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Large-scale DNA-based phenotypic recording
and deep learning enable highly accurate
sequence-function mapping
Simon Höllerer 1,3, Laetitia Papaxanthos 1,2,3, Anja Cathrin Gumpinger 1,2, Katrin Fischer 1,

Christian Beisel1, Karsten Borgwardt 1,2,4✉, Yaakov Benenson 1,4✉ & Markus Jeschek 1,4✉

Predicting effects of gene regulatory elements (GREs) is a longstanding challenge in biology.

Machine learning may address this, but requires large datasets linking GREs to their quan-

titative function. However, experimental methods to generate such datasets are either

application-specific or technically complex and error-prone. Here, we introduce DNA-based

phenotypic recording as a widely applicable, practicable approach to generate large-scale

sequence-function datasets. We use a site-specific recombinase to directly record a GRE’s

effect in DNA, enabling readout of both sequence and quantitative function for extremely

large GRE-sets via next-generation sequencing. We record translation kinetics of over

300,000 bacterial ribosome binding sites (RBSs) in >2.7 million sequence-function pairs in a

single experiment. Further, we introduce a deep learning approach employing ensembling and

uncertainty modelling that predicts RBS function with high accuracy, outperforming state-of-

the-art methods. DNA-based phenotypic recording combined with deep learning represents a

major advance in our ability to predict function from genetic sequence.
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Recent progress in DNA sequencing and synthesis has
facilitated reading and (re-)writing of the genetic makeup
of biological systems on a massive scale1,2. Despite this

progress, the relationship between a genetic sequence and its
functional properties is poorly understood, and thus the question
what to write remains largely unanswered3,4. As the number of
possible sequences scales exponentially with their length, the
theoretical sequence space cannot be exhaustively explored by
experiments, even for small GREs5–7. Therefore, innovative high-
throughput (HTP) approaches are required that allow to collect a
quantitative functional readout for large numbers of genetic
sequences7,8. At the same time, novel methods are required that
identify statistical patterns and dependencies in the resulting data
sets to generate models that accurately predict the properties of
untested sequences. Deep learning maximizes the benefit of big
data collection owing to its ability to capture complex, non-linear
dependencies and to its computational scalability9, which led to
several successful applications in computational biology, from
genomics to proteomics10–15. These methods promise to be able
to model sequence–function dependencies with minimal prior
assumptions, provided that large experimental training data sets
that link sequence to quantitative measure of function16,17 are
available.

Although next-generation sequencing (NGS) allows obtaining
sequence information at extremely large scale, our ability to
assign a quantitative functional readout to each sequence has not
kept pace. In previous efforts to alleviate this experimental
bottleneck3,18–21, the functional readout is performed in a sepa-
rate technical step, and retroactively mapped back to the corre-
sponding sequence by statistical inference. This introduces errors
and limits data quality21,22 impairing prediction accuracy. Fur-
thermore, ribosome loading23, DNA methylation7,24, and
enrichment by growth selection25 have been suggested in com-
bination with NGS as alternative approaches. In a particularly
noteworthy recent study, Yus and coworkers have used dam
methylase to facilitate a functional readout quantifiable by NGS
with high throughput24. However, these approaches either
require elaborate sample processing procedures, which are prone
to introduce bias, or are restricted to specific functional readouts.
RNA sequencing techniques avoid some of these limitations but
are restricted to transcriptional effects and can be greatly biased
due to variability in reverse transcription, barcode-induced bias,
and DNA amplification efficiencies26,27. Therefore, the need for
widely applicable, technically simple and yet accurate high-
throughput approaches to ascribe functional (or phenotypic)
readouts to genetic sequences persists.

Here, we introduce a method that relies on DNA-based phe-
notypic recording to address the limitations enumerated above.
Its core innovation is a three-component genetic architecture that
combines on the same DNA molecule the gene of a site-specific
DNA recombinase, a GRE controlling its expression, and the
recombinase substrate. Thus, a physical link between GRE and
the recombinase substrate is established, and the latter serves as
stable, heritable record of the GRE’s effect on gene expression.
Each DNA molecule embodying this architecture contains
information about both the GRE sequence and a measure of its
function (i.e. the modified vs. unmodified state of the substrate),
both of which can be read in a single sequencing read and thus
unambiguously linked. Relying on this principle, large libraries of
GREs can be assessed solely relying on NGS rendering separate
functional experimentation obsolete. This greatly simplifies
experimental procedures, enables measurements at high kinetic
resolution, eliminates technical bias associated with sample pro-
cessing, and avoids the need to infer the functional readout.
Importantly, while any single DNA molecule generates a binary
functional record, the resolution of the readout can be arbitrarily

increased by sequencing multiple DNA copies to obtain a fre-
quency of modified substrates for each individual candidate GRE.

We use this approach termed uASPIre (ultradeep Acquisition
of Sequence-Phenotype Interrelations) to record more than 2.7
million sequence–function pairs in a single experiment to kine-
tically measure translation from 303,503 RBSs in Escherichia coli.
Further, we exploit the resulting high-resolution kinetic data to
train a residual convolutional neural network ensemble
(SAPIENs: Sequence-Activity Prediction In Ensemble of Net-
works) that quantitatively predicts RBS activities and quantifies
reliably the uncertainty of prediction. Crucially, the combination
of uASPIre and SAPIENs leads to hitherto unmatched prediction
accuracy for RBSs as reflected by a coefficient of determination R2

of 0.927 and mean absolute error MAE of 0.039, notably without
requirement for prior mechanistic knowledge about the transla-
tion process.

