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hepatocellular carcinoma
Julián Candia 1,8, Enkhjargal Bayarsaikhan2,8, Mayank Tandon 3,8, Anuradha Budhu1,4, Marshonna Forgues1,

Lkhagva-Ochir Tovuu2, Undarmaa Tudev5, Justin Lack3, Ann Chao6, Jigjidsuren Chinburen7 &

Xin Wei Wang 1,4✉

Mongolia has the highest incidence of hepatocellular carcinoma (HCC) in the world, but its

causative factors and underlying tumor biology remain unknown. Here, we describe mole-

cular characteristics of HCC from 76 Mongolian patients by whole-exome and transcriptome

sequencing. We present a comprehensive analysis of mutational signatures, driver genes, and

molecular subtypes of Mongolian HCC compared to 373 HCC patients of different races and

ethnicities and diverse etiologies. Mongolian HCC consists of prognostic molecular subtypes

similar to those found in patients from other areas of Asia, Europe, and North America, as

well as other unique subtypes, suggesting the presence of distinct etiologies linked to

Mongolian patients. In addition to common driver mutations (TP53, CTNNB1) frequently

found in pan-cancer analysis, Mongolian HCC exhibits unique drivers (most notably

GTF2IRD2B, PNRC2, and SPTA1), the latter of which is associated with hepatitis D viral

infection. These results suggest the existence of new molecular mechanisms at play in

Mongolian hepatocarcinogenesis.
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Liver cancer is the second most common cause of cancer
mortality worldwide, with more than 840,000 annual new
cases and 780,000 annual deaths recorded globally in recent

years1. Hepatocellular carcinoma, the predominant form of liver
cancer, has several known risk factors, including chronic hepatitis
B virus (HBV) and/or hepatitis C virus (HCV) infection, auto-
immune hepatitis, diabetes mellitus, alcohol abuse, obesity, and
several metabolic diseases2,3. Mongolia has the highest reported
incidence of—and mortality from—HCC in the world, which is
between three and seven times higher than that observed in other
high-incidence populations, such as South Korea, Thailand, and
China4,5. In Mongolia, where cancer is the second most common
cause of death accounting for nearly a fifth of all deaths, HCC is
the most prevalent cancer type accounting for ~40% of all can-
cers. Besides chronic infection with HBV and/or HCV, present in
more than 90% of Mongolian HCC cases6,7, the etiology of
Mongolian HCC may also be related to the extraordinarily high
prevalence of hepatitis delta virus (HDV)8,9, which depends on
HBV for its life cycle. Among HBV-infected Mongolian subjects,
~60% were found HDV-coinfected, compared to the ~5% global
estimate9. Despite the daunting magnitude of this longstanding
health crisis, the molecular landscape of Mongolian HCC has not
yet been studied. Our work fills this gap with the first compre-
hensive and integrative genomic characterization of Mongolian
HCC, aiming to identify robust molecular subclasses with
underlying unique tumor biology, as well as driver features
informative of the etiology and progression of the disease.

Results
Identification of molecular subtypes of Mongolian HCC.
Clinical information and paired tumor/nontumor liver tissue
samples were obtained with written informed consent from 76
HCC patients undergoing surgery between 2015 and 2016 at the
National Cancer Center of Mongolia (Supplementary Data 1–2).
Whole transcriptome sequencing and whole exome sequencing
were performed on most tumor and adjacent nontumor tissues,
followed by bioinformatics processing and quality control
(Methods). Our transcriptomics-based analysis (Fig. 1) integrated
an unsupervised approach (consensus clustering10,11 to uncover
molecular subclasses) with a supervised approach (regularized Cox
regression12 to find low- vs high-risk groups), followed by vali-
dation (mapping13 onto molecular subclasses from previous HCC
studies). In order to uncover molecular subtypes of Mongolian
HCC, we implemented an unsupervised clustering approach
coupled with survival analysis (Supplementary Fig. 1) and found
four molecular subclasses, labeled MO1-4 (Fig. 1a). Associated to
these four molecular subclasses, we found 575 signature genes,
each of them significantly up- or down-regulated in one subclass
relative to the other subclasses (Supplementary Data 3). The
strongest association observed between molecular subclasses and
demographic/clinical variables was alpha-fetoprotein (AFP), pri-
marily driven by opposite trends in MO4 (odds ratio [OR]= inf,
p= 4 × 10−6, positively associated with abnormal AFP) vs MO1
(OR= 0.2, p= 0.008, negatively associated with abnormal AFP).
This phenomenon was mirrored, albeit with marginal significance,
by cirrhosis, which correlates positively with MO4 (OR= 3, p=
0.08) and negatively with MO1 (OR= 0.3, p= 0.08). Tumor size,
which correlates positively with MO3 (OR= 8.9, p= 0.05),
appeared as marginally significant (Supplementary Fig. 2). AFP is
a well-characterized biomarker for diagnosis, pathological grade,
progression, and survival of HCC patients14, whereas cirrhosis, on
the other hand, is a well-known intermediate stage in the pro-
gression from chronic liver disease and fibrosis to liver tumor-
igenesis15. In agreement with these findings, Kaplan–Meier plots
of overall survival showed that subclasses MO1-2 correspond to

