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Synchronization of complex human networks
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The synchronization of human networks is essential for our civilization and understanding its
dynamics is important to many aspects of our lives. Human ensembles were investigated, but
in noisy environments and with limited control over the network parameters which govern
the network dynamics. Specifically, research has focused predominantly on all-to-all coupling,
whereas current social networks and human interactions are often based on complex cou-
pling configurations. Here, we study the synchronization between violin players in complex
networks with full and accurate control over the network connectivity, coupling strength, and
delay. We show that the players can tune their playing period and delete connections by
ignoring frustrating signals, to find a stable solution. These additional degrees of freedom
enable new strategies and yield better solutions than are possible within current models such
as the Kuramoto model. Our results may influence numerous fields, including traffic man-
agement, epidemic control, and stock market dynamics.
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he synchronization of coupled ensembles appears in

numerous fields, including biology!=3, astronomy#,

psychology™®, optics’~?, economics!®, and politics; at dif-
ferent size scales, from the synchronization of planets? to the syn-
chronization of subatomic particles''; and in different time-scales,
from slow-moving mechanical structures!?!13 to coupled ultrafast
lasers!41°, Synchronization is crucial for the life of all living species
on our planet!2, from the cellular level!®-18 to the crowd synchrony
of large groups!®. In particular, the synchronization of human
networks is essential for our civilization20-22 and can impact the
physical and mental well-being of individuals in groups>®.
Understanding the motivations, behavior, and basic parameters that
govern the dynamics of human networks is important for many
aspects of our lives, including stock market dynamics!?, traffic
management?3, epidemic control?4, and investigating the decision-
making processes in different types of groups*>—2°. Additionally,
studying the dynamics of human networks will help predict the
consequences of introducing artificial intelligence into our highly
connected world, where each node in a computer network will have
complex decision-making ability3%31,

Human ensembles and crowd synchrony!? have been investi-
gated in recent years. Synchronized brokers in the stock market
were found to earn more money!?, the synchronization of crowd
attention was shown to be a basic survival mechanism3>33,
pedestrians walking on the London Millennium bridge synchro-
nized their footsteps through the bridge vibrations to form
macroscopic oscillations of the bridge above a critical number!2,
the collective movement of concert audiences showed vortexes
and gas-like states343, the synchronized movements of dancers
differ from those of nondancers3%37, music players are following
each other according to their musical instrument3¥-40, and an
audience clapping hands shows both synchronization and period
doubling?!#2. Synchronization in the broader sense of coordi-
nating decision-making between humans on complex networks
has also been studied*34.

However, all these seminal studies had limited control over the
network parameters, namely, the connectivity of the network,
coupling strength, and delay between individuals, and were sub-
ject to noisy environments. In particular, these studies focused
mostly on all-to-all coupling, whereas current social networks and
human interactions are often based on complex coupling con-
figurations. To date, there are no studies of synchronization of
rhythmic behavior of humans in complex networks, for example,
one-dimensional, two-dimensional, scale-free, or small-world
connectivity in a controlled environment*>-4’. Additionally, the
influence of changing the coupling strength or the delay between
two individuals is critical for the dynamics of the network*8-30
and has not been studied in human networks thus far.

We study the synchronization between professional violin
players in complex human networks with full and accurate con-
trol over the network connectivity, coupling strength of each
connection, and delay between players. We set 16 isolated electric
violin players to repeatedly play a musical phrase. We collect the
output from each violin and control the input to each player via
noise cancellation headphones. The players cannot see or hear
each other apart from what is heard in their headphones. All the
players start playing the first phrase with the help of an external
rhythmical beat, to verify that they all start with the same playing
period and phase. The rhythmical beat is stopped after the first
phrase, and the only instruction to the players is to try to syn-
chronize their rhythm to what they hear in their headphones. A
picture of the experimental setup is shown in Fig. 1, and the
musical phrase is shown in the inset. We establish different
network connectivities and introduce delayed coupling between
the players while monitoring the phase, playing period, volume,
and frequency of each player with a mixing system. Our system is

the first for investigating human networks with full and accurate
control over the network parameters, including, the connectivity,
the coupling strength, and the delay of each connection. In
addition, this is the first system where the parameters of the
network can be changed in a controlled manner in real time,
enabling the study of dynamical human networks.