Results
The uASPIre principle. In its broadest sense, uASPIre relies on a
three-component DNA architecture comprising a genetic
sequence to be investigated (diversifier), the gene of a DNA-
modifying enzyme (modifier), and the cognate DNA substrate of
this enzyme (discriminator), all located on the same DNA
molecule (Fig. 1a). The modifier can alter the discriminator
sequence, which can thus appear in at least two discrete states
corresponding to modified and unmodified DNA substrate,
respectively. The diversifier is placed in a genetic context that
allows it to either directly or indirectly affect the activity of the
modifier through gene regulation (e.g. if the diversifier is a GRE)
or otherwise. The more a diversifier activates (or inactivates) the
modifier, the higher (or lower) is the likelihood of discriminator
modification. Hence, the discriminator serves as a DNA record of
functional information about the diversifier’s activity, a concept
we term DNA-based phenotypic recording. We define the term
phenotypic as any observable, functional characteristic arising
from a genetic sequence. Consequently, both sequence and
function of the diversifier can be determined concomitantly in a
single sequencing read. Although binary on the level of a single
DNA molecule, the fraction of modified discriminators amongst
all DNA copies that share the same diversifier constitutes a direct,
quantitative, and internally normalized readout of diversifier
function that can be precisely tracked over time. If only a single
diversifier variant is present per cell or compartment, an unam-
biguous link between a diversifier’s sequence and its function is
stably and heritably established and maintained on the level of
single DNA molecules. Therefore, NGS can be used to assess
extremely large diversifier libraries. Crucially, dynamic range,
resolution of the functional readout (i.e. fraction of modified
discriminators), and overall throughput of the method can be
arbitrarily increased by adapting sequencing depth (i.e. number of
reads per diversifier variant) and number of total reads. Herein,
we establish of a proof of concept for the described approach of
DNA-based phenotypic recording by demonstrating the assess-
ment of large numbers of RBSs as exemplary diversifiers.

uASPIre for GRE assessment. Although several DNA-modifying
enzymes are available, we chose site-specific recombinases as a
modifier for practical realization of uASPIre in this study.
Recombinases have been used to record cellular events, for
example by inducing reporter genes in certain cell types28,29, or to
discover cell- and tissue-specific promoters30. Diversification of a
recombinase coding sequence (CDS) was performed to discover
variants with altered specificity31. We selected the well-
characterized integrase from bacteriophage Bxb1 (bxb1/Bxb1)
because it is self-sufficient in catalysing irreversible recombination,
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active in Pro- and Eukarya, and highly specific due to its long
attachment sites attB and attP (50 and 53 bp) making off-target
effects unlikely32–34. This orthogonality is an important advantage
compared to other DNA-modifying enzymes, such as methylases,
whose expression affects transcription, plasmid copy number, and
cell cycle control35, often accompanied by toxic effects36. The two-
state discriminator used in conjunction with Bxb1 is a short DNA
sequence flanked by attB and attP in an orientation leading to
irreversible sequence inversion by the recombinase (referred to as
flipping hereafter).

We anticipated two critical prerequisites for the use of
recombinases such as Bxb1 for uASPIre. First, recombinase

expression must be tightly regulated to ensure precise control
over discriminator modification. Second, modification of dis-
criminators should occur within a practical time window of a few
hours to make use of the full dynamic measurement range. To
evaluate technical feasibility of these requirements, we con-
structed an E. coli prototype plasmid (pASPIre1) to track the
activity of Bxb1 using fluorescence measurements as a proxy. In
this construct, Bxb1-mediated recombination inverts an mCherry
CDS into sense orientation relative to its promoter converting a
non-fluorescent discriminator state into a fluorescent one
(Fig. 1c). The requirement for tight regulation of recombinase
expression prompted us to use the L-rhamnose-inducible
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Fig. 1 Basic principle of uASPIre and prototype DNA architecture. a Generalized genetic architecture underlying the uASPIre approach. A genetic
sequence of interest (diversifier; e.g. a GRE) controls, either positively (+) or negatively (−), the activity of a DNA-modifying enzyme (modifier), which can
modify its cognate substrate DNA (discriminator). If placed on the same DNA molecule, diversifier sequence and discriminator state can be both
determined by sequencing, for instance by NGS using forward (seqfwd) and reverse (seqrev) primers. b Readout of the uASPIre method. Under monoclonal
conditions (i.e., only one diversifier variant per compartment/cell), sequencing of multiple DNA copies that share the same diversifier allows to determine
the fraction of modified discriminators, which can be used as a continuous, normalized readout for diversifier function. c Prototype plasmid employing
recombinase Bxb1 as a modifier controlled by the rhamnose-inducible promoter Prha. Bxb1 inverts an mCherry CDS into the correct orientation relative to a
constitutive promoter Pconst, thus activating mCherry expression. attB/P and attL/R: Bxb1 attachment sites before and after recombination. d, e Kinetics of
Bxb1-mediated discriminator modification in shake flask cultivations of E. coli. Recombination is detected by d direct fluorescent measurement (open
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Source Data file.
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promoter Prha37 to control bxb1 transcription. Using pASPIre1,
we assessed Bxb1 recombination relying on bulk fluorescence
measurements, counting of red colonies after retransformation of
plasmid isolates from the culture (Fig. 1d), and by Sanger
sequencing (Fig. 1e). These experiments collectively showed that
Bxb1 is tightly controlled by addition of rhamnose to the culture
without substantial recombination occurring beforehand. More-
over, the reaction proceeds for several hours allowing to flexibly
sample the dynamic measurement range of discriminator
inversion.

Next, we adapted the prototype architecture (Fig. 1a) to enable
large-scale assessment of GREs, specifically RBSs, directly by NGS
(Fig. 2a). First, superfolder green fluorescent protein (sfGFP) was
fused to the Bxb1 C-terminus for later recording of calibration
curves (see below). This Bxb1-sfGFP fusion retained activity
exhibiting similar reaction dynamics as the sfGFP-less variant
(plasmid pASPIre2, Supplementary Fig. 1). Moreover, we
replaced mCherry in the discriminator with 150 bp of non-
coding DNA (plasmid pASPIre3, Fig. 2a; Supplementary Fig. 2),
and constructed a rhamnose utilization-deficient strain to avoid
inducer consumption and ensure stable induction throughout the
cultivation (E. coli TOP10ΔrhaA, Supplementary Fig. 3). Next, we
used this system to characterize libraries of RBSs at high
throughput relying on the uASPIre principle. As a part of the
5′-untranslated region (5′-UTR) of bacterial mRNAs, RBSs
dictate the rate-limiting initiation of translation38. Because few
mutations in this region can lead to orders-of-magnitude
differences in protein expression, RBSs have become proven
targets for optimization of cellular protein levels, in particular in
multi-protein systems such as metabolic pathways39,40. This
trend has been largely fueled by models that predict the relative
strength of RBSs41–44 and tools for smart RBS library design45,46.
However, current models are insufficiently accurate to reliably
allow accurate prediction and rational forward engineering46–48,
mainly due to the fact that they are based on small data sets of
experimental endpoint measurements (<103 RBS variants), which
do not cover a representative fraction of the vast number of
possible RBSs and disregard the highly dynamic nature of
translation. We hypothesized that time-resolved activity data for
much larger RBS populations could be used to develop predictive
models with greatly improved accuracy.