statistically significant better prognosis compared with MO3-4
(Fig. 1b). It is important to emphasize that each of these four
molecular subclasses is characterized by a unique transcriptomic
profile with distinctive differentially expressed pathways (Supple-
mentary Fig. 3a and Supplementary Data 4). Furthermore, paired
tumor-vs-nontumor comparisons reveal a large number of dif-
ferentially expressed genes in each molecular subclass, many of
which are shared among two or more subclasses (Supplementary
Fig. 3b-c and Supplementary Data 5). It is interesting to notice,
however, that MO2 appears to have an order of magnitude fewer
tumor-vs-nontumor differentially expressed genes compared to
the other subclasses; correspondingly, MO2 will be shown to carry
fewer copy number variations (CNVs) and structural variants
(SVs) (see below). By implementing a regularized Cox regression
approach (Supplementary Fig. 4 and Supplementary Data 6), we
found well defined low- and high-risk groups (p= 5 × 10−10). The
risk scores are in good agreement with the molecular subclasses
defined earlier (Fig. 1c) and confirm the association of MO1-2
with better prognosis/low-risk and that of MO3-4 with poorer
prognosis/high-risk. Risk scores also highlight the existence of
outcome-associated heterogeneities within transcriptome-derived
molecular subclasses, most notably within MO3 and MO4. For the
interpretation of results in the remainder of this study, we keep
track of modular subclasses and risk categories as informative
subcohort stratification signatures. To validate these findings, we
compared the classification of Mongolian patients across subclass-
related gene signatures from different studies (Fig. 1d). Signatures
are represented as concentric rings, starting with this study’s
MO1-4 (outermost ring), followed inwards by TCGA16, Hos-
hida17, TIGER-LC11, Lee18, Yamashita19, and Roessler20 (inner-
most ring). Transcriptomics-based gene signatures, either
available from the Molecular Signatures Database21 or inferred
from gene expression data (“Methods”), are provided in Supple-
mentary Data 7. The overlap between signature genes in each of
these HCC studies and signature genes in Mongolian HCC is not
significant at the p= 0.05 threshold level based on Fisher’s exact
test. The association between the molecular subclasses from this
study, MO1-4, and those from each one of the previous studies
considered here, is statistically significant (Fisher’s exact test
p value < 0.05) (Supplementary Fig. 5). Subclasses MO1 and MO4
appear mostly stable and consistent across studies, while MO2 and
MO3 appear more heterogeneous. It is worth noticing that most of
the gene signatures from previous HCC studies appear to have
informative prognostic value when applied to Mongolian HCC
survival (Supplementary Fig. 6). Comparing prognostic prediction
performance in a cross-validated framework, however, confirms
that this study’s signature is the most informative to predict sur-
vival in Mongolian HCC, as would be expected (Supplementary
Fig. 7). TCGA16 reports the existence of an IDH-like tran-
scriptome phenotype associated with the poor prognosis
iC1 subclass. Whereas none of the Mongolian HCC tumor sam-
ples was found to carry mutations in IDH1 or IDH2, we observed
a subset of 9 samples in the Mongolian cohort that appears to
carry TCGA’s IDH-like gene signature (Supplementary Fig. 8a).
Of these, 3 belong to MO2 and 6 to MO3 (Supplementary Fig. 8b),
which agrees with the fact that subclasses MO2-3 are strongly
associated with TCGA’s subclass iC1 (see Fig. 1d above); no sig-
nificant associations between IDH-like status and demographic/
clinical variables were found. In agreement with TCGA’s obser-
vations, IDH-like samples appear associated with poorer prog-
nosis (Supplementary Fig. 8c).

Somatic drivers of Mongolian HCC. We determined the
mutational landscape of Mongolian HCC (Fig. 2) compared to
previous studies of driver mutations in 373 HCC patients from

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18186-1

2 NATURE COMMUNICATIONS |         (2020) 11:4383 | https://doi.org/10.1038/s41467-020-18186-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


different races and ethnicities, as well as from geographic loca-
tions with varying etiologies16. The median mutation burden was
2.12 mutations/Mb and distributed similarly to TCGA-LIHC
across variant subtypes (Supplementary Fig. 9). The oncoplot
(Fig. 2a) shows mutated driver genes across the cohort split into
two panels by HDV status due to the uniquely high prevalence of
HDV in Mongolian HCC; within each panel, subjects are ordered
by transcriptome-based molecular subclass. Demographic and
clinical characteristics are also included for comparison. The top
panel shows 10 genes selected by the criteria of MutSigCV22