Our results reveal that the usual models for coupled networks
such as the Kuramoto model®->* cannot always be applied to
human networks. We found that the players can change their
playing period®#14255 and can delete connections by completely
ignoring frustrating signals® to find a stable solution to the coupled
network. These additional degrees of freedom enable new strategies
and vyield better solutions than are possible within the simple
Kuramoto model. To analyze the dynamics of a human network
and the influence of different parameters on its global behavior, we
extended the Kuramoto model to take into account these important
abilities of the human mind, which have been neglected thus far.

Results

Coupled violin players without delay. In our first experiment,
we set the coupling between the players to zero, causing the
players to hear only themselves. We measure the time it takes for
each player to play the musical phrase and denote this time as the
playing period of the player, T;(t). In Fig. 2a, we show the phase of
each player as a function of time, where blue denotes the
beginning of the musical phrase and yellow denotes the end. In
Fig. 2b, we show the playing period of all the players and the
standard deviation of their period as a function of time. The
opening phrase, accompanied by an external rhythmical beat,
verified that all the players start with the same playing period;
after the first phrase, the beat stopped, and the playing period of
each player deviates towards the player’s natural one. The playing
periods of the players are spreading as a function of time,
reflecting that the players cannot hear or see each other.

Then, we introduce coupling between the different players with
our mixing system. The coupling strength is defined as the ratio
between the volume of the coupled violin compared to the
volume of the player’s own violin while maintaining the total
volume that each player hears constant. The volume level is
monitored to make sure it stays within the linear response range
of the human hearing®’. We compare two configurations for the
players, a one-dimensional open chain, which is a network with
the lowest possible connectivity, and an all-to-all coupling, which
is a network with the highest possible connectivity. In each
configuration, we start with a coupling strength of 0.5 and reduce
it linearly to zero over a period of 4 min. We measure the in-
phase order parameter in the network as a function of the
coupling strength and present the results in Fig. 2c. The in-phase
order parameter is calculated by < cos(p; — (pj)>, where ¢; is the

phase of the ith player, ¢; is the phase of its coupled neighbor, and
we average over all connections. Similar to other networks, the
order parameter of the all-to-all configurations remains high for
lower coupling strength compare to the one-dimensional
configuration. (The order parameter does not reach zero since
the playing time is limited to 4 min to keep the players focused.)

Two coupled violin players with delay. Next, we set the coupling
strength to 0.5, which is strong enough to ensure synchronization,
as shown by Fig. 2c. Then, we impose a delay on the coupling
between the players, starting from zero delay and increasing it
linearly, according to d(f) = 0.0332¢, where d is the delay and ¢ is
time, so after 120 s the delay equals to 4's, which is the starting
playing period of the musical phrase. The delay prevents the
players from synchronizing with each other, which leads them to
shift from an in-phase synchronization to other states of
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Fig. 1 Sixteen coupled electric violin players repeating a musical phrase. Sixteen violin players are playing with electric violins. The audio output from
each violin is connected to our computer-controlled mixing system. Then, the mixing system sends to the headphones of each player a sum of audio signals
of the desired connectivity, strength, and delay. All participants in the picture have approved publishing it. The musical phrase is presented in the inset.
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Fig. 2 Uncoupled and coupled violin players in different configurations. Here we show the playing period and the phase of each player as a function of
time and the in-phase order parameter as a function of the coupling strength for different configurations. The playing period of each player denotes the
time that it takes for each player to play the entire musical phrase, and the phase denotes where in the musical phrase the player is at a specific time. a The
phase of each violin player as a function of time without coupling, where blue denotes the beginning of the musical phrase and yellow denotes the end.
b The playing period of each player (color dots) and the standard deviation of the period (asterisks) with a fitted linear curve as a function of time without
coupling, showing that with no coupling, each player is changing its playing period without any correlation to other players. ¢ The in-phase order parameter
of the network as a function of the coupling strength for two different configurations: one-dimensional chain with nearest-neighbor coupling and a global
all-to-all coupling.
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Fig. 3 Two coupled violin players with a delay between them. a The phase of each player along the musical phrase as a function of time in one

