–31. Methylation
clocks have also been developed for mice, and shown to correlate
with chronological age, and respond to lifespan-increasing
interventions such as calorie restriction32–35, but their associa-
tion with mortality has not yet been explored. However, the
major drawback of these mouse clocks is that they require
repeated invasive blood collections and time-consuming and
expensive data acquisition and analysis procedures.

This is the first time, to our knowledge, that frailty has been
used to predict individual life expectancy in either humans or

mice. In mice, frailty has previously been associated with
mortality17,36 but not used to predict lifespan. Mortality measures
in mice that have focused on prediction, have either concentrated
on the acute prediction of death such as in the context of
sepsis37,38, focused on only a few measures resulting in low or
moderate correlations with survival39–44, or used short-lived
mouse strains5. The AFRAID clock, which was modeled in the
commonly used C57BL/6 mouse strain and includes 33 variables,
is able to predict mortality with a median error of 53 days across
multiple ages. The real value of a biological age measure for mice,
however, is in predicting how long individual mice of the same
chronological age will live. The AFRAID clock was also able to
predict mortality at specific ages, even as early as 24 months
(approximately 6 months before the average lifespan, and
12 months before maximum lifespan without intervention).
Additionally, when chronological age was replaced by FRIGHT
age (predicted chronological age) to build a survival model
similar to the AFRAID clock, we saw a similar accuracy of life-
span prediction (Supplementary Fig. 4), indicating that life
expectancy can be accurately predicted from FI items alone,
without using chronological age as a variable.

This ability to predict expected lifespan in mice of the same
chronological age provides exciting evidence that the AFRAID
clock could be used in interventional longevity studies to
understand whether an intervention is working to delay aging at
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an earlier time point than death. Indeed, we show in the current
study that treatment with the ACE inhibitor enalapril reduced
FRIGHT age compared to controls but did not change the
AFRAID clock. Enalapril is known to increase healthspan but not
lifespan22, indicating the value of these measures in detecting
healthspan improvements even in the absence of an increase in
lifespan. The dietary intervention of methionine restriction is
known to increase healthspan and lifespan23–25, and we saw
reduced FRIGHT age and increased AFRAID clock scores in
methionine-restricted mice at 27 months compared to controls.
This means that had this been a longevity study, these measures
would have given an indication of the lifespan outcomes less than
halfway through the predicted study timeframe. In the methio-
nine restriction experiment, the predicted age values for this
independent cohort were slightly higher than their true values,

likely as a result of different baseline variability in frailty in dif-
ferent facilities. Similar effects have been seen with the mouse
DNA methylation clocks33,35. Even so, there were still clear dif-
ferences detected between groups, indicating both the importance
of comparing results to controls within studies, and the ultility of
these clocks even for independent mouse cohorts in different
facilities.

Studies in humans have used the FI to determine increased risk
of mortality within specific time periods45–48, but not to predict
individual life expectancies, as we have done here for mice. In
theory the AFRAID clock could be easily adapted to predict
mortality from human FI data. This has likely not been done as of
yet, as it would require a large dataset that includes longitudinal
assessments of FI items with mortality follow-up. This type of
study is rare, particularly in an aging population. Even large
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Fig. 3 Multivariate regressions of individual FI items to predict age (FRIGHT age). a–c Median error, r2 values and p values for univariate regression of
Frailty Index (FI) score, and multivariate regressions of the individual FI items using either simple least squares (SLS), elastic net (ELN), the
Klemera–Doubal method (KDM), or random forest regression (RFR) for chronological age in the mouse training set. All models were tested with
bootstrapping with replacement repeated 100 times, and each bootstrapping incidence is plotted as a separate point. ****p < 0.0001 and ***p < 0.001
compared to FI model with one-way ANOVA. Error bars represent standard error of the mean. d, e Random forest regression of the individual FI items for
chronological age on training and testing datasets (data was randomly divided 50:50, separated by mouse rather than by assessment, n= 106 datapoints
for training and n= 165 for testing). This model is termed FRIGHT (Frailty Inferred Geriatric Health Timeline) age. Correlation determined by Pearson
correlation coefficients. f Importances of top eight items included in the FRIGHT age model. g Residuals of the regression (delta age) plotted against
survival for individual ages (as demonstrated by different colors). Regression lines are only graphed for ages where there is an r2 value >0.1. Source data are
provided as a Source Data file.
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cohort studies such as NHANES do not include enough people
aged over 80 to allow for their specific ages to be released due to
risk of identification. It would be interesting in future research to
apply machine learning algorithms such as those used in the
current study to predict individual life expectancy using FI data in
humans.