q value < 0.1 and fraction of mutated samples >5%; the bottom
panel shows 9 additional genes that, despite larger q values,
appear mutated in more than 10% of the samples (Supplementary
Data 8). The table on the left shows the fraction of mutated
samples for the Mongolian cohort compared to TCGA-LIHC (full
cohort and split by the two main racial subgroups, namely Asian
and Caucasian). A further comparison of Mongolian HCC with
TCGA-LIHC racial subgroups is shown as a principal component
analysis (PCA) of somatic substitution patterns23 (Fig. 2b). For
this analysis, each subject was first represented by the normalized
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mutational frequency along 96 trinucleotides, formed by enu-
merating all single-nucleotide combinations before and after each
one of 6 possible single-nucleotide substitutions24,25. In antici-
pation of a more detailed analysis of mutational spectra and their
connection to annotated etiologies from known signature catalogs
(presented below), here PCA offers a straightforward low-
dimensional representation to visualize the somatic mutational
burden of many subjects across different cohorts. More specifi-
cally, we use PCA to focus on the 2 orthogonal directions of
largest variance, PC1 and PC2, in order to uncover overall
characteristics of Mongolian HCC compared with TCGA-LIHC’s
Asian and Caucasian groups. Mutational frequency patterns are
linked to mutation-causing mechanisms at the molecular level, as
well as to disease etiologies at the organismal level. Therefore, the
relative centroid location and spread of different cohorts provides
a high-level view of their relative overall similarity and of their
comparative mutational and etiological heterogeneity, respec-
tively. In this representation, the Mongolian and Asian TCGA
cohorts display larger spreads than the Caucasian TCGA cohort.
The inset shows the centroids of each cohort, where it becomes
apparent the Caucasian TCGA’s shift along both PC axes (Sup-
plementary Data 9). Out of 19 candidate driver genes identified in
our analysis, 8 of them have been reported as driver genes in at
least one of 12 previous HCC studies11,16,23,26–34, while 11 genes
(GTF2IRD2B, PNRC2, AK2, VPS13A, SPTA1, PCLO, CSMD2,
SMC6, DYNC2H1, FKBP9, and PCDH7) have not been reported
before (Supplementary Data 10). Among them, SPTA1, which
encodes α-spectrin, displays mutations significantly associated
with HDV+ (p= 0.015). SPTA1 mutations have been linked to
hereditary elliptocytosis and hereditary spherocytosis, a set of
congenital hemolytic syndromes35. Although not reported as
driver gene in previous HCC studies, SPTA1 was reported as a
possible tumor suppressor in Glioblastoma Multiforme36. How-
ever, it is unclear how mechanistically α-spectrin contributes to
tumorigenesis. GTF2IRD2B belongs to the TFII-I family of gen-
eral transcription factors that play a role in chromatin structure
modification and, consequently, in the regulation of gene
expression37. It is plausible that mutations of GTF2IRD2B may
lead to the disruption of gene expression regulation, thereby
contributing to HCC carcinogenesis. In contrast, a number of
genes found to be significantly mutated in other HCC cohorts
(most notably AXIN1, ARID1A, ARID2, RPS6KA3, NFE2L2, and
TERT, reported in at least half of the previous HCC studies here
considered) do not appear significantly mutated in Mongolian
HCC (Supplementary Data 11). These results are consistent with
the hypothesis of the existence of new molecular mechanisms at
play in Mongolian hepatocarcinogenesis. In order to gain further
insight, Fig. 2c shows the significant mutation co-occurrence
of Mongolian driver genes across the cohort. The incidence of
mutations in TP53 and GTF2IRD2B, however, shows a case of
significant mutual exclusivity. Although the analysis of co-
occurrence in subcohorts suffers from weak statistical power, we
found significant associations between pairs of driver genes in
molecular subclasses, both individually and grouped by survival
outcome (Supplementary Fig. 10 and Supplementary Data 12),
which is consistent with the hypothesis that a combination of
activation of multiple oncogenes and/or tumor suppressor genes
may be needed to drive hepatocarcinogenesis. While we found
different frequencies of driver mutations in HDV-associated
HCC, the oncogenic roles of HDV in HCC could only be
speculated38. Taken together, these analyses suggest the existence
of unique driver mutations linked to Mongolian HCC. Further
studies on additional Mongolian HCC specimens may be needed
to validate these findings.

While the location of mutations for the two most frequently
mutated genes, TP53 and CTNNB1, was consistent with

previously published studies (Fig. 3a, b), two novel driver genes,
GTF2IRD2B and PNRC2, notably display hotspot missense
mutations (Fig. 3c, d). Interestingly, while a majority of TP53
mutations were located in the DNA binding domain, we found
two cases with E349 mutations, a locus in the p53 tetramerization
domain known to affect p53 transcriptional activity39.
GTF2IRD2B has the L597S allele in all 8 mutated cases while
PNRC2 has the R82S allele in all 6 mutated cases. Supplementary
Data 13 contains detailed information of all mutated loci among
Mongolian HCC driver genes, including the predicted variant
pathogenicity from ClinVar40, SIFT41, and PolyPhen42. Figure 3e
displays the mutation frequency of these genes across all TCGA
cancer studies. GTF2IRD2B and PNRC2 appear to carry hotspot
mutations unique to Mongolian HCC; their mutation frequency
is significantly higher than that observed in any other cancer type,
as indicated by the asterisks. In contrast, other genes, such as
SPTA1, which we found to be associated with HDV, appear
significantly mutated in multiple other cancer types. Rather than
summarizing per gene, Fig. 3f shows a pan-cancer comparison of
mutation frequency for each hotspot locus. These hotspot loci are
more frequently mutated in Mongolian HCC than in most other
cancer types.