We established the following experimental workflow for the
uASPIre of RBSs in E. coli (Fig. 2b; see “Methods” section). An
RBS library with diversified 5′-UTR is used to transform E. coli
and monoclonal transformants are co-cultivated. After induction
with rhamnose, the culture is sampled at different time points and
plasmid DNA is extracted, followed by agarose gel purification of
target DNA fragments spanning both RBS and discriminator.
Next, duplex DNA adapters containing time-sample-specific
indices are ligated to the target fragments, samples are pooled,
and the library pool is subjected to NGS. RBS sequence and
discriminator state (here unflipped or flipped) are determined
using paired-end reading. Finally, NGS raw data are processed
(see “Methods” section) to obtain the dynamics of translation for
each RBS, as reflected by the fraction of flipped discriminators
among all sequencing reads obtained for this RBS (fraction
flipped hereafter) over time (flipping profiles hereafter).

We used this workflow to analyze a library of ~10,500 variants
with 17 randomized bases (N17) in the 5′-UTR of the bxb1-sfGFP
mRNA over 18 time points (Fig. 2c; see “Methods” section).
Importantly, a single NGS run (Illumina NextSeq, ~400 million
reads) was used at an excessively high coverage (on average
~18,700 reads per variant). While the library size for this proof of
concept was chosen conservatively small, it pointed towards
important features of our approach: (i) the achievable throughput
is very high (here 187,686 sequence–function pairs distributed

across 18 time points), and it could be significantly increased by
optimizing read coverage and number of time samples; (ii) The
RBS activity represented by the flipping profiles is directly and
quantitatively assessed at high resolution for the functional
readout (fraction flipped) and with high technical reproducibility
(Supplementary Fig. 4); (iii) Measurements can be performed in
short intervals down to a few minutes or less facilitating
acquisition of precise kinetic data. Notably, this is required to
properly resolve the diversity of translation rates in the library,
since endpoint measurements would either lead to underestima-
tion of strong variants (late sampling) or low resolution for weak
RBSs (early sampling); (iv) PCR-amplification is avoided during
the entire workflow, which we have identified as a major source of
non-systematic bias (Supplementary Fig. 5) that is absent for the
PCR-free workflow (Supplementary Fig. 6).

Using this proof-of-concept data set, we optimized critical
experimental parameters to increase the uASPIre throughput.
First, we evaluated the effect of reducing the number of sampling
time points on the ability to reconstruct the full 18 time-point
flipping profiles from the proof-of-concept experiment (see
“Methods” section). This analysis indicated that the number of
sampling time points can be significantly reduced without major
deviation from the full flipping profiles (Fig. 2d) to save NGS
capacity and increase the overall throughput. We selected an
optimized schedule with nine sampling time points for the
following experiments as a compromise between throughput
increase and accuracy of flipping profiles (98% of sequences
below 5% approximation error). Afterwards, we simulated how
the total library size affects the throughput by estimating the
number of variants above different read-count thresholds (Fig. 2e;
see “Methods” section). Here, the read-count threshold is defined
as the minimum number of NGS reads per variant and time point
above which the functional readout (fraction flipped) is
considered statistically robust. The throughput is the number of
variants above this threshold. At a given limit of obtainable reads
per NGS run, the total library size (i.e. number of variants
subjected to NGS) represents the main experimental parameter
that can be tuned to adjust the overall throughput of our method.
Increasing total library size is expected to increase the throughput
but also to lead to a higher relative fraction of RBSs below
threshold. Our analysis indicated that a library of
~250,000–500,000 RBS variants would be optimal to robustly
retrieve high quality (i.e., above-threshold) data for a maximized
number of variants (Fig. 2e).

Ultrahigh-throughput characterization of RBSs. We created a
second, larger RBS library diversifying the 17 bases directly
upstream of the bxb1 start codon (N17). Such libraries are known
to be prone to strong skew towards weak RBSs46, which we also
observed for the first RBS library (Supplementary Fig. 7a). Initial
efforts on training a machine learning (ML) model on these data
indicated a systematic underestimation of translation activity
particularly for strong variants (see “Methods” section; Supple-
mentary Fig. 7b). This observation, which we attributed to the
skew in the initial library, prompted us to construct three addi-
tional libraries (High1-3) likely enriched for intermediate and
strong RBSs. Libraries High1-3 were designed based on the first
data set and added to an approximate total of one fifth to the N17

library (Fig. 3a; Supplementary Fig. 8; see “Methods” section).
The composite library (~350,000 pooled transformants) spiked
with a set of 31 internal-standard RBSs spanning a wide range of
activities (see “Methods” section) was subjected to the uASPIre
workflow. This experiment yielded the fraction flipped for
303,503 RBSs over nine time points constituting over 2.7 million
sequence–function pairs (Fig. 3b). The applied threshold of at
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least 20 reads per RBS and time point corresponds to a robust
minimum coverage of 180-fold for each variant with the average
coverage amounting to 587-fold. This threshold resulted from
comparing the predictive performance of ML models (see below)
trained on data sets with different thresholds and tested on a

validation set (Supplementary Fig. 9; see “Methods” section).
Notably, while the same NGS platform was used, the throughput
was increased about 29-fold compared to the proof-of-concept
experiment due to optimized sampling and library size. This
experiment was done in three independent biological replicates
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with low variability substantiating high reproducibility of uAS-
PIre (Supplementary Fig. 10).

To correlate the functional readout (fraction flipped) obtained
by NGS with the cellular Bxb1-sfGFP concentration, we recorded
cell-specific fluorescence of the Bxb1-sfGFP fusion for the
aforementioned 31 internal-standard RBSs in individual shake
flask cultivations (Supplementary Fig. 11; see “Methods” section).
We compared the resulting curves with the corresponding
flipping profiles obtained in NGS analyzing pairs of integral-
and slope-based summary statistics (i.e., quantitative curve

representations) for the two measurement types (see “Methods”
section). Discriminator inversion strongly correlated with the
prevailing cellular Bxb1-sfGFP concentration as indicated by high
R2 values (0.85–0.98) for all tested combinations (Supplementary
Fig. 12a, b). We selected the integral of the flipping profile
between 0 and 480 min. after induction (IFP0–480 min, Fig. 3c) for
further steps due to its high correlation with different summary
statistics for Bxb1-sfGFP fluorescence and the high degree of
diversity for IFP0–480min in the library (Fig. 3d; Supplementary
Fig. 12c). Notably, compared to the GFP measurements, the
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functional readout obtained by NGS exhibited a larger dynamic
range and higher sensitivity at the lower (and to a lesser extent
higher) range of the RBS activity spectrum (Fig. 3d). Relying on
IFP0–480 min, we assessed different sub-libraries (Fig. 3e). As
expected for fully degenerate RBS diversification, we found the
N17 sub-library to be strongly skewed towards low activity. By
contrast, all three designed sub-libraries (High1-3) were enriched
for intermediate and strong RBSs, indicating that our design goal
was met.

