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Lewis acid-catalyzed asymmetric reactions of β,
γ-unsaturated 2-acyl imidazoles
Tengfei Kang1, Liuzhen Hou1, Sai Ruan1, Weidi Cao1, Xiaohua Liu 1✉ & Xiaoming Feng 1✉

The investigation of diverse reactivity of β,γ-unsaturated carbonyl compounds is of great

value in asymmetric catalytic synthesis. Numerous enantioselective transformations have

been well developed with β,γ-unsaturated carbonyl compounds as nucleophiles, however, few

example were realized by utilizing them as not only nucleophiles but also electrophiles under

a same catalytic system. Here we report a regioselective catalytic asymmetric tandem iso-

merization/α-Michael addition of β,γ-unsaturated 2-acyl imidazoles in the presence of chiral

N,N′-dioxide metal complexes, delivering a broad range of optically pure 1,5-dicarbonyl

compounds with two vicinal tertiary carbon stereocenters in up to >99% ee under mild

conditions. Meanwhile, stereodivergent synthesis is disclosed to yield all four stereoisomers

of products. Control experiments suggest an isomerization process involved in the reaction

and give an insight into the role of NEt3. In addition, Mannich reaction and sulfur-Michael

addition of β,γ-unsaturated 2-acyl imidazoles proceed smoothly as well under the same

catalytic system.
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The exploration of reaction diversity from β,γ-unsaturated
carbonyl compounds is interesting and of great synthetic
value. These compounds and their analogs bearing one

potential enolization have been demonstrated as highly active
nucleophiles in a number of catalytic asymmetric reactions for the
synthesis of natural products and bioactive compounds1–16.
Especially, γ-addition as dienolate pronucleophiles with either
metal catalysis17–28 or organocatalysis29–36 has been widely
documented during the past several years, and the maintained π-
conjugation of γ-addition process leading to thermodynamically
stable conjugated products (Fig. 1a, A). The regioselectivity
changing from γ-addition to α-addition seems to be plaguing37,38,
and α-addition of specific substrates, such as γ,γ-disubstituted

ones, has been reported39–43. Notably, in some cases, C=C iso-
merization occurred after α-addition which further expanded the
reaction diversity (Fig. 1a, B)44–46.

Although versatile catalytic asymmetric reactions have been
demonstrated by utilizing β,γ-unsaturated carbonyl compounds
as mentioned above, however, few examples were investigated by
employing them as electrophiles upon isomerization to con-
jugated α,β-unsaturated carbonyl compounds (Fig. 1a, C)47,48.
We envision that, by careful design of β,γ-unsaturated carbonyl
compounds, these could serve not only as nucleophiles but also
electrophiles. Based on this assumption, here we report the
synthesis of a series of β,γ-unsaturated 2-acyl imidazoles
by introducing an imidazole moiety which would address the
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Fig. 1 Strategies for γ- and α-addition of β,γ-unsaturated carbonyl compounds. a Regioselectivity of decojugated carbonyl compounds. b Our strategies
for diverse reactivity of β,γ-unsaturated 2-acyl imidazoles.
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following two points: (1) bidentate coordination with a Lewis acid
of acyl imidazole exhibits good stereocontrol49–55 and (2) the
strong coordination facilitates isomerization of the β,γ-unsatu-
rated ketone to an α,β-unsaturated ketone. Chiral N,N′-dioxide-
metal56–59 complexes catalyze diverse reactions of β,γ-unsatu-
rated 2-acyl imidazoles, including tandem isomerization/α-
Michael addition (Fig. 1b, D), Mannich reaction (Fig. 1b, B), and
sulfur-Michael addition (Fig. 1b, C) with high efficiency and
stereoinduction. In addition, stereodivergent catalysis60–63 is also
disclosed and provides a unified and predictable route for the
access to all four stereoisomers of 1,5-dicorbonyl compounds by
matching the configuration between the Lewis acid catalysts and
substrates.