Mutational signatures of Mongolian HCC. To explore the
etiology of Mongolian HCC, we analyzed mutational signatures
that consist of frequency patterns along 96 trinucleotides, formed
by enumerating all single-nucleotide combinations before and
after each one of 6 possible single-nucleotide substitutions24,25.
Figure 4a shows the frequency distribution of single-nucleotide
substitutions in the Mongolian cohort (top) and the differential
frequency distribution in HDV+ patients relative to HDV-

(bottom). By comparing the observed HDV± differences to a null
model distribution obtained from random permutations of
sample labels, significant differences (p < 0.05) are observed in
A[A > T]C (G[T > A]T) and G[A > G]T (A[T > C]C) substitu-
tions, which appear in excess in HDV+ tumors, as well as G[G >
C]G (C[C > G]C) and A[A > G]T (A[T > C]T) substitutions,
which appear in excess in HDV- tumors (Supplementary
Data 14). Figure 4b shows a heatmap of subject/signature weights
from non-negative least squares mapping43 of individual samples
vs reference signatures24,25,44, which identifies signatures with
distinct prevalence among HDV+ and HDV− groups. Signatures
differentially associated with HDV+ include mutational patterns
linked to alkylating agents (such as temozolomide), tobacco
chewing, and exposures to 1,8-Dinitropyrene and furan, whereas
HDV- appears differentially associated with aristolochic acid II.
Tobacco smoking and HBV infection were found to positively
interact in liver carcinogenesis;45,46 synergistic effects were also
reported between tobacco smoking and chronic HCV leading to
increased liver fibrosis46,47 and increased risk of cirrhosis and
HCC46. Exposure to aristolochic acids, widely used in traditional
Chinese medicine throughout Asia, has been linked to liver
cancer48, and a prospective study of HCV-infected patients in
Taiwan has very recently reported an association between the
intake of herbal medicines containing aristolochic acid and the
risk of primary liver cancer49. Therefore, although the etiology of
this disease and the role of HDV remain poorly understood, our
findings suggest links between exposure to certain carcinogenic
agents and HDV status in Mongolian HCC that deserve further
investigation.

Copy number alterations, gene fusions, structural variants, and
germline analyses of Mongolian HCC. Chromosomal abnorm-
ality is a hallmark of solid malignancies50. Indeed, ~90% of solid
tumors are aneuploid, ranging from 26% in some tumor types to
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99% in others51. In addition to point mutations, our data allow us
to characterize other types of genomic aberrations, such as gene
fusions, CNVs, SVs, and germline analyses. The inner circle in
Fig. 5a shows gene fusions detected in individual samples, whose
molecular subclass is indicated by link color. As reference, the
fused genes’ labels are shown along the autosome map in the
outer ring. (Supplementary Data 15). Interestingly, we found
several fusion genes in one MO4 subject involving NELFE, an
oncogene known to promote HCC progression via activation of
myc signaling52. These results suggest that NELFE activation may
contribute to hepatocarcinogenesis in Mongolian HCC. The inner
ring in Fig. 5a displays the percent of samples in the Mongolian
HCC cohort with CNVs across all autosomal chromosomes

(Supplementary Data 16). In good agreement with overall CNV
features in previous HCC studies16,53, we observe very significant
gains in chromosome regions 1q and 8q, as well as significant
losses in 1p, 4q, and 8p. Figure 5b shows the number (left-side
axis) and percent (right-side axis) of samples affected by CNVs in
each molecular subclass and HDV± subcohorts. Although fol-
lowing the overall patterns described above, MO2 displays a
remarkably lesser impact of CNVs compared to MO1, despite
both being associated with better outcome. Although to a lesser
extent, we also observe MO3 less affected by CNVs compared to
MO4. The distribution of SVs per subject, molecular subclass, and
structural variant type is shown in Fig. 5c (Supplementary
Data 17), which emphasizes again MO2 as generally less affected
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Fig. 3 Hotspot mutations in Mongolian hepatocellular carcinoma.Mutated loci are shown for (a) TP53, (b) CTNNB1, (c) GTF2IRD2B, and (d) PNRC2. The
number of mutated samples at each locus is displayed. In parentheses, exon numbers are also shown. e Frequency of mutated samples for candidate driver
genes in the Mongolian cohort compared against all other cancer types available from The Cancer Genome Atlas (TCGA). Statistically significant
differences in mutation frequencies from the Mongolian cohort are indicated by asterisks (one-tailed hypergeometric test without multiple-testing
correction, p < 0.05). f Frequency of mutated samples for hotspots (defined as candidate driver gene loci mutated in two or more samples in the Mongolian
cohort) compared against all other TCGA cancer types. Statistically significant differences in mutation frequencies from the Mongolian cohort are indicated
by asterisks (one-tailed hypergeometric test without multiple-testing correction, p < 0.05). Source data are provided as a Source Data file.
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by these genomic aberrations compared with the other molecular
subclasses. Furthermore, two types of germline analyses were
performed. Germline-based sample admixture and similarity
results are shown in Supplementary Fig. 11 for all tumor and
adjacent nontumor samples. On the one hand, we observe that all
matched tumor/nontumor pairs cluster together with the highest
degree of similarity, thus providing an additional layer of quality
control of our data. On the other hand, all samples appear

classified as >99% East-Asian according to the 1000 Genomes
Super Populations, which confirms the racial make-up expected
of a Mongolian cohort. Finally, similarity clusters do not appear
strongly correlated with molecular subclass labels, thus, suggest-
ing that tumor molecular subclasses may be weakly dependent on
germline characteristics. It should be noted that pairwise relat-
edness between samples in the cohort (used to generate the cir-
cular dendrogram in Supplementary Fig. 11) was computed using
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17,766 common variants across all human populations. Genetic
distance based on all germline variants found in the Mongolian
HCC cohort also failed to show any significant patterns of
similarity among MO1-4 clusters (data not shown). Therefore, it
is unlikely that the four Mongolian subclasses reported here have
a basis in germline characteristics but instead represent different
pathologies primarily driven by somatic processes. Germline
predisposition variant analysis was also performed on a panel of
known cancer-causing genes, which only yielded ClinVar variants
annotated as benign, likely benign, or VUS (variants of unknown
significance). No other coding, non-ClinVar variants were found
among the predisposition genes. The aggregated Cancer Predis-
position Sequencing Report is herewith provided as Supplemen-
tary Data 18.