representative measurement. When the delay is zero, the two players are following each other in-phase indicated by a double-head arrow between them.
When the delay increases, only one of the players can follow the other, which is indicated by a single-head arrow. When the delay reaches half of the
playing period time, the two players can follow each other again in an out-of-phase state of synchronization, indicated by a double-head arrow. b The mean
playing period of all the players and the out-of-phase order parameter of the network as a function of the delay and time, averaged over a moving window.

synchronization®®. We demonstrate these states of synchroniza- their relative phase during at least one musical phrase, follows:
tion by examining the synchronization of two coupled violin d(t)

players as a function of the delay, schematically shown in Fig. 3. $;— @ =2m———. (1)
In Fig. 3a, we present the phase of each player in the musical Ti(t)

phrase by a color code as a function of time in one representative ~ When Eq. (1) is satisfied, player i is playing in synchrony with
measurement. We determine that player i is following player j  player j as it sounds in its earphones. If Eq. (1) is not satisfied,
once they have the same playing period, namely Ti(t) = Tj(t), and  even if the relative phase between them is constant in time, they
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are not following each other. This can occur when both players
are following a third player while ignoring each other.

In Fig. 3b, we show the averaged period of all the players as a
function of the delay and time together with the out-of-phase
order parameter, < sin(¢; — ¢;)>. The results reveal three states of

synchronization: initially, the delay is zero, so the two players are
perfectly synchronized in phase. With the introduction of the
delay, they increase their playing period (play slower) to keep the
delay small relative to the duration of each note. This state is
emphasized on the left side of Fig. 3a and is indicated by the
increased playing period, presented in Fig. 3b. This effect was also
observed when playing over the Internet with a small delay®®
When the delay is further increased, the players cannot maintain
an in-phase synchronization state, as one of them starts to ignore
the other and returns to its original playing period. In our case,
player #1 ignores player #2, while player #2 still follows player #1,
which is emphasized in the middle part of Fig. 3a. When the delay
is increased to approximately half of the period, an out-of-phase
synchronization emerges that satisfies both players, since,
¢ — ¢; = ¢; — ¢; = 2nd(t)/ T;[(t), so they are following each
other. In this out-of-phase synchronization®®, when player i is at
the middle of the musical phrase, player j is at the beginning
or the end of the phrase, and vice versa. This state is highly stable;
therefore, when the delay is further increased, the players increase
their playing period to ensure that the delay is always half
the playing period. This is shown in Fig. 3b, where the out-of-
phase order parameter is presented by the red curve. Once this
order parameter approaches unity, it stays there, and the playing
period increases linearly with the delay. This is also observed by
the checkerboard pattern on the right side of Fig. 3a.

To verify that the delay is changing slow enough, we measure
the coupled violin players when the delay is changing at half the
rate according to d(t) = 0.0166¢ obtaining similar results. This
indicates that, although the delay is constantly changing, the delay
change-rate is slow enough so that at each point in time the
network can be considered as quasistatic. In such a system, the
players are not aware to the fact that the delay is changing and
only react to its current value.

Even number of coupled violin players. When increasing the
number of the coupled violin players to 4, 6, or 8, as shown in