Deep learning for RBS prediction through SAPIENs. We
developed an ML approach to exploit the data sets obtainable by
uASPIre for quantitative prediction of RBS strength from
sequence. Our deep-learning model SAPIENs uses the RBS
sequence as an input in a binary matrix representation (Fig. 4a,
see “Methods” section). The SAPIENs architecture is an ensemble
of ten residual neural networks (ResNets)49,50, each consisting of
three residual blocks of two convolutional layers51 each. The last
convolutional layer’s output is fed into two sets of fully connected
layers, which integrate information across all positions of the
RBS. These two layer sets provide the final output of each ResNet
of the ensemble, which is two shape parameters of a probability
distribution for RBS activity (beta distribution). The ten ResNet
models were independently trained with different randomly
initialized parameters, random hyperparameters and batches of
sequences. In this way, SAPIENs models the predicted distribu-
tion of IFP0–480 min as a uniformly weighted mixture of ten beta
distributions, parametrized by ten independent sets of shape
parameters. By outputting a distribution, we are able to char-
acterize both the predicted value of IFP0–480 min and the uncer-
tainty of prediction, which we quantify by the mean and standard
deviation of the predictive distribution, respectively (see “Meth-
ods” section). Such a sequence-by-sequence characterization of
predictive uncertainty would not be feasible with pointwise pre-
dictions. Crucially, this does not only provide quantitative pre-
dictions of the RBS activity but also a well-calibrated confidence
score. A detailed description of all components of SAPIENs is
available in the ML Annex.

We trained SAPIENs and several classical linear and non-linear
ML models on the same 248,451 RBS sequences chosen at
random from the larger uASPIre data set. Hyperparameters were
optimized exclusively on a validation set (27,398 sequences) and
afterwards all models were evaluated on a held-out test set
(27,654 sequences, see “Methods” section). The linear model
Ridge Regression52 (R2= 0.678) was clearly outperformed by
non-linear models k-nearest neighbors53 (k-NN, R2= 0.738),
Random Forest54 (R2= 0.835) and gradient tree boosting55

(GTB, R2= 0.893), which highlights the importance of interac-
tions between nucleotides in the RBS (Fig. 4b, c). Notably,
SAPIENs outperformed all other approaches reaching an R2 of
0.927 and MAE of 0.039. It exhibited consistently high predictive
performance across the entire range of RBS activities including
the 31 internal-standard RBSs that were excluded from training
(Fig. 4c; Supplementary Fig. 13). Moreover, the systematic
inaccuracy in predicting strong RBSs was eliminated as a result
of the addition of the designed sub-libraries High1-3 (Supple-
mentary Fig. 14). The predicted IFP0–480 min values were
converted into summary statistics for cellular Bxb1-sfGFP
concentrations relying on calibration curves (Fig. 3d) and the
resulting predicted Bxb1-sfGFP values correlated well with their
experimentally determined counterparts (Fig. 4d). This indicates
that our model reliably predicts cellular protein levels even for
unseen sequences. Importantly, except for the overall weakest-
performing Ridge Regression, prediction accuracy increased with
training set size for all models reflected by rising confidence (R2,

percentage of sequences within 2-fold error) and decreasing
errors (RMSE, MAE; Fig. 4e). While a general trend towards
saturation was observed, no plateau is reached even for the largest
training set of 248,451 sequences. This points to the high value of
large-scale sequence–function data and emphasizes the potential
of uASPIre. Moreover, to go beyond global metrics of accuracy
(R2, MAE), SAPIENs produces a well-calibrated confidence score
for each prediction56, which can be used to guide forward
engineering of RBSs (Fig. 4f, Supplementary Fig. 15, see
“Methods” section). Lastly, we observed that our high prediction
accuracy is reproducible across the three biological replicates
(Supplementary Fig. 16, ML Annex).

Identification of sequence determinants of RBSs. We analyzed
the impact of different factors known to influence RBS activity in
our data. We did not find a significant overall correlation between
mRNA folding energy and RBS activity (Supplementary Fig. 17a).
Notably, sequences with particularly strong secondary structures
(i.e. free folding energy below −15 kcal mol−1) showed a ten-
dency to be weak RBSs (Supplementary Fig. 17b). However, such
strong secondary structures were underrepresented in the library,
likely due to the full randomization of only a short part of the
mRNA rendering strong base pairing unlikely. Therefore, in order
to allow for a proper analysis of the impact of mRNA folding or
particular secondary structures, an alternative diversification
strategy would be required. We then assessed the impact of
Shine–Dalgarno (SD)-like motifs (i.e. AGGAGG and sub-
sequences thereof) and additional start codons in the 5′-UTR
within the N17 library. Clearly, SD-like motifs exhibit a strong
positive effect on translation, which is lost (or even slightly
inverted) if the motif is too close to the translational start
(Fig. 5a). Similarly, a positive effect was observed for additional
in-frame AUG codons (Fig. 5b) and, to a lesser extent, for GUG
and UUG (Supplementary Fig. 17c, d). By contrast, out-of-frame
start codons showed no globally consistent tendency but overall
favored translation, in particular for positions −17 to −8. This is
likely due to Gs in the start codons facilitating 16S-rRNA binding,
which expectedly is most prevalent for GUG (Supplementary
Fig. 17c) and difficult to disentangle from a genuine start codon
effect.

We analyzed one ResNet model to gain an understanding
about the relative importance of RBS bases and positions by
clustering filters of the first convolutional layer according to the
correlation between their output features and the RBS activity
(see “Methods” section). We found that the model had captured
translation-promoting (A, G) and translation-reducing (C) effects
of bases (Fig. 5c). Moreover, a positioning effect was observable:
filters with large positive weight for Gs or negative weight for Us/
Cs correlated positively with RBS activity when scanning
upstream regions but negatively when closer to the translational
start (centroids 1–4). By contrast, filters promoting Us/Cs
correlated negatively with RBS strength for most positions
(centroid 5).