Mutated oncogenic signaling pathways of Mongolian HCC. In
order to summarize the complex interplay of genomic alterations
of Mongolian HCC, it is useful to represent them in the context of
pathways associated with well-established hallmarks of cancer.
Figure 6 shows the main mutated oncogenic signaling pathways54

and driver genes in the Mongolian cohort. As pointed out earlier,
molecular subclasses are characterized by distinct up- and down-
regulated pathways at the transcriptome level; correspondingly,
each molecular subclass carries a distinct pattern of oncogenic
signaling pathway alterations, which highlights the underlying
molecular complexity of Mongolian HCC. For example, mutated
TP53 has a different impact on tumor-vs-nontumor gene
expression for molecular subclass MO3, in which tumor expres-
sion appears increased relative to nontumor expression, com-
pared to MO1 and MO4, which exhibit the opposite trend. This
ambivalent role of TP53 in tumorigenesis is well documented55

and consistent with our earlier study56 on the role of p53-
mediated signaling in HCC. On the other hand, CTNNB1
mutations appear enriched in MO1 with good prognosis, which is
consistent with TCGA data16. These results reaffirm several key
signaling pathways commonly found during hepatocarcinogen-
esis, as shown in previous studies11,16,23,26–34. Remarkably, we
also found several unique driver genes (bottom panel in Fig. 6),
whose functions have not been studied in human cancer yet,
which may represent processes of molecular pathogenesis unique
to the Mongolian population. Further studies are needed to
understand mechanistically the roles of these genes in Mongolian
HCC, which in turn may inform better treatment strategies.

In summary, this study reports the landscape of driver genes,
molecular subtypes, and associated tumor biology in Mongolian
HCC, a tumor type with an unusually high prevalence in select
geographic and demographic populations. We identified several
unique driver genes, namely GTF2IRD2B, PNRC2, AK2,
VPS13A, SPTA1, PCLO, CSMD2, SMC6, DYNC2H1, FKBP9,
and PCDH7, that have not previously been reported, as well as
complex mutation signatures linked to Mongolian liver tumors.
Our results highlight the existence of novel molecular mechan-
isms at play in Mongolian hepatocarcinogenesis. Investigation of

the functional roles and potential targeting of these driver genes
in larger cohorts are warranted to help improve precision
oncology and overcome the pressing liver cancer health crisis in
Mongolia.

Methods
Liver samples and clinical data. HCC patients were diagnosed via standardized
pathology reviews based on the WHO Classification of Tumors (also known as the
WHO Blue Books) and via clinical assessments based on CT scans and ultrasound
diagnosis. Tumoral and adjacent nontumoral liver tissue samples were collected
and frozen at −80 °C after surgical resection at the National Cancer Center in
Ulaanbaatar, Mongolia. The study was approved by the Ethics Committee at the
National Cancer Center in Ulaanbaatar, Mongolia, and written informed consent
was obtained from all participants. Cohort details are provided in Supplementary
Data 1-2.

Sequencing datasets. Out of 76 subjects in the Mongolian HCC cohort, we
obtained paired tumor/nontumor datasets from total RNA sequencing and whole
exome sequencing for 65 subjects. For 5 subjects, only total RNA sequencing data
were generated for downstream analysis. Similarly, for 6 subjects, only whole-
exome sequencing data were generated for downstream analysis.

Total-RNA sequencing. RNA was extracted from 70 HCC tumors and paired
nontumor liver tissues, for a total of 140 samples that were used for total RNA
sequencing. Library preparation was performed using the Illumina TruSeq Stran-
ded Total RNA Kit and sequenced across two flowcells on the Illumina NovaSeq
platform, which yielded between 69 and 605 million reads per sample. The
sequencing quality of the reads was assessed using FastQC (v. 0.11.5), Preseq57

(v. 2.0.3), Picard tools (v. 1.119), and RSeQC (v. 2.6.4). Reads were trimmed using
Cutadapt58 (v. 1.14) to remove sequencing adapters prior to mapping to the human
reference genome hg38 using STAR59 (v. 2.5.2b) in two-pass mode. Across the
samples, the median percentage of mapped reads was 95.4%. Expression levels were
quantified using RSEM60 (v. 1.3.0) with GENCODE61 annotation (v. 21). Genes
with a mean count lower than one transcript were removed and the resulting
data were normalized using the voom algorithm62 from the Limma R package63

(v. 3.40.6) for downstream analyses.