Results
Optimization of the reaction conditions. We began our study by
employing β,γ-unsaturated 2-acyl imidazole E-1a as the model
substrate to optimize the reaction conditions. Several metal salts
coordinated with the N,Nʹ-dioxide ligand L3-RaPr2 (Fig. 2) were
evaluated, such as Sc(OTf)3, Ni(OTf)2, and Mg(OTf)2; however,
only trace amount of the self-α/β-addition product 2a was
observed, which was generated from α-addition of E-1a with the
corresponding α,β-unsaturated 2-acyl imidazole upon C=C iso-
merization (Table 1, entry 1). Pleasingly, the Y(OTf)3/L3-RaPr2
complex was efficient to promote the tandem isomerization/α-
Michael addition and provided the corresponding product 2a
with 60% yield, 2.2:1 anti:syn ratio, and 96% ee in CH2ClCH2Cl

(entry 2). Lanthanide metal salts La(OTf)3 and Yb(OTf)3 could
also mediate the reaction but gave lower yields and ee values
(entries 3 and 4). The screening of chiral backbones and steric
hindrance of the amide moiety on the N,Nʹ-dioxide ligands
afforded no better results (for details, see Supplementary Table 1).
When toluene was used as solvent instead, the isolated yield of
anti-2a was increased to 73% with 5.2:1 dr and 97% ee (entry 5).
To our delight, the diastereoselectivity could be improved to 10:1
with addition of NEt3 (entry 6). Other common chiral ligands
such as Box, Pybox, and BINAP were also explored, and 32%
yield, 5:1 dr with 60% ee were observed as the best results (for
details, see Supplementary Table 3).

Substrate scope in isomerization/α-Michael addition reaction.
The generality of the tandem isomerization/α-Michael addition
reaction was investigated under the optimized conditions (Fig. 3).
An array of β,γ-unsaturated 2-acyl imidazoles bearing different
substituents on the γ-phenyl group (both electron-withdrawing
and electron-donating groups at the para-, meta-, or ortho-
positions) were converted into the corresponding dimerization
products 2a–2j in good yields (65–81%), high diastereoselec-
tivities (7.5:1 to 11:1), and excellent ee values (97–>99%). Fur-
thermore, β,γ-unsaturated carbonyl compounds containing 3-
thienyl, N-methyl-5-indolyl and 2-naphthyl moieties were also
proven to be suitable substrates, affording 2k–2m with good
results (60–81% yields, 9:1 to 12:1 dr, and 98–>99% ee). More-
over, aliphatic-substituted β,γ-unsaturated 2-acyl imidazoles
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Fig. 2 Representative chiral N,Nʹ-dioxide ligands used in the study. a L-Ramipril-derived ligand L3-RaPr2 and L3-RaPr2–1-Ad. b L-Perindopril-derived
ligand L3-PePr3. c S-pipecolic acid-derived ligand L3-PitBu.

Table 1 Optimization of the reaction conditions.

metal salt/L3-RaPr2
(1:1, 2.5 mol%)

CH2ClCH2Cl, 25 °C
E-1a

N

N

O

Ph

BnO

N

N

2a

O

N

N

Ph

**

Entry metal salt Yield (%)a anti:synb ee (%)c

1 Sc(OTf)3/Ni(OTf)2/Mg(OTf)2 Trace — —
2 Y(OTf)3 60 2.2:1 96/−34
3 La(OTf)3 58 2.7:1 92/63
4 Yb(OTf)3 46 2.2:1 84/13
5d Y(OTf)3 73 5.2:1 97/0
6d,e Y(OTf)3 74 10:1 98/N.D.

Unless otherwise noted, all reactions were performed with metal salt/ligand (1:1, 2.5 mol%), E-1a (0.20mmol) in CH2ClCH2Cl (1.0 mL) at 25 °C under N2 atmosphere for 24 h. aIsolated yield of anti-
isomer. bDetermined by 1H NMR analysis of crude products. cDetermined by HPLC analysis on a chiral stationary phases. dToluene was used as solvent. eAddition of NEt3 (10 mol%) and for 12 h.
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exhibited high tolerance as well, generating the desired products
2n–2q with a high level of yields (63–84%) and stereoselectivities
(9:1 to >19:1 dr; 92–>99% ee). Estrone-derived 1r could be
transformed into 2r smoothly in 69% yield, 2.8:1 E/Z, >19:1 dr,
and 99% ee for E-isomer. Other Michael acceptors such as α,β-
unsaturated 2-acyl imidazole and ethyl vinyl ketone were aslo
suitable in this reaction, delivering 2s–2w with good yields
(60–71%) and stereoselectivities (6:1 dr, 91–>99% ee). The
absolute configuration of 2j was determined to be (2S, 3R) by
X-ray crystallography analysis.