Fig. 4a, d, and g, they follow the same behavior as the delay is
increased: we first observe an in-phase synchronization with an
increase in the playing period; next, each player spontaneously
decides to ignore one of its inputs. In this stage, we observe two
states of synchronization, a vortex state or an arrowhead state. If
all the players ignore the same side and follow the other side, they
create a vortex state of synchronization where the phase increases
monotonically, as seen in Fig. 4h, while if some players are
choosing to follow the player on one side and other players are
choosing to follow the player on the another side, they create an
arrowhead-shaped state of synchronization, as seen in Fig. 4e.
Finally, when the delay reaches approximately half of the average
playing period, a stable and highly ordered state of out-of-phase
synchronization emerges, as evident by the checkerboard pattern
emphasized at the right side of Fig. 4b, e, and h, together with the
linear increase in the average playing period as a function of the
delay and the out-of-phase order parameter, which approaches
unity, as seen in Fig. 4c, f, and i. These results are identical
whether the players are organized in open- or close-chain con-
figurations. In the case of eight players, we also observe that the
players are divided into two clusters, players 1-3 and players 4-7,
while player 8 is somewhere between them®. The second cluster
finds the out-of-phase synchronization state faster compared to
the first cluster, so the dynamic of the second cluster is shown in
Fig. 4i.

Odd number of coupled violin players. The total accumulate
phase for an even number of violin players in a state of out-of-
phase synchronization is an even integer multiplied by 7, and is
therefore consistent with the periodic boundary conditions of the
loop. For odd numbers of violin players, this is not the case, and
therefore the state of out-of-phase synchronization is no longer a
stable solution®!-%4. In such cases, the players spontaneously
choose to ignore one of the connections, which break the chain
and forms an open chain where the out-of-phase synchronization
state is possible. Thus, the players change the connectivity of the
configuration into one with a stable solution. In Fig. 5, we present
the results for three and five coupled violin players. When the
delay is low, the players remain in an in-phase synchronization,
as shown on the left side of 5a, ¢, while increasing the playing
period, as shown in 5b, d. When we increase the delay, the players
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Fig. 4 Four, six, and eight coupled violin players. The configurations of the coupled players are schematically shown in a, d, and g. The phase of each violin
player along the musical phrase as a function of time, in one representative measurement, is shown in b, e, and h. The delay between the players is
increasing linearly in time. When the delay is low, we observe an in-phase synchronization; when the delay increases, we observe a vortex or an arrowhead
state of synchronization; and when the delay is half of the playing period, we observe a stable out-of-phase synchronization. In ¢, f, and i, we present the
playing period and the out-of-phase order parameter as a function of time and the delay. As shown, when the players experience out-of-phase
synchronization, indicated by an order parameter of unity, the playing period increases linearly with the delay, remaining twice the delay to preserve the

highly stable state of out-of-phase synchronization.
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Fig. 5 Three and five coupled violin players. In the configurations of three and five coupled players, the out-of-phase synchronization state is no longer
stable. In these cases, the players change the connectivity and ignore one of the links, reducing the system to an open chain where out-of-phase
synchronization is stable again. a Three coupled players showing in-phase, vortex, and out-of-phase states of synchronization. b The playing period and the
open-chain out-of-phase order parameter as a function of time and the delay, showing that once the players obtain an out-of-phase synchronization state,
they maintain it by increasing the playing period with the delay. ¢ Five coupled players, showing in-phase, arrowhead, and out-of-phase states of
synchronization. d The playing period and the open-chain out-of-phase order parameter, showing the same behavior as the three coupled players.

choose either a vortex state, as shown in 5a, or an arrowhead
state, as shown in 5c. When the delay reaches half of the playing
period, the players prefer the state of out-of-phase synchroniza-
tion while ignoring one of the connections, as shown on the right
side of 5a, c. When this state is achieved, it is highly stable, as seen
by the out-of-phase order parameter shown in 5b, d calculated for
open-chain connectivity. When we increase the delay further, the
players increase their playing period, keeping it twice the delay, to
maintain the out-of-phase synchronization state, as shown in 5b,
d, and similar to the dynamics of configurations with even
number of players.