Unsupervised clustering and survival analysis. In order to determine the
optimal partition of the RNA-Seq-based cohort (n= 70) into biologically relevant
molecular subclasses, we performed a grid-search-based clustering analysis coupled
with survival analysis. Firstly, the most variable genes across tumor samples were
selected using different median absolute deviation (MAD) thresholds (Supple-
mentary Fig. 1a). The number of selected genes ranged from 9827 (for MAD
threshold= 1) down to 522 (for MAD threshold= 3). Then, for each MAD
threshold, we generated K-means-based consensus clustering solutions in the range
K= 2–8 (where K represents the pre-assigned number of clusters). Using the R
package ConsensusClusterPlus10 (v. 1.48.0), each of these solutions was generated
from 1000 iterations, each iteration consisting of a randomized selection of 80% of
samples and 80% of features (genes) to avoid overfitting. Each consensus clustering
solution is summarized by the pairwise coclustering matrix, which captures the
probability for two samples to be clustered together. By defining in=mean pair-
wise coclustering within a cluster and out=mean pairwise coclustering across
clusters, the normalized ratio in/(in+ out) was adopted as the objective function to
find the optimal solution in a grid search across different MAD thresholds and
different numbers of clusters (Supplementary Fig. 1b). The best solutions were the
2-cluster solution with MAD threshold= 1.25 (Supplementary Fig. 1c) and the 4-
cluster solution with MAD threshold= 2 (Supplementary Fig. 1d). Kaplan–Meier
and log-rank test survival analyses were performed, showing that the 2-cluster
solution failed to capture prognosis-relevant information (Supplementary Fig. 1e).
In contrast, the 4-cluster solution showed statistically significant survival differ-
ences across the clusters (Supplementary Fig. 1f) and was adopted to define
molecular subclasses MO1-4. The association between the 2-cluster solution and

Fig. 4 Mutational signatures of Mongolian hepatocellular carcinoma. a Top panel: Mutational trinucleotide frequency distribution in the Mongolian
cohort. For each one of 6 possible single-nucleotide substitutions (annotated at the top and shown in different colors), there correspond 16 combinations of
preceding (5′ end) and following (3′ end) nucleotides (annotated at the bottom). Due to strand complementarity, two equivalent sets of annotations are
possible, either based on the substitution of purines (blue) or pyrimidines (red). Bottom panel: Differential frequency distribution in HDV+ patients relative
to HDV-. Significant differences in substitution frequencies are indicated. b Heatmap showing subject/signature weights obtained from non-negative least
squares mapping43 of individual samples (columns) vs reference signatures (rows) from the COSMIC catalogs24,25 and the Compendium of Mutational
Signatures of Environmental Agents44, which identifies signatures with distinct prevalence among HDV+ and HVD- groups (two-sided Wilcoxon test, p <
0.05). Molecular subclasses and infection status of hepatitis virus HDV, HBV, and HCV across subjects are shown at the top. Demographic and clinical
annotations are provided at the bottom, as well as risk groups based on this study’s supervised transcriptome analysis. Source data are provided as a
Source Data file.
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Fig. 5 Copy number alterations, gene fusions, and structural variants in Mongolian HCC. a Integrated view showing the percent of samples with aberrant
DNA copy number gains (green) and losses (purple) along the exome (inner ring) and gene fusions colored by molecular subclass (inner circle links). The
autosome map and fused genes’ labels are provided as reference (outer ring). b Number of samples (left-side axis) and percent of samples (right-side axis)
with aberrant DNA copy number gains (green) and losses (purple) along the exome separately shown for each molecular subclass and HDV± subcohorts.
c Number of structural variants per subject. Source data are provided as a Source Data file.
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the better (MO1-2)/worse (MO3-4) survival groups derived from the 4-cluster
solution is not significant (OR= 0.86, Fisher’s exact test p value= 0.81).

Significance tests of contingency tables. The association between two catego-
rical variables, such as molecular subclasses and clinical variables (Supplementary
Fig. 2) or molecular subclasses from classifications derived from other HCC studies
(Supplementary Fig. 5), was assessed by Fisher’s exact test. When testing a 2 × 2
contingency table, we also report the OR, which can be expressed as the product of
the diagonal entries divided by the product of the off-diagonal entries.

Differential expression and pathway analysis. Differentially expressed genes
associated with tumor samples in each molecular subclass were ranked by Wil-
coxon test p value; the top 2000 genes were then uploaded to QIAGEN Ingenuity
Pathway Analysis (v. 52912811) (Supplementary Fig. 3a and Supplementary
Data 4). For tumor-vs-nontumor comparisons, differentially expressed genes
within each molecular subclass were assessed by paired t-test and selected by FDR-
adjusted p value < 0.05 (Supplementary Fig. 3b-c and Supplementary Data 5). The
Venn diagram was generated with R package VennDiagram (v. 1.6.20). Since
tumor and nontumor samples were separately run in two different batches, we
checked the expression of reference housekeeping genes reported as stable across
tumor and normal tissues64–66, including reference genes validated in paired
tumoral and adjacent nontumoral tissues from HCC patients66 (Supplementary
Fig. 12). This served as a further quality check of our data for the paired tumor-vs-
nontumor analysis.

Regularized Cox regression. As a preprocessing step, Reactome pathways67 were
used to determine pathway-level expression using PC1, the first principal com-
ponent. The resulting expression matrix of 2211 pathways and 5 key demographic
and clinical control variables (sex, age, and HCV, HBV, and HDV status) was
analyzed by means of a cross-validated elastic net implementation of regularized
Cox regression using eNetXplorer12 (v. 1.1.0). Significant pathways, selected based
on feature frequency (Supplementary Fig. 4a) and feature coefficient (Supple-
mentary Fig. 4b) in the most stringent (lasso) solution, were used in a Cox

regression model to determine risk scores and classify patients as low- vs high-risk
(Supplementary Fig. 4c). Risk score stratification was validated by means of
Kaplan–Meier and log-rank test survival analysis (Supplementary Fig. 4d).