For further interpretation, we used integrated gradients57, an
attribution method commonly used for deep-learning models (see
“Methods” section). For the test set, a low-dimensional embed-
ding of SAPIENs integrated gradients scores indicated a clear
structure with strong and weak sequences clustering in almost
linearly separable fashion (Fig. 5d). Global analysis of the
integrated gradients scores revealed that specific positions and
bases are particularly indicative for RBS activity (Fig. 5e).
Substantiating the observation from Fig. 5c, Gs strongly promote
translation while Cs appear to be consistently adverse. The
translation-promoting effect for Gs is only observable if the
distance from the start codon is at least seven bp, while a neutral
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or even unfavorable effect prevails for other regions. However, no
distinct SD-like motif appeared because this global analysis only
represents per-base and -position averages. A more targeted
analysis obtained by clustering of strong and weak sequences
(Fig. 5f; Supplementary Fig. 18; see “Methods” section) revealed
SD-like motifs with most impactful positions ranging from −13
to −6 and invariance or slight preference for weakly pairing bases
(A, U) outside the motif. Hence, our model successfully

reconstructed SD-like patterns, notably without any prior
knowledge about the process of translation.

Finally, we performed in silico evolution with uASPIre by
greedily applying pairwise mutations to the weakest and strongest
sequence in the test set to maximize and minimize predicted
IFP0–480min, respectively (see “Methods” section). Confirming our
previous findings, the model systematically mutated U or C to A
or G to form SD-like motifs or create in-frame start codons upon
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increasing RBS strength (Fig. 5g), while removing Gs and adding
Cs when decreasing it (Fig. 5h). Moreover, evolving a strong
sequence (gain of function) required more steps than diminishing
RBS activity (loss of function) due to the sparsity of strong
sequences within the search space.

Discussion
Herein, we introduce a method termed uASPIre, which relies on
phenotypic recording in DNA to enable experimental generation
of large-scale sequence–function data of high quality while sig-
nificantly reducing experimental effort and minimizing error.
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Since uASPIre solely relies on NGS, extremely high throughputs
are achievable, which scale linearly with the number of obtained
sequencing reads and are independent of other technical para-
meters such as sorting speed and efficiency. For instance, trans-
ferring the experimental setup used in this study to currently
available benchmark NGS systems (e.g. Illumina NovaSeq 6000)
would allow recording of 108 or more sequence–function pairs
per experiment, with further increases expectable in the future
due to the ongoing development of NGS technology.

Notably, uASPIre requires no sophisticated instruments such
as cell sorters or specialized facilities (except for NGS which can
be outsourced to service providers) and only standard methods
for sample preparation (DNA purification, restriction, ligation).
Determination of library composition and functional character-
ization are performed concomitantly in a single device. Compared
to previously available methods, this grants experimental prac-
ticability and, more importantly, avoids bias and error from
multiple devices and processing steps. To this end, neither bar-
coding nor DNA amplification after the actual experiment (e.g.
via PCR or clonal expansion by growth) are required, both of
which are known sources of bias (compare Supplementary Figs. 5
and 6). Variant treatment is fully parallelized throughout the
workflow from library generation to final readout, which avoids
introduction of bias due to long and/or differential processing
times, constituting a major advantage over sequential approaches.
Importantly, functional information is recorded directly and does
not have to be statistically inferred from read distributions, which
is a well-known source of error22.

The functional readout (i.e. fraction of modified dis-
criminators) is a quantitative, internally normalized metric for
variant comparison. It exhibits high sensitivity and large dynamic
range as can be appreciated from its superior ability to resolve
differences between variants at the low and high end of the
activity range compared to fluorescence measurements (Fig. 2d).
Its resolution can be arbitrarily adjusted by adapting the
sequencing depth (i.e. number of reads per variant) and could be
further enhanced using systems that allow more than two dis-
criminator states58,59. The instantaneous and continuous
recording of the functional readout in situ avoids the need for
immediate measurements during or directly after cultivation,
which are for instance required for transient reporters such as
fluorescent proteins. Therefore, the kinetic resolution of uASPIre
is only limited by the time required for sampling of the culture,
which can be performed in intervals of one minute or less. This is
a key feature, since most biological phenomena are highly
dynamic and therefore inappropriately depicted by endpoint
measurements as our data on RBSs show (Figs. 2c and 3b).

Crucially, such high-resolution kinetics cannot be achieved in
approaches relying on elaborate and lengthy procedures such as
cell sorting.

In this study, we capitalize on the advantages of uASPIre
enumerated above and demonstrate its utility by recording the
effect on translation of more than 313,000 RBSs from two
libraries in a total of over 2.9 million sequence–function pairs.
Furthermore, we exploit the high-quality data sets by deep
learning to quantitatively predict RBS behavior. Notably, only the
combination of big data obtained through uASPIre and the model
SAPIENs facilitated the high predictive performance achieved in
this study (Fig. 4e), emphasizing the potential of high-throughput
experimentation combined with state-of-the-art deep learning.
SAPIENs accurately quantifies the uncertainty of its predictions,
which is a useful practical criterion to pick sequences the most
reliable predictions. In addition, interpretation of the uASPIre
data and SAPIENs revealed position-specific sequence motifs in a
fully data-driven fashion without requirement for prior knowl-
edge about RBSs. It should be noted that RBS activity is known to
depend on the respective sequence context, which includes
mRNA regions upstream of the RBS and the 5′-part of the CDS60.
These regions have to be likewise diversified in order to obtain a
truly generalizable RBS prediction. Similarly, additional mod-
ifications to the setup could be considered to enable general-
ization across different experimental conditions, species and
sequences with low similarity to the ones currently used for
training. In this context, ML techniques to improve robustness for
out-of-distribution data, such as transfer learning and domain
adaptation, could be used (see ML Annex).