Substrate scope in α-Mannich reaction of β,γ-unsaturated 2-
acyl imidazoles and imines. The reaction described above indi-
cated that β,γ-unsaturated 2-acyl imidazoles performed both α-
addition reaction and β-addition upon isomerization under
proper Lewis acid catalysts. Next, to extend the scope of α-
addition of β,γ-unsaturated 2-acyl imidazoles, several types of
imines 3 were explored as the electrophiles. By switching the
catalyst to La(OTf)3/L3-PitBu complex (for detailed screening of
the conditions, see Supplementary Table 4), the Mannich reaction
between E-1 and isatin-derived ketimines 3a–3h was successfully
realized to deliver the desired β-amino 2-acyl imidazoles 4a–4h as
single isomers in 75–99% yields and 88–91% ee (Fig. 4a).

Moreover, pyrazolinone-derived ketimine was also suitable in this
α-addition reaction, no matter β-aryl-substituted or β-alkyl-
substituted β,γ-unsaturated 2-acyl imidazoles could react with it
smoothly, producing the corresponding products 4i–4o and 4q
with good results (75–99% yields, 13:1–>19:1 dr, 85–99% ee)
except for 4p with 52% ee (Fig. 4b). Aldimines were used as the
Mannich acceptors, and were transformed into the β-amino 2-
acyl imidazoles 4r–4z with good yields (55–81%) and high
enantioselectivities (85–98% ee) as single isomers (Fig. 4c). The
absolute configuration of 4r was determined to be (1S, 2R) by X-
ray crystallography analysis.

Substrate scope in isomerization/sulfur-Michael reaction.
Inspired by the isomerization process of β,γ-unsaturated 2-acyl
imidazoles into α,β-unsaturated 2-acyl imidazoles, we next
enlarged the diverse reactivity of β,γ-unsaturated compounds as
the electrophiles under the current catalytic system. However,
only a trace amount of desired tandem isomerization/sulfur-
Michael addition product 6a was achieved if E-1a reacted with
thiophenol 5a. After examination of the reaction conditions (for
details, see Supplementary Table 5), Z-1a was used instead, and
6a could be obtained in 89% yield with 90% ee (Fig. 5). The scope
of isomerization/sulfur-Michael reaction was investigated next.
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Fig. 3 Substrate scope in isomerization/α-Michael addition reaction. Unless otherwise noted, all reactions were performed with Y(OTf)3/L3-RaPr2 (1:1,
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were used as Z/E mixutres. [a] 5 mol% catalyst was used for 2s and 2t. [b] With 5mol% Y(OTf)3/L3-RaPr2-1-Ad as a catalyst and CH2Cl2 as a solvent in
the absence of NEt3 for 2u–2w.
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Thiolphenols and alkyl-substituted thiols could be converted into
the final products (6a–6i) in 39–95% yields with 70–93% ee
values. For the Michael acceptors, aryl- and alkyl-substituted β,γ-
unsaturated 2-acyl imidazoles were also tolerated in this reaction,
giving 6j–6p in 60–92% yields with 80–92% ee.

Gram-scale synthesis and derivatization of products. To eval-
uate the synthetic utility of this methodology, a gram-scale
synthesis of 2a was conducted. The current reaction could be
carried out at 7.0 mmol scale without loss of yield (70%), dia-
stereoselectivity (10:1 dr), and ee value (98%) (Fig. 6a). Further-
more, hydrogenation of 2a in the presence of Pd/C and H2

afforded derivative 7 in 98% yield with 98% ee (Fig. 6b). Chiral
sulfone motif is found in numerous biological compounds64–67 as
well as drug candidates68. Upon treatment of 6a with m-CPBA,
the oxidized sulfone product 8 was obtained in 85% yield with

90% ee. Moreover, 6a went through further transformations to
afford sulfone 9 in 50% yield with 85% ee (Fig. 6c)69.