We explored a range of regression techniques in the current
paper. Simple linear and elastic net regressions are easily applied
and interpreted, but are limited by being parametric and only
considering linear relationships between variables, which reduce
their predictive power for our data. The KDM, which was
developed specifically to predict biological age by combining
linear regressions of individual biomarkers19, has been shown to
predict human mortality risk49,50. Here, we applied this method
to mice and saw some improved prediction over simple linear
regression. For our final models, we used random forest algo-
rithms, which are robust to outliers and noise, and allow for
complex non-parametric modeling20. There are some limitations
of these complex models, however, including a lack of inter-
pretability of the weighting and interactions of the variables.
Some previous studies have also used machine learning approa-
ches for the development of aging biomarkers, including deep
neural networks of standard blood biomarkers51,52 and deep
learning of brain imaging data53, with promising results54,55.
These have been exclusively humans studies, and our findings

suggest that future studies exploring biological age biomarkers in
mice could benefit from incorporating machine learning
approaches such as neural networks or gradient boosting machine
algorithms.

The aim of all three frailty metrics presented here, FI score,
FRIGHT age, and the AFRAID clock, are robust methods for the
appraisal of biological age. True biological age, however defined,
is related to but separate from both chronological age and mor-
tality, and without a clear biomarker with which to compare these
three metrics, an assessment of their relative value is difficult. In
one sense, FRIGHT age is the best because it tracks most closely
with chronological age, with the variation in FRIGHT age (delta
age; predicted−true age) representing biological age. An inter-
vention that slows aging would likely suppress all aspects of aging
including those that do not impact life expectancy (e.g. hair
graying) and FRIGHT age would detect such changes. It is lim-
ited, however, by its lack of sensitivity in predicting mortality. In
another sense, the AFRAID clock is the superior metric because
an increase in life expectancy, median and maximum, is the
current benchmark for the success of an aging intervention. One
could also argue that overall unweighted FI is the best metric.
While it is not best at predicting either chronological age or
mortality, it is better than either FRIGHT age or AFRAID clock at
predicting both. The best approach may be to employ all three
estimates.

The predictive power of these models for both age and lifespan
could be improved by the inclusion of larger n values (especially
at the older ages), the assessment of frailty from ages younger
than 21 months, and more complex modeling of the longitudinal
aspects of our data. In the current study, we have used standard
fixed-time predictive models treating each time point for each
mouse as independent data, as there is currently no standard
method for predicting outcomes at the level of the individual
from data collected longitudinally56,57. Future studies could apply
dynamic prediction approaches from the clinical biostatistics
literature such as joint modeling57,58 to develop models based on
repeated measures of markers from the same mice. The models
discussed in this study could also benefit from the incorporation
of additional input variables, especially from relatively non-
invasive molecular and physiological biomarkers or biometrics.
Much can be inferred from tallying gross physiological deficits as
has been done here with the mouse FI. These deficits, however,
have cellular and molecular origins which may add predictive
value at much earlier time points if they can be identified. FIs
based on deficits in laboratory measures such as blood tests can
detect health deficits before they are clinically apparent in both
humans and mice15,59. Furthermore, this study used only male
mice, and given the known sex differences in frailty, lifespan, and
responses to aging interventions15,60–62, it will be important to
validate these models in female mice.

Ideal future studies will model biological age markers, not to
predict chronological age or mortality alone, but rather a more
complex composite measure of age-associated outcomes. Indeed,
DNA methylation clocks that are trained on a surrogate bio-
marker and biometrics for mortality including blood markers and
plasma proteins plus gender and chronological age31,63 seem to
have greater predictive power than those modeled on chron-
ological age or mortality alone64,65. Future studies could develop
a models based on the frailty items assessed here but modeled to
predict a composite outcome including physiological measures in
addition to chronological age. Still, even after the development of
such composite clocks, the metrics described here—FI, FRIGHT
age, and the AFRAID clock—will serve as rapid, non-invasive
means to assess biological age and life expectancy, accelerating
and augmenting studies to identify interventions that improve
healthspan and lifespan.