Mapping to HCC molecular subclass signatures. Subjects in the Mongolian
cohort were mapped into molecular subclass signatures reported in other HCC
studies (TCGA16, Hoshida17, TIGER-LC11, Lee18, Yamashita19, and Roessler20)
using GenePattern’s NearestTemplatePrediction module13,68 (v. 4) and visualized
with circlize69 (v. 0.4.8). For TCGA and TIGER-LC cohorts, molecular subclasses
were originally obtained by iCluster70, an approach that merges molecular infor-
mation from multiple sources. Based on the classification of individual subjects and
their corresponding gene expression, we inferred transcriptomics-based signatures
of up-regulated genes characteristic of each molecular subclass. For other HCC
studies, transcriptomics-based signatures were readily available from the Molecular
Signatures Database21 (v. 7.0). These gene signatures are provided in Supple-
mentary Data 7. To compare prognostic performance across signatures in a cross-
validated framework (Supplementary Fig. 7), we performed 200 runs with tenfold
cross-validation. For each run and each fold, signature genes were used to build a
lasso-regularized Cox regression model and predict risk on out-of-bag instances.
Once all 10 folds were evaluated, concordance (also known as C-index) was
measured to quantitatively compare out-of-bag predictions against the survival
response. Packages used were survival (v. 3.1.8), survcomp71 (v. 1.34.0), and
glmnet72 (v. 3.0.1).

IDH-like gene signature analysis. In order to compare TCGA with Mongolian
HCC samples, we applied the same data processing pipeline (voom normalization
followed by z-score transformation) to both gene expression datasets. Only genes
reported in both datasets were used. Following TCGA’s reported procedures16, the
IDH-like gene signature was obtained by performing a t test comparison between
IDH-mutant vs IDH-WT samples (p < 0.0001). To validate the approach, we used
the gene signature to cluster TCGA samples hierarchically; IDH-mutant samples
indeed formed a tight cluster, while IDH-like samples with score IDH_P > 0.8 were
observed to form an adjacent cluster. By applying the hierarchical clustering
procedure to the combined TCGA and Mongolian HCC datasets, we identified a
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Fig. 6 Mutated oncogenic signaling pathways and driver genes in the Mongolian cohort. Mutated genes and their activation/inhibition relationships to
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group of 9 Mongolian samples that appeared to carry TCGA’s IDH-like signature
(Supplementary Fig. 8a) followed by Kaplan–Meier and log-rank test survival
analysis (Supplementary Fig. 8c).

Gene fusion analysis. STAR-fusion73 (v. 1.6) was used for detecting fusion events
in the RNA-Seq data for each sample. Events reported with FFPM <0.5 or a split
read count <30 were removed from all samples. Fusion gene pairs detected in any
normal sample were removed from each tumor sample to produce a set of high
confidence driver fusion events. More information about the annotations supplied
for each fusion event in Supplementary Data 15 can be found at https://github.
com/FusionAnnotator/CTAT_HumanFusionLib/wiki

Whole-exome sequencing. DNA was extracted from 72 HCC tumors and paired
nontumor liver tissues, for a total of 144 samples that were used for library pre-
paration using the Agilent SureSelect Human All Exon v7 exome capture kit and
sequenced across three flowcells on the Illumina HiSeq 4000 Platform. Reads were
trimmed for adapters and low-quality bases using Trimmomatic software before
alignment to the human hg38 reference genome using BWA mapping software74

(v. 0.7.17). Mapped reads were then de-duplicated using Picard tools (v. 1.119),
followed by re-alignment, and base quality score recalibration was performed using
the Genome Analysis Toolkit (GATK)75 (v. 3.8.0). One subject’s samples did not
pass quality control and were removed from further analysis, therefore this work
utilized whole exome sequencing data for 71 subjects.

Somatic variant analysis. Variant calling was performed using Mutect2 in
tumor-normal mode76 following the best practices guidelines for exome-seq
analysis provided by the GATK authors77. Variants were hard-filtered for quality,
annotated with functional and consequence prediction using Ensembl’s Variant
Effect Predictor78 (VEP v. 92) and converted to Mutation Annotation Format
(MAF) using the vcf2maf tool (v. 1.6.16). MAF files for individual samples were
concatenated into a combined MAF file spanning the full cohort for downstream
analysis. The combined MAF file was used as an input for MutSigCV22 (v. 1.41)
for driver gene analysis. MutSigCV relies on a background model that takes into
account mutation abundance, clustering, and site conservation to identify genes
that were mutated more often than expected by chance. A benchmarking study79

shows that this model imposes conservative selection criteria and may, therefore,
fail to recognize candidate driver genes; moreover, the sample size required for
near-comprehensive detection of intermediate-effect driver genes (90% detection
and 2% effect size/increase with respect to background) was shown to be >300,
i.e., several-fold larger than this study’s cohort size. Therefore, we expanded the
driver gene selection criteria to also include frequently mutated genes (>10% of
the samples in the Mongolian HCC cohort), although frequently mutated genes
found in publicly available exome cohorts, termed FLAGS80, were excluded.
Variants annotated with a frequency larger than 0.001 in the ExAC, gnomAD, or
1000 Genomes databases (i.e., common SNPs) were also removed. In addition,
variants with less than 20x depth in the tumor sample and an alternate allele
frequency of less than 5% were removed. Somatic mutation data for the TCGA-
LIHC dataset were retrieved using the TCGAmutations (v. 0.2.0) R package,
which provides pre-built objects using MAF files from the MC3 working group81.
Visualization and summarization were performed using custom scripts in R
(v. 3.6.0), primarily utilizing the packages maftools82 (v. 1.8.10) for data sum-
marization, ComplexHeatmap83 (v. 2.1.0) and circlize69 (v. 0.4.8) for generating
oncoplots, ribbon plots, and other circular plots, and trackViewer84 (v. 1.44.4) for
lollipop plots.