Mechanistic studies. To gain insight into the mechanism of
tandem isomerization/α-Michael addition, some control experi-
ments were carried out. Firstly, we wondered why the addition of
NEt3 led to an increase in diastereoselectivity (Table 1, entry 6).
Treating the product 2a (2.9:1 dr, 85%/12% ee) under the stan-
dard conditions for 12 h (for details, see Supplementary Note 5),
no change of enantioselectivity and diastereoselectivity was
observed, which ruled out the possibility that the diastereoselec-
tivity increased via epimerization of syn-2a in the presence of
NEt3. Subsequently, E-α,β-unsaturated 2-acyl imidazole E-10 was
synthesized to react with E-1a, affording anti-2a in good yields
(84–85%), excellent diastereoselectivities (19:1 to >19:1), and 98%
ee within 2 h no matter with or without addition of NEt3 (Fig. 7a).
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Fig. 4 Substrate scope in α-Mannich reaction of β,γ-unsaturated 2-acyl imidazoles and imines. a Substrate scope with isatin-derived ketimins. b
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Moreover, when Z-α,β-unsaturated 2-acyl imidazole Z-10 was
used to react with E-1a, the product 2a was obtained in 1:5.2 anti:
syn after 2 h, and decreased to 1:2.8 anti:syn after 5 h (Fig. 7b).
These experiments confirmed the isomerization of β,γ-unsatu-
rated C=C bond into α,β-unsaturated C=C bond in the presence
of N,N′-dioxide-metal complexes, and this process was likely to
be the rate-determining step. It also suggests the diastereoselec-
tivity was mainly controlled by the E/Z-configuration of the α,
β-unsaturated 2-acyl imidazole intermediate, and the addition of

NEt3 might improve the E/Z ratio during the isomerization
process. As a result of equilibrium between E-1a, E-10, and Z-10
(Fig. 7c), the use of E-10 as the starting substrate alone, albeit
unstable yielded the corresponding anti-2a as the major product
in 98% ee after 3 h (Fig. 7d), while the reaction from only Z-10
gave the syn-2a product in 60% isolated yield and 92% ee
(Fig. 7e). In addition, operando IR experiments were also per-
formed to interpret the reaction process (for details, see Supple-
mentary Note 7). Furthermore, we set out to establish the
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availability of stereodivergent access to 2a. All four stereoisomers
of 2a could be readily obtained in good yields (67–85%) and
diastereoselectivities (8:1–>19:1) with excellent ee values by
matching the E/Z-configurated 10 and the chiral ligand (Fig. 7f).

Proposed catalytic cycle. Based on the absolute configuration of
the product 2j, control experiments and our previous studies56–59,
a possible catalytic cycle with a transition-state model was pro-
posed (Fig. 8). First, the coordination of chiral N,N′-dioxide L3-
RaPr2 and metal salt in situ to form chiral metal complex (Y*).
Then, the β,γ-unsaturated ketone E-1a attaches to Y* as a die-
nolate in the presence of NEt3 to give the intermediate T1, and
which partly transforms into the α,β-unsaturated ketone E/Z-10
upon 1,5-proton shift. Next, the catalyst-bonded dienolate will
react with the newly formed Michael acceptors. The α-Re-face of
β,γ-unsaturated 2-acyl imidazole E-1a is strongly shielded by the
nearby aryl ring of the ligand. Therefore, the dienolate prefers to
attack E/Z-10 from its α-Si-face (T2). Finally, the desired product

2a dissociates after a protonation of the intermediate T3, and the
catalyst is regenerated to accomplish one catalytic cycle.