Table 3 Correlation coefficients (r2) and p values for frailty
items with life expectancy.

Item r2 p value

Age (days) 0.35 <0.001
Tremor 0.25 <0.001
Body condition score 0.20 <0.001
Gait disorders 0.19 <0.001
Tail stiffening 0.19 <0.001
Breathing rate/depth 0.17 <0.001
Hearing loss 0.17 <0.001
Kyphosis 0.12 <0.001
Distended abdomen 0.11 <0.001
Menace reflex 0.08 <0.001
% twc 0.07 <0.001
Forelimb grip strength 0.07 <0.001
Alopecia 0.05 <0.001
Threshold % rwc 0.04 <0.001
Microphthalmia 0.03 <0.001
Body weight score 0.03 <0.001
Coat condition 0.03 <0.001
Diarrhea 0.03 0.01
Mouse grimace scale 0.02 0.01
Loss of fur color 0.02 0.01
Dermatitis 0.02 0.03
Piloerection 0.02 0.03
% rwc 0.01 0.06
Rectal prolapse 0.01 0.07
Penile prolapse 0.01 0.11
Tumors 0.01 0.13
Eye discharge swelling 0.01 0.17
Vestibular disturbance 0.01 0.19
Vision loss 0.01 0.27
Cataracts 0.00 0.38
Corneal capacity 0.00 0.44
Loss of whiskers 0.00 0.51
Nasal discharge 0.00 1.00

Twc total weight change, rwc recent weight change. Correlation (r2) determined by Pearson
correlation coefficients.
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Fig. 4 Multivariate regressions of FI items to predict life expectancy (AFRAID clock). a–c Median error, r2 values, and p values for univariate regression
of Frailty Index (FI) score, and multivariate regressions of the individual FI items using either simple least squares (SLS), elastic net (ELN), or random forest
regression (RFR) for life expectancy in the mouse training set. All models were tested with bootstrapping with replacement repeated 100 times, and each
bootstrapping incidence is plotted as a separate point. ****p < 0.0001 and ***p < 0.001 compared to FI model with one-way ANOVA. Error bars represent
standard error of the mean. d, e Random forest regression of the individual FI items for life expectancy on training and testing datasets (data was randomly
divided 50:50, separated by mouse rather than by assessment, n= 106 datapoints for training and n= 165 for testing), plotted against actual survival. This
model is termed the AFRAID (Analysis of Frailty and Death) clock. Correlation determined by Pearson correlation coefficients. f Importances of top 15 items
included in the AFRAID clock. g AFRAID clock scores plotted against actual survival for individual mouse age groups (as demonstrated by different colors)
in the testing dataset. Regression lines are only graphed for ages where there is an r2 value >0.1. h–k Kaplan–Meier curves of the bottom (red lines) and top
(green lines) quartiles of AFRAID clock scores for mice over 1–2 assessments at 24–26, 27–29, 30–32, and 33–35 months of age. *p < 0.05 compared with
two-sided log-rank test. Exact p values, respectively: 0.032, 0.015, 0.026, and 0.034. Source data are provided as a Source Data file.
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Methods
Animals. All experiments were conducted according to the protocols approved by
the Institutional Animal Care and Use Committee (Harvard Medical School). Aged
males C57BL/6Nia mice were ordered from the National Institute on Aging (NIA,
Bethesda, MD), and housed at Harvard Medical School in ventilated caging with a
12:12 light cycle, at 71 °F with 45–50% humidity. Mice were group housed (3–4
mice per cage) at the start of the experiment, although over the period of the
experiment mice died and mice were left singly housed. A cohort of mice (n= 28)
were injected with AAV vectors containing GFP as a control group for a separate
longevity experiment at 21 months of age. This did not affect their frailty or
longevity in comparison to the rest of the mice (n= 32), which were untreated
(Supplementary Fig. 1). A total of 60 mice was used, which is consistent with other
mouse longevity studies66,67. Both sets of animals had normal median (967 and
922 days) and 90th percentile (1078 and 1104 days) lifespans, slightly surpassing
those cited by Jackson Labs (median 878 days, maximum 1200 days)68,69,
demonstrating that the mice were maintained and aged in healthy conditions. Mice
were only euthanized if determined to be moribund (likely to die in the next 48 h)
by an experienced researcher or a veterinarian based on exhibiting at least two of the
following: inability to eat or drink, severe lethargy or persistent recumbence, severe
balance or gait disturbance, rapid weight loss (>20% in one week), an ulcerated or
bleeding tumor, and dyspnea or cyanosis. In these rare cases (n= 4, or 6.7%), the
date of euthanasia was taken as the best estimate of death.