For nine or more coupled players, the violin players can find
an approximate out-of-phase synchronization state without
breaking the connection by shifting each player by 27/9 in
addition to the out-of-phase synchronization. The combination
of an out-of-phase with a vortex states is shown on the right
side of Fig. 6a. We evaluate the out-of-phase order parameter,
which reaches 0.9 instead of a unity due to this vortex shown in
Fig. 6b. Nevertheless, this state is as stable as the regular out-of-
phase states, as evident by the increasing playing period as a
function of the delay while keeping the order parameter at 0.9.
Here, similar to eight violin players, the players divided into
two clusters, where one cluster found the out-of-phase
synchronization state faster compared to the other®. In Fig. 6b,
we show both clusters where the playing period of players 1-3
and 9 is denoted by the yellow dots and the playing period of
players 4-8 is denoted by the blue dots. We see that when both
clusters found the state of out-of-phase synchronization, they
converged into a single cluster.

Two-dimensional lattices configurations. Finally, we measure
the synchronization of the players when arranging them in a
square and a triangular lattice configurations while increasing the
delay. During the experiment, we monitor the relative phase
between each pair of players and determine if they are coupled or
not similar to the method described for the one-dimensional
configurations and according to Eq. (1). The results are shown in
Fig. 7, where the measured results of the square lattice are shown
in Fig. 7a and the measured results of the triangular lattice are
shown in Fig. 7b. When the delay is low, the players of the
square lattice configuration are synchronized in phase, and when
we increase the delay, they create a vortex states until reaching the
state of out-of-phase synchronization, which is a stable solution
for the square lattice configuration. In the triangular configura-
tion, the players start with in-phase synchronization, and when
we increase the delay, they cannot find a stable solution®!-6%, so
they ignore some of the connections and reduce the connectivity
of the network to one based on square motifs or open chains. A
reduced network that is based on square motifs or open chains is
following the same dynamics as any chain with even number of
players, and thus, can find the highly stable state of out-of-phase
synchronization. This result is shown by the reduced network on
the right side of Fig. 7b. When repeating the experiment, the
players converge to a different solution every time, as shown in
Figs. 7c—e, presenting solutions that include rings of four and six
players and the breaking of the network into smaller coupled
clusters. Once the players find a stable solution they tend to stay
in it, while in some rare cases they switch from one stable solution
to another.
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Fig. 6 Nine coupled violin players illustrating an out-of-phase vortex state. a The phase of each player along the musical phrase in one representative
measurement as a function of time. Here we see the separation into two clusters, which combine into a single cluster with the checkerboard pattern
indicating an out-of-phase synchronization state. b Playing period and out-of-phase order parameter as a function of time and the delay. The order
parameter reaches 0.9 due to the vortex, but stays there while increasing the playing period as a function of the delay, indicating a stable state. Yellow dots
—the playing period of players 1-3, and 9; blue dots—the playing period of players 4-8.
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Fig. 7 Sixteen violin players arranged in square and triangular
configurations. a The evolution of the square lattice configuration as a
function of time showing in-phase, vortex, and out-of-phase states of
synchronization. b The evolution of the triangular configuration showing
that for the out-of-phase synchronization state, the connectivity of the
network is reduced in order to reach a stable solution. We repeat the
experiment and obtain a different solution each time, based on the same
motifs. Three representative solutions are shown in c-e.

Numerical models. To develop a model for coupled human
networks, we extend the simple Kuramoto model for coupled
oscillators®'=>4 to include broad-bandwidth oscillators and the
ability of each oscillator to ignore some of the connections. We
start by simulating coupled violin players with ring-like con-
nectivity according to:

% =w, + KJZ- sin ((pj(t — At) — (Pi(t)>7 (2)

where ¢@; is the phase of the ith violin player, w; is the

eigenfrequency of the player, x = 0.2 is the coupling strength, and
At is the delay between the players. We simulate the dynamics of
different numbers of violin players and study the phase of each
player compared to the others. We randomly choose the eigen-
frequencies between w = 0.25 and 0.3 Hz with a uniform dis-
tribution, corresponding to a playing period of 3.3-4 s. We set the
delay as a function of time according to d(f) = 0.0332¢, so after
120 s the delay reaches 4 s. Representative results of four coupled
players are shown in Fig. 8a. At first, the players are coupled in
phase, and as the delay increases, the playing period likewise
increases until a state of out-of-phase synchronization is achieved.
This is also shown by the out-of-phase order parameter, which
approaches unity at a delay of ~2 s. However, since the oscillators
are narrow band, they cannot shift their playing period by more
than 15%. Therefore, the players cannot maintain the out-of-
phase state of synchronization when the delay is farther increased.
Indeed, at a delay of ~3 s, the players leave this state and return to
the state of in-phase synchronization. These results do not agree
with the measured results, where the players adjust their playing
period by up to a factor of 3 to maintain the state of out-of-phase
synchronization.