Discussion
In summary, we have disclosed the diverse transformation of β,γ-
unsaturated 2-acyl imidazoles in the presence of chiral Lewis acid
catalysts, involving catalytic asymmetric tandem isomerization/α-
Michael addition, sulfur-Michael addition, and direct Mannich
reaction. A wide range of chiral 1,5-dicarbonyl and functionalized
carbonyl compounds was afforded with good to excellent levels
yields, diastereoselectivities, and enantioselectivities. The β,γ-
unsaturated 2-acyl imidazoles features various reactivities, acting
as both α-nucleophile and β-electrophile upon isomerization,
which provides a route for conjugate addition of unstable α,β-
unsaturated carbonyl compounds. Meanwhile, all four stereo-
isomers with two vicinal tertiary stereocenters could be prepared
by matching the configuration between substrates and chiral
ligand. Besides, the desired products could be easily transformed
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into useful compounds with good results under mild conditions.
Further studies on this methodology are ongoing.

Methods
Tandem isomerization/α-Michael addition. Y(OTf)3 (0.005 mmol), L3-RaPr2
(0.005 mmol), β,γ-unsaturated 2-acyl imidazole E-1a (0.20 mmol), and NEt3 (0.02
mmol) were dissolved in 1.0 mL of toluene under N2 atmosphere. The mixture was
stirred at 25 °C for 12 h and subjected to column chromatography on silica to
afford the product 2a (Pet/EtOAc= 1:1 as eluent) as a colorless foam.

Mannich reaction with isatin-derived ketimines. A dry reaction tube was
charged with L3-PitBu (2.2 mg, 5 mol%), La(OTf)3 (2.9 mg, 5 mol%), 3 Å M.S. (30
mg), and E-1a (27.1 mg, 0.12 mmol) in CH2ClCHCl2 (1.0 mL). The mixture was
stirred at 30 °C for 30 min, and then 3a (0.10 mmol, 26.0 mg) was added at 0 °C.
After 3a was consumed (detected by thin-layer chromatography (TLC)), the resi-
due was purified by column chromatography on silica gel to afford the product 4a
(Pet/EtOAc= 1:1 as eluent) as a colorless foam.

Mannich reaction with pyrazolinone-derived ketimines. A dry reaction tube was
charged with L3-RaPr2 (3.5 mg, 5 mol%), La(OTf)3 (2.9 mg, 5 mol%), E-1a (24.9
mg, 0.11 mmol), and pyrazolinone-derived ketimine (34.9 mg, 0.10 mmol) in

CHCl3 (1.0 mL). After ketimine was consumed (detected by TLC), the residue was
purified by column chromatography on silica gel to afford the product 4i (Pet/
EtOAc= 2:1 as eluent) as a colorless foam.

Mannich reaction with aldimines. A dry reaction tube was charged with L3-RaPr2
(7.0 mg, 10 mol%), La(OTf)3 (5.9 mg, 10 mol%), E-1a (24.9 mg, 0.10 mmol), 4 Å
M.S. (20 mg), and benzaldehyde-dervived aldimine (30.8 mg, 0.15 mmol) in
CH2ClCHCl2 (1.0 mL). After E-1a was consumed (detected by TLC), the residue
was purified by column chromatography on silica gel to afford the product 4r
(Pet/EtOAc= 2:1 as eluent) as a colorless oil.

Isomerization/sulfur-Michael reaction. A dry reaction tube was charged with L3-
PePr3 (4.2 mg, 5 mol%), Dy(OTf)3 (3.0 mg, 5 mol%), and Z-1a (56.5 mg, 0.25
mmol) in CH2ClCHCl2 (1.0 mL). PhSH (0.10 mmol) was added and the mixture
was stirred at 25 °C for 17 h. After PhSH was consumed (detected by TLC), the
residue was purified by column chromatography on silica gel to afford the product
6a (Pet/EtOAc= 3:1 as eluent) as a pale yellow oil.

Data availability
The X-ray crystallographic coordinates for structures reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition
numbers CCDC 1972987 (2j), 2001513 (4r), and 1972937 (11). These data can be
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obtained free of charge from The Cambridge Crystallographic Data Centre via https://
www.ccdc.cam.ac.uk/data_request/cif. All other data are available from the
corresponding author upon reasonable request.
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