Mouse frailty assessment. Frailty was assessed longitudinally by the same
researcher (A.E.K.), as modified from the original mouse clinical FI14. Malocclu-
sions and body temperature were not assessed in the current study, so an FI of 29
total items was used. Individual FI parameters are listed in Supplementary Fig. 1.
Briefly, mice were scored either 0, 0.5, or 1 for the degree of deficit they showed in
each of these items with 0 representing no deficit, 0.5 representing a mild deficit,
and 1 representing a severe deficit. For regression analyses, prediction variables
were added to represent body weight change: total percent weight change, from
21 months of age; recent percent weight change, from 1 month before the
assessment; and threshold recent weight change—mice received a score for this
item if they gained more than 8% or lost more than 10% of their body weight from
the previous month. For more details including images and video, see http://
frailtyclocks.sinclairlab.org/. FI scoresheet for automated data entry (Supplemen-
tary Fig. 1g) is available online (https://github.com/SinclairLab/frailty).

Intervention studies. Data from enalapril-treated mice were reanalyzed from
previously published work21. Briefly, male C57BL/6 mice purchased from Charles

River mice were treated with control or enalapril food (30 mg/kg/day) from
16 months of age and assessed for the FI at 23 months of age.

For the methionine restriction study, male C57BL/6Nia mice were obtained from
the NIA at 19 months of age and fed either a control diet (0.45% methionine) or
methionine-restricted diet (0.1% methionine) from 21 months of age. Custom
mouse diets were formulated at research diets (New Brunswick, NJ) (catalog #’s
A17101101 and A19022001). Mice were assessed for the FI at 27 months of age.