We assume that humans have broad bandwidth, which enables
them to change their playing period over a wide range3%. To
include this broad bandwidth of humans in the model, we added
an imaginary parameter to Eq. (2) as follows:

where 7 is the bandwidth factor. This parameter serves as an
imaginary frequency leading to exponential decay in time.
Therefore, it lowers the Q-factor of the cavity and increases the
bandwidth. We repeated the simulations with 7 = 1i and present
the results in Fig. 8b. These results are in a better agreement with
the measured results of even number of players than the simple
Kuramoto model. The players find the out-of-phase synchroniza-
tion state and maintain it by changing their playing period
linearly with the delay. This is also evident by the order
parameters, which remains close to unity.

For odd numbers of players, the Kuramoto model failed to
reproduce the measured results and showed only vortex states
of synchronization®1-6, Representative results for three coupled
violin players are shown in Fig. 9, where Fig. 9a shows three
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Fig. 8 Calculated results of four coupled violin players. a Calculated results of the regular Kuramoto model for four coupled players. In this model, the
players cannot maintain the out-of-phase state of synchronization when the delay increases. b Calculated results of the broad-bandwidth Kuramoto model
for four coupled players. In this model, the players change their playing period to maintain the out-of-phase state of synchronization.

coupled players with the regular Kuramoto model, and Fig. 9b
shows with the broad-bandwidth Kuramoto model. Indeed, the
players do not find the out-of-phase synchronization state,
which is frustrated in three coupled players, as evident by the
order parameter, which does not exceed 0.8.

Therefore, we extend the model to include the ability to delete
contradicting connections. For any player with contradicting
inputs we replace the sum in Eq. (3), with one neighbor.
Representative results are shown in Fig. 9c. Here, we see that
although the number of players is odd, the players find the out-of-
phase synchronization state by ignoring one of the links. In this
case, they ignore the connection between player 1 and player 3.
This extended model agrees with the measured results for odd
numbers of coupled violin players.

We compare three different strategies for choosing which
connections to keep when a player encounter contradicting
inputs from several coupled neighbors: keeping similar playing
period, keeping similar phase, or choosing in random. In
keeping similar playing period, the player follows the coupled
players with closer playing period to its own. In keeping similar
phase, the player follows the coupled players with closer phase
to its own. In the random strategy, the player randomly chooses
which player to keep and which to delete regardless of their
phase or playing period. We simulate the dynamics of a
triangular network of coupled players when we start with zero
delay and linearly increase it. With all three strategies, the
system finds an out-of-phase synchronization states by deleting
connections and reducing the network connectivity to one
based on motifs with an even number of players. We present
typical reduced networks in Fig. 10 following each of the three
different strategies. These calculated results reveal that all three
strategies lead to the same dynamics. As long as each player can
delete connections, the network changes its connectivity until
finding a stable out-of-phase synchronization state. Therefore,
the specific strategy each player has for choosing which inputs
to follow, has no role in the macroscopic network dynamics of
coupled violin players.

Discussion

To conclude, we investigate the synchronization of rhythmic
behavior of humans in networks with different types of con-
nectivity where all the parameters of the networks are under
control. We measure the phase and synchronization of coupled
violin players in different network configurations and when
introducing delay between the coupled players. We discover that
human networks differ from previously studied networks in the
ability of each player to adjust its playing period and to change
the network connectivity by ignoring a coupled player and
effectively deleting the connection. This ability serves as a unique
and efficient mechanism to remove frustrating signals that hinder
synchronization. When we couple an even number of players on a
ring, the players find a stable out-of-phase synchronization state
and tune their playing period accordingly as the delay increases.
When we couple an odd number of players on a ring, the players
change their connectivity and then adjust their playing period.
We conclude that, the ability of human to identify conflicts in
inputs and to adjust their response accordingly, which is well
known®, leads to unique dynamics when situated in networks.
This research may impact numerous fields, including economics,
decision-making research, epidemic spreading, information
transfer modeling, traffic control, and more.