Importantly, uASPIre is not restricted to specific functional
traits of interest and the approach introduced herein can be
repurposed to address a wide range of biologically relevant
questions. To this end, RBS library characterization should be
viewed as an application example only, and the approach can be
used to interrogate different types of GREs and mechanisms of
gene regulation on all levels of the central dogma. This is of high
significance since gene regulation is of utmost importance for
cellular function and impaired regulation of genes is frequently
associated with disease. Moreover, we anticipate utility of uAS-
PIre also beyond the realm of gene regulation arguing that, in
principle, any trait of interest, which can be coupled to a gene
expression output, could be accessed with the method. For
instance, transcriptional or translational biosensors may be used
to drive modifier expression in response to certain stimuli or
small molecules of interest rendering a plethora of alternative
applications accessible. Lastly, we expect uASPIre to be applicable
in a wide range of host organisms, since Bxb1 is functional in

Fig. 5 Interpretation of uASPIre data and SAPIENs. a, b Influence of Shine–Dalgarno-like motifs (a) and AUG codons (b) in the 5′-UTR on the RBS activity
of N17 library members. Black horizontal lines indicate the median IFP0–480min in the data set. Boxplots (a) contain a variable number of RBSs (n between 24
and 1246) depending on the occurrence of the respective motif, and boxes range from first (lower line) to third (upper line) quartile with median (red
center line) and percentiles 20/80 (whiskers). Circles (b) represent median IFP0–480min with percentiles 20/80 (shaded areas) and in-frame positions
(highlighted red). c Importance of ResNet filters for the prediction. Pearson correlation between filter activation and RBS activities of all held-out sequences
is displayed per filter and position for the first convolutional layer of one randomly selected ResNet. Five filter stacks with apparent high significance are
framed in bold and the average weight per base and position of the corresponding centroid filter is shown (right). d Visualization of integrated gradients
scores of SAPIENs in a low-dimensional space. T-distributed stochastic neighbor embedding (t-SNE) is applied to the integrated gradient scores of test set
RBSs. t-SNE dim1/2 are the two dimensions resulting from the t-SNE algorithm. e Impact of 5′-UTR bases and positions on RBS activity. Using an all-zeroes
input as baseline, the average attribution score per base and position is displayed as determined for the test-set sequences. Letter size corresponds to
the importance score and orientation to the direction of effect (i.e. upward/downward corresponding to a tendency to increase/decrease IFP0–480min).
f Attribution of bases and positions to strong RBSs. The strongest 5% of sequences in the test set were distributed into five clusters using k-means
algorithm. The displayed motifs are the medoids of each cluster (i.e. the sequences closest to the respective cluster centroid). g, h In silico evolution of
RBSs. Starting from the sequence with the lowest (g) and highest (h) predicted IFP0–480min in the test set, pairwise mutations (underlined) are greedily
applied until no further increase (g) or decrease (h) in IFP0–480min is observed (total of 10 and 8 rounds for g and h, respectively). Source data for a–c, e,
and f are available as a Source Data file.
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pro- and eukaryotes including human cells33,34 and a variety of
well-characterized alternative recombinases and other DNA-
modifying enzymes are readily available. We therefore envision a
wide applicability of the uASPIre approach in several research
domains including metabolic engineering, genetic circuit design,
and microbiome research, to name but a few.

Methods
Chemicals and reagents. Unless stated otherwise, all chemicals and reagents were
obtained from Sigma Aldrich (Buchs, Switzerland). Enzymes were obtained from
New England Biolabs (Ipswich, MA, USA). Oligonucleotides (Supplementary
Table 1), custom duplex DNA adapters, synthetic genes, and gene fragments were
obtained from Integrated DNA Technologies (Leuven, Belgium).

Cultivation of E. coli. E. coli strains were commonly cultivated in lysogeny broth
(LB) supplemented with 10 g L−1 D-glucose, 50 mg L−1 kanamycin, 50 mg L−1

streptomycin, and 15 g L−1 agar, where appropriate. Rhamnose-utilization defi-
ciency was assessed by cultivation of strains in defined mineral medium61 sup-
plemented with 0.1 g L−1 L-leucine, 0.03 g L−1 L-isoleucine, 0.15 g L−1 L-valine, and
10 g L−1 of either D-glucose or L-rhamnose as major carbon source. Shake flask
cultures (LB) were inoculated from monoclonal pre-cultures to an initial OD600 of
0.05 and cultivated in a shaking incubator (37 °C, 200 rpm). Expression was
induced at an OD600 of ~0.5 by addition of 2 g L−1 L-rhamnose to the cultures.
Microtiter plate cultivations were performed in sterile 96-well plates (flat bottom
Nunclon™ Delta Surface, ThermoFisher Scientific, Waltham, MA, US) containing
200 μL LB per well. Wells were inoculated from monoclonal pre-cultures to an
initial OD600 of 0.05 and plates were incubated in an Infinite® M1000 PRO plate
reader (Tecan Group, Männedorf, Switzerland) at 37 °C without lid (orbital
shaking mode, 6 mm amplitude).

Construction of plasmids. Plasmids used are listed in Supplementary Table 2. All
plasmids constructed in the course of this study are based on pSEVA29162. Inserts
were created relying on synthetic genes or gene fragments, which were inserted into
the vector backbone by conventional restriction-ligation cloning. Maps and
sequences of plasmids created in this study can be found in the Supplementary
Information (Supplementary Figs. 19–23). A detailed description of library con-
struction procedures is provided below.

Assessment of Bxb1 recombination. Bxb1-mediated inversion of the dis-
criminator was assessed by direct fluorescent measurement, counting of red- and
non-fluorescent colonies after retransformation of isolated plasmid and Sanger
sequencing of the discriminator region. For direct measurement of mCherry
fluorescence, 1 mL samples were collected from shake flask cultivations, spun down
in a tabletop centrifuge (1 min, 8000 rcf) and pellets were re-suspended in 1 mL of
ice-cold, sterile-filtered phosphate-buffered saline (PBS). To ensure full chromo-
phore maturation, samples were incubated at 4 °C overnight before measurement
in an Infinite®M1000 PRO plate reader (Tecan Group, Männedorf, Switzerland) in
96-well plates (flat bottom Nunclon™ Delta Surface, ThermoFisher Scientific,
200 μL per well). Cell-specific mCherry fluorescence was determined by dividing
the red fluorescence signal (excitation at λEx= 587 nm, emission at λEm= 610 nm)
by the OD600 for each sample. For microtiter plate cultivations, fluorescence of
mCherry and sfGFP (λEx= 485 nm, λEm= 535 nm) was directly measured in the
culture broth and normalized for OD600. To assess the dynamics of Bxb1-mediated
recombination directly on the DNA level, plasmid DNA was extracted from shake
flask culture samples and the state of the discriminator was determined by Sanger
sequencing. Furthermore, 50 ng of extracted plasmid DNA were used to re-
transform E. coli TOP10 and the transformation mixture was plated on LB agar
containing 50 mg L−1 kanamycin and 10 g L−1 D-glucose to shut down transcrip-
tion from PRha. After overnight incubation at 37 °C, plates were stored at 4 °C for
maturation of the mCherry chromophore. Afterwards, colonies (at least 275) were
manually counted to determine the ratio of clones that had received a plasmid copy
of pASPIre1 with a flipped (red colonies) or unflipped (white colonies) dis-
criminator upon transformation, respectively.