Copy number variant analysis. For each tumor-non-tumor pair, ploidy and
purity estimates were computed with Sequenza85 (sequenza-utils v. 2.2 and
sequenza R package v. 3.0), and these were used as inputs for CNV calling using the
software package Control-Freec86 (v. 11.5). Regions with significant CNVs reported
by Control-Freec were summarized for the cohort by first disjoining these regions
into discrete non-overlapping segments. Next, segments were filtered for sig-
nificance in each sample using the following criteria: Wilcoxon Rank Sum Test
p value < 1e–3, Kolmogorov Smirnov p value < 1e–3, and Uncertainty between 0
and 20. Finally, the number of samples with CNVs in each segment were counted.
Modified code from the R package svplucnv (v. 0.9.1) was used for summarization
and visualization.

Structural variant analysis. Structural variants (SVs) were called using Manta87

(v. 1.3.0) in paired tumor-non-tumor mode and annotated using AnnotSV88

(v. 1.1.1). These variants were filtered based on the sum of the split and spanning
read counts for the mutant allele. SVs with more than 2 split or spanning reads in
the nontumor sample, or less than 5 split or spanning reads in the tumor, were
removed.

Germline analysis. Germline variants were called using GATK’s Haplotype-
Caller89 in joint genotyping mode. Variants were then filtered for quality with the
following criteria: QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum <−12.5,

ReadPosRankSum <−8.0 for SNPs; QD < 2.0, FS > 200.0, ReadPosRankSum <
−20.0 for INDELs. Sample relatedness and ancestry were computed using the tool
Somalier90 (v. 0.2.9), which is an updated implementation of Peddy91 that analyzes
ancestry based on 17,766 common variants across all human populations. In order
to visualize genetic similarity, pairwise relatedness values computed by Somalier
were transformed as value -> 10 – 10^value, and then used for hierarchical clus-
tering. In addition, genetic distance based on all germline variants found in the
Mongolian HCC cohort was analyzed using PLINK92 (v. 1.9.0). To prioritize
cancer-related germline variants, we utilized the Cancer Predisposition Sequencing
Reporter93 (v. 0.5.1) to analyze 218 manually-curated cancer predisposition genes
for known or predicted pathogenic variants.

Mutational signature analysis. Trinucleotide frequency patterns were extracted
with maftools82 (v. 1.8.10). Reference mutational signatures were obtained from
the Catalogue Of Somatic Mutations In Cancer, versions v2 (March 2015)30 and
v3 (May 2019)31, as well as from the Compendium of Mutational Signatures of
Environmental Agents (May 2019)33. This information was fed into decon-
structSigs43 (v. 1.8.0) to generate subject/signature weights from the non-
negative least squares mapping of individual samples against the reference sig-
natures. These weights are determined such that the reconstructed tumor sample
matrix minimizes a given error threshold43. To reduce false positives, some
corrections can be applied to the fitting approach; for example, deconstructSigs
uses forward selection to estimate a minimal number of signatures and removes
a signature’s contribution to a sample if it accounts for less than 6% of the
sample’s mutations. Limitations of deconstructSigs and other mutational sig-
nature methods have been discussed and benchmarked elsewhere94. For each
mutational signature compendium, the subject/signature weight matrix was
obtained; then, signatures with distinct prevalence between HDV+ and HDV−
groups were identified by the criterion of p < 0.05 in the Wilcoxon test per-
formed between HDV+ and HDV− weight distributions. Only signatures that
passed this selection criterion were selected (Fig. 4b).

Mutated oncogenic signaling pathways. The online tool PathwayMapper95

(v. 2.0) was used to export as plain-text a set of ten pan-cancer oncogenic signaling
pathway graphical templates derived from TCGA54. Each pathway plain-text
template was then modified to contain only genes mutated in Mongolian HCC; for
each of these genes, we provided the fraction of mutated samples in each molecular
subclass MO1-4 and the sign of the median gene expression log ratio among
mutated genes in each subclass. Pathways with none or few mutated genes were
removed. Those remaining were individually uploaded into PathwayMapper to
generate graphical renditions of mutated gene percentages and activation, exported
as graphics, and then merged.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Public datasets used are TCGA (https://portal.gdc.cancer.gov) and MSigDB (https://
www.gsea-msigdb.org/gsea/msigdb/index.jsp). Total-RNA Sequencing data are available
at the Gene Expression Omnibus (GEO) repository under Study Accession GSE144269.
Phenotypic and Whole-Exome Sequencing data are available at the dbGaP repository
under Study Accession phs002000.v1.p1. Source data are provided with this paper. The
remaining data are available in the Article, Supplementary Information, or available from
the authors upon request. Source data are provided with this paper.

Code availability
The scripts used in our bioinformatic pipeline to perform data analysis and visualization
are available as a public GitHub repository at https://github.com/juliancandia/
MongolianHCC. Source data are provided with this paper.
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