Methods

Experimental setup. We set 16 isolated electric violin players to repeatedly play a
musical phrase. The players play on Armando VL-D810. We collect the output
from each violin into the Focusrite ClarettOctoPre sound system and control with a
MAX/MSP software. The players cannot see or hear each other apart from what is
heard in their noise cancellation headphones, Shure SE-215, which are connected
to the output of the sound system. During the experiment, we record all 16 players
with the 16-channel sound system.

Composing the musical phrase. The notes in the musical phrase were chosen while
taking several considerations into account. First, it is important that different notes do
not repeat for making it easier for the player to recognize where their coupled players
are located in the musical phrase. Second, for easier analysis by preventing mixing

with overtones, we keep the entire musical phrase at the same octave. Finally, we aim
for a cyclic musical phrase without a clear beginning; therefore, a simple arpeggio is
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Fig. 9 Calculated results of three coupled violin players. a Regular Kuramoto model showing that the players can only reach a partial state of out-of-phase
synchronization and cannot stay in that state when increasing the delay. b Broad-bandwidth Kuramoto model showing that the players can stay in the
partial out-of-phase state of synchronization, but it is not stable due to frustration. ¢ Broad-bandwidth Kuramoto model where each player can choose
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Fig. 10 Typical reduced triangular arrays. Here, we show the connections
that the system decides to keep from a triangular array in nine
representative simulations. We compare three strategies for choosing
which player to follow and which to ignore: phase—following connections
with similar phase; periodicity—following connections with similar playing
period; random—randomly choosing which connections to follow and which
to ignore. In all cases, the system finds the out-of-phase synchronization
state by reducing the network to a network based on motifs with an even
number of players, indicating that the specific strategy for choosing which
connections to keep has no role in the network dynamics.

not suitable. Nevertheless, we repeat all the experiments with other musical phrases
and obtain similar results to verify our findings.

Data analyzing. The output file is analyzed off-line in Matlab by Fourier trans-
forming the signal in a moving window of 100 ms, which allows us to identify the
different notes and the timing of each note in addition to performing a manual

consistency check. Next, we calculate the playing period of each player and its location
during the musical phrase, which is the player phase. By comparing the phase
between two coupled players, we determine if they are following each other, if one is
ignoring the other, or if both of them are ignoring each other. We determine that a
connection between two players is maintained when the phase difference between
them is equal to the delay over the playing period, according to Eq. (1).

We performed three full experimental sessions on three different dates and two
more partial experimental sessions on two other dates. During each session, we
repeat every configuration up to 4 times. Since we have 16 players, we repeat the
same configuration with different players during the same run. Therefore, the
configurations of 2, 3, 4, 5, and 6 players are repeating 8, 5, 4, 2, and 2 times during
the same run with different violin players, accordingly. In each experiment, we
usually find faulty configurations that cannot be used due to either earphone
malfunctioning, software problems, or players who did not understand the
instructions and ignored what they heard in their earphones. It is easy to identify
these faulty configurations when a player is playing without synchronization even
when the coupling strength is high and there is no delay.

Participants’ consent. All players signed a participant consent form to take part in
the research and agreed to the use of all the data and pictures.

Third-party images or previously published figures. We confirm that our
manuscript does not contain any third-party images or any previously published
figures.

Data availability

The datasets generated during the experiments, the analyzed data generated during the
current study, and the data generated by the numerical simulations are available online at
https://figshare.com/projects/Synchronization_of_complex_human_networks/81590.

Code availability

The code for analyzing the data, the numerical simulation code, and the code for
performing the experiments are available online at https://figshare.com/projects/
Synchronization_of_complex_human_networks/81590.
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