Modeling and statistics. All analysis was done in Python version 3.6.x (jupyter
(5.0.0), scikit-learn (0.19.0), pandas (0.20.1), numpy (1.14.0), scipy (1.0.0), seaborn
(0.8.1)) or GraphPad Prism 6.0. Each time point of frailty assessment for each
mouse is treated as independent. Training and testing datasets were randomly split
50:50 and were separated by mouse rather than by assessment resulting in n= 106
FI assessments (across 30 mice) for the training set and n= 165 assessments
(across 30 mice) for the testing set. There were 7859 total datapoints included in
the models, as calculated by 271 (106+ 165) assessments multiplied by 29 frailty
items. Missing frailty data (18 individual datapoints out of 7859 total datapoints)
were replaced by the median value for that item for that age group. Items included
in the chronological age models were frailty assessment items with a significant
(p < 0.05) correlation with age (21 items, Table 2). Items included in the lifepan
models included all frailty items plus chronological age (32 items, Table 3). All
models were assessed with bootstrapping with replacement, repeated 100 times. In
each of those 100 iterations, the training set is divided into sub-training and
validation sets, and the results on the validation sets are averaged over the 100
iterations. We held out the testing set for only reporting the final accuracy of the
chosen model to prevent overfitting. The fit of the models was determined with the
r2 value which determines the proportion of the variance in our predicted outcome
that is explained by the model, the median residual/error which represented the
median difference between the actual and predicted outcome values, and the p
value of the regressions. Median and mean error, r2 and p values were compared
across measures of FRIGHT age or AFRAID clock (Figs. 3a–c and 4a–c and
Supplementary Fig. 4) with one-way ANOVA and Dunnett’s post hoc test.
Kaplan–Meier survival curves of the highest and lowest quartiles of AFRAID clock
scores (Fig. 4) were compared with the log-rank test. FI, FRIGHT age, and
AFRAID clock scores across intervention and control groups (Fig. 5) were com-
pared with independent samples two-sided t-tests. For all statistics, p values less
than 0.05 were considered significant. All data are presented as mean ± SD, except
error bars on figures indicate standard error of the mean. For some graphs
(Figs. 1d, e, 3d, e and Supplementary Fig. 2B), datapoints were jittered by up to
±0.5 months to improve data visualization.
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Fig. 5 Response of FRIGHT age and AFRAID clock to interventions. a–c Frailty Index (FI) score, FRIGHT (Frailty Inferred Geriatric Health Timeline) age and
AFRAID (Analysis of Frailty and Death) clock for male 23-month-old C57BL/6 mice treated with enalapril-containing food (280mg/kg) or control diet from
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MetR n= 13. Exact p values, respectively, 0.001, 0.039, 0.006. Error bars represent standard error of the mean. Source data are provided as a Source Data file.
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Least squared and elastic net regressions were performed using algorithms
provided in the Scikit-learn package70 in Python. Least-squared regression was
performed using the standard LinearRegression algorithm (copy_X= True;
fit_intercept=True; n_jobs=None; normalize=False). Elastic net was performed
with the ElasticNet algorithm with coefficients restrained as positive for FRIGHT
age and negative for AFRAID score. Hyperparameters (FRIGHT: alpha= 0.2,
l1_ratio= 0.9; AFRAID: alpha= 1.0, l1_ratio= 0.1) were chosen using
bootstrapping. (All other hyperparameters were set to default: copy_X= True;
fit_intercept=True; max_iter=100,000; normalize=False; precompute=False;
selection=cyclic; tol=0.0001.) Standard, rather than survival analysis-oriented,
versions of these regression algorithms were used as we have no censored data in
our dataset, and we are treating our longitudinal datapoints as independent.

We calculated Klemera–Doubal biological age of each mouse using the methods
first described by Klemera and Doubal19 and later demonstrated by Levine49 and
Belsky et al.71. The KDM uses multiple linear regression but improves upon this by
reducing multicollinearity between biological variables, which are intrinsically
correlated. The KDM method consists of m regressions of age against each of m
predictors. A basic biological age is then predicted based on the following equation (1):

BAE ¼
Pm

j¼1ðxj � qjÞðkjs2j Þ
Pm

j¼1
kj
s2j

� �2 ;

where kj, qj, and sj represent the slope, intercept, and root mean square error of each of
the m regressions, respectively. While Klemera and Doubal further suggest using
chronological age as a corrective term to limit the bounds of each predicted value, we
used the version of the algorithm without age as, for the purposes of this study, we
wanted to demonstrate the utility of the variables alone as predictors of age without
knowledge of the true chronological age of the mouse.

Random forests are a type of machine learning algorithm which combines many
decision trees into one regression outcome20. Compared to least squared and elastic
net regressions, random forests have the advantage of being non-parametric and
detecting non-linear relationships. Random forest modeling was performed using
the Scikit-learn RandomForestRegressor algorithm70. Models were made with 1000
trees, and the minimum number of samples required for a branch split was limited
to prevent overfitting as determined through bootstrapping (FRIGHT:
min_samples_leaf=9; AFRAID: min_samples_leaf=6). (All other parameters were
set to default: bootstrap=True; criterion=mse; max_depth=None;
max_features=auto; max_leaf_nodes=None; min_impurity_decrease=0.0;
min_impurity_split=None; min_samples_split=2; min_weight_fraction_leaf=0.0;
n_jobs=None; oob_score=False.) We also computed and plotted the feature
importance for each of the items with the highest value for this outcome. Feature
importance is the amount the error of the model increases when this item is
excluded from the model. Two example trees are shown in Supplementary Fig. 5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data underlying all figures are provided as a Source Data File. Data are
available at https://github.com/SinclairLab/frailty. Any remaining data supporting the
findings of the study will be available from the corresponding author upon reasonable
request

Code availability
Code is available at https://github.com/SinclairLab/frailty.
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