Construction of knockout strains. All E. coli strains used in this study are listed in
Supplementary Table 2. Knockout of the genomic rhaA gene (L-rhamnose iso-
merase) in parent strain E. coli TOP10 was achieved using the method described by
Datsenko and Wanner63. Primers 1 and 2 were used to generate the required linear
DNA fragment containing the kanamycin resistance gene (kanR) from plasmid
pKD1363 flanked by sequences homologous to the target locus.

Library generation. RBS libraries were generated via PCR on template plasmid
pASPIre3 using forward primer 3 and degenerate reverse primers 4, 5, 6, and 7 to
diversify the respective RBS region. The resulting PCR products were digested with
PstI and SacI (37 °C, 4 h) and ligated into pASPIre3 pre-treated with the same
restriction enzymes. The ligation mixtures were purified and used for electro-
poration of E. coli TOP10 ΔrhaA. Transformants were plated on several plates of

LB agar (10 g L−1 D-glucose, 50 mg L−1 kanamycin, 50 mg L−1 streptomycin) in
order to estimate library size by colony counting and facilitate pooling of the
different libraries in defined ratios. After overnight incubation (37 °C), 5 mL of LB
were added to the plates and colonies were scraped off. The resulting cell sus-
pensions were pooled and sterile glycerol was added to a final concentration of 15%
(v/v). Last, OD600 of the cell suspensions was determined before library stocks were
snap-frozen and stored at −80 °C until further use.

Library cultivation and sampling. Library stocks were thawed on ice and used to
inoculate 600 mL pre-warmed LB (50 mg L−1 kanamycin) to an initial OD600 of
0.05 in 5 L baffled cultivation flasks. Cultures were incubated (37 °C, 200 rpm) until
an OD600 of ~0.5 was reached and 2 g L−1 L-rhamnose were added to induce Bxb1-
mediated recombination. Samples taken throughout the cultivation were imme-
diately mixed with an excess of ice-cold, sterile PBS for rapid cooling and then
centrifuged (10 min, 4000 rcf, 4 °C), and cell pellets were frozen on dry ice until
extraction of plasmid DNA was performed using a commercial kit (ZymoPURE
Miniprep Kit, Zymo Research) and stored at −20 °C until further use.

NGS sample preparation. Plasmid DNA isolated from culture samples was
digested with NcoI and SacI (37 °C, 4 h). After, target fragments (308 bp) con-
taining both RBS and the attP/R site were purified by agarose gel electrophoresis
and sample-specific combinations of customized, indexed DNA duplexes (Sup-
plementary Table 3) were ligated to the sticky ends of the target fragment. For the
PCR-amplified sample (Supplementary Fig. 4), NGS fragments were generated
using primers 8 and 9 to specifically amplify the target region and add required
overhangs for Illumina sequencing to both ends. The resulting linear DNA frag-
ments were purified by agarose gel electrophoresis and concentration of the target
was determined using capillary electrophoresis (12-capillary Fragment Analyzer,
Advanced Analytical/Agilent). Afterwards, indexed samples were pooled according
to their determined concentrations to adjust equal molarity for all samples and the
pooled sample was subjected to NGS.

NGS. NGS was performed using an Illumina NextSeq 500 platform and a High
Output kit v2.5 (75 cycles, PE 33/51) using ~20% genomic PhiX library as spike-in
to increase sequence diversity. Primary data analyses were done with Illumina RTA
version 2.4.11 and bcl2fastq v2.20.0.422.

Computational scripts and data sets. An annotated script for the processing of
NGS data (see below) as well as the pre-processed data sets used in this study are
available under: github.com/JeschekLab/uASPIre. A detailed description of the ML
models is provided in the separate ML Annex, and code describing how to define
and fit the SAPIENs model as well as the resulting parameters of the fitted model
can be obtained under: github.com/BorgwardtLab/SAPIENs.

Processing of NGS data. The algorithms for processing of NGS data for this
project were written in bash and python and are available under: http://github.
com/JeschekLab/uASPIre. Briefly, forward and reverse reads retrieved from fastq
files were paired and all reads with more than six consecutive unidentified
nucleotides were removed. Afterwards, target fragments were selected by a 10-bp
constant region (GAGCTCGCAT, max. 3 mismatches) and sequences from dif-
ferent samples were deconvoluted by their unique combination of two 6-bp indices
(Supplementary Table 3). Next, the discriminator state was determined by
searching for the presence of an attP or attR site corresponding to the sequences
GGGTTTGTACCGTACAC or GCCCGGATGATCCTGAC, respectively (max. 3
mismatches, differential bases highlighted in bold). RBS sequences were deter-
mined by retrieving the 17 nucleotides upstream of the bxb1 start codon. Finally,
variants with mismatches in the bxb1 CDS in more than 8% of reads were removed
to exclude off-target mutations.

Internal-standard RBSs and recording of calibration curves. The internal-
standard RBSs used in this study are listed in Supplementary Table 4. RBSs R1-R22
were selected from the proof-of-concept library with the goal to span the entire
range of observed RBS activities. First, kinetic profiles were cropped at 720 min and
only RBSs with at least 100 reads per sample were used which resulted in a set of
high-quality profiles for ~9500 RBSs. Afterwards, profiles were grouped according
to their dynamic behavior relying on k-medoid clustering52 (k= 25) and the RBS
corresponding to the centre of each cluster was selected as representative internal-
standard RBS (Supplementary Fig. 24). In addition, three weak (R23–R25) and four
strong (R26–R29) RBSs handpicked from the initial library as well as two strong
RBSs (R30, R31) designed using the RBS calculator41 were included. These RBSs
were individually introduced into pASPIre3 by conventional cloning procedures to
obtain derivatives that carry the respective RBS sequence controlling Bxb1-sfGFP
translation. Activity of these RBSs was assessed by recording of the cell-specific
fluorescence of three biological replicates of each variant in individual shake flask
cultivations. 100 mL of pre-warmed LB (50 mg L−1 kanamycin) in 1 L baffled shake
flasks were inoculated from overnight pre-cultures to an initial OD600 of 0.05.
Bxb1-sfGFP expression was induced at an OD600 of ~0.5 by adding 2 g L−1 L-
rhamnose. Samples taken throughout the cultivation were immediately mixed with
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an excess of ice-cold, sterile PBS for rapid cooling and then centrifuged (10 min,
4000 rcf, 4 °C). Cell pellets were re-suspended in PBS and suspensions were stored
overnight in micro centrifuge tubes at 4 °C for sfGFP maturation. Fluorescence
(λEx= 485 nm, λEm= 535 nm) and OD600 were measured in technical triplicates in
96-well plates (Corning 96-well Clear Bottom Black Polystyrol, 200 µL per well) in
a TECAN Infinite® M1000 PRO plate reader. Curves of cell-specific sfGFP fluor-
escence were obtained by normalizing the blanked fluorescence signal for the
blanked OD600 measurements and subtracting the cell-specific background fluor-
escence of an sfGFP-less variant (empty vector control), which was included for
every cultivation batch. Furthermore, a dilution series of fluorescein was included
in every 96-well plate to compensate for variations of the fluorescent readout
over time.

Correlation of Bxb1 recombination with Bxb1-sfGFP levels. In order to convert
Bxb1-catalyzed discriminator flipping into cellular Bxb1 concentrations, we com-
pared the recorded cellular fluorescence profiles for the 31 internal-standard RBSs
with their corresponding flipping profiles as recorded by NGS. To this end, we
sought to (i) establish a combination of summary statistics which exhibit a high
degree of correlation between the two measured quantities across the entire range
of RBS strengths, (ii) identify the best (potentially non-linear) fit between the two
summary statistics, and (iii) ensure that a high degree of diversity is maintained for
the representation of the discriminator flipping across the entire set of sequences in
the data set. We used integral-based (i.e. area under the curve) summary statistics
for the flipping profiles and slope-based representations (i.e. slope of the linear fit)
for the fluorescence profiles (Supplementary Fig. 12a, b). For the flipping statistics,
we also quantified the diversity of each representation by estimating the differential
entropy64 of its probability density (Supplementary Fig. 12c). For each type of
summary statistic, we additionally treated the time ranges over which both the
fluorescence and flipping summaries are computed as additional hyperparameters
to be optimized. Moreover, for each pair of candidate summary statistics, we
evaluated linear, log-linear and generalized logistic fits. We quantified the quality of
each pair of summary statistics using the resulting R2 of the fit as evaluated using
leave-one-out cross validation on the pool of 31 internal-standard RBSs in order to
compensate for potential effects of overfitting in the analysis. Moreover, the
standard deviation of each summary statistic for fluorescence was computed for all
internal-standard RBSs relying on the three biological replicates. Further details on
the evaluation of summary statistics are provided in the ML Annex.

Optimization of sampling time points. Sampling times were optimized using the
high-quality kinetic profiles obtained from the proof-of-concept RBS library (see
previous section for definition of high-quality profiles). To avoid biases towards the
initial sampling schedule, we first represented the profile p of each RBS by an
approximation with a logistic function p̂ imputed at 5 min intervals, which was
fixed as the minimal time difference between two samples (Supplementary
Fig. 25a). In cases where logistic approximation was not possible (i.e. failed
parameter optimization), an exponential decay function was used. Formally, RBS i
is represented by its approximationp̂i ¼ ðp̂i0; p̂i5; ¼ ; p̂i720Þ. Afterwards, optimal
sampling times were greedily selected while fixing the first and last sample at 0 and
720 min after induction. The goal of the optimization was to find a set S of optimal
sampling times (initially S = (0, 720)) which allows to reconstruct p̂i such that a
linear approximation using time points in S is as close to p̂i as possible. Given the
set of possible sampling times T = {0, 5, 10, …, 720} and the subset I of RBS
profiles on which the sampling times should be inferred, the greedy optimization
finds the next optimal sampling time point s* from T as follows:

s* ¼ argmins2TnS
1
Tj j

X

i2I

X

t2T ∪ fsg
p̂it � l̂i; St
���

���; ð1Þ

where l̂i; S corresponds to the linear approximation of p̂i using only sampling times
in S (Supplementary Fig. 25b). In other words, s* is the time point that (i) is not
part of the sampling schedule S yet and (ii) results in the smallest cumulative
reconstruction error over all RBS profiles in I. Subsequently, S is augmented by s*,
and Eq. (1) is evaluated to find the next optimal s*, until S contains the desired
number of sampling times. Finally, the quality of the optimal sampling schedule for
every RBS i is evaluated by computing the approximation error ri between the
observed profile pi, and its linear interpolation at the optimal time points S, termed
li,S (Supplementary Fig. 25c):

ri ¼ 1
jTj

X

t2T
jpit � li;St j: ð2Þ

This optimization was performed for different sets of RBS profiles I: we first sorted
RBSs by their observed strength (i.e. difference in the fraction of flipped dis-
criminators between first and last sample) and optimized sampling for the top 5%,
10%, 25%, 50%, and 100%, respectively. This strategy was chosen to compensate for
the strong bias towards weak RBSs in the initial library. Afterwards, we computed
the cumulative approximation error on the entire library (top 100%) for the
sampling schedules optimized on the different subsets. We found that for seven or
more samples the difference in approximation error between subsets became
indistinguishable and hence chose the sampling times inferred on the top 10% of
profiles for the following experiments.

Optimization of NGS loading. To increase the throughput of uASPIre, we ana-
lyzed the data from the proof-of-concept (poc) experiment, which contained
kinetic data of ~10,000 RBS variants. We sought to estimate an optimal number of
variants to be loaded into NGS in order to retrieve a maximized number of variants
with high-quality data (i.e. above different minimal read-count thresholds θ). For
this simulation, we assumed that the limiting factor is the NGS throughput and
that the maximal number of valid reads (i.e. reads that pass the pre-processing
pipeline quality constraints) retrieved by NGS is constant across experiments under
the same experimental conditions. This simulation is based on the idea that
increasing the number of RBS variants reduces the coverage and vice versa, as the
maximum number of valid reads is constant. For the distribution of read counts,
we assumed that it follows a log-normal distribution and that its variance is
independent of the coverage. The proof-of-concept data set is composed of ~2 ×
108 valid reads, which are spread among nt = 18 time points and npoc = 10,427
variants with an average coverage of cov ~1000 reads per variant per time point. If
the coverage of the small data set is reduced by a factor of rc > 1, and the number of
time points by a factor of rt > 1, the total number of variants that could be loaded
into NGS without loss would be ninput (rc, rt) = npoc × rc × rt, by conservation of the
maximal number of valid reads. However, out of these ninput (rc, rt) variants, only
noutput (θ, rc, rt) < ninput (rc, rt) would pass the quality control as enforced by the
minimal read threshold θ. To simulate the effect of the minimal read threshold, we
downsampled the read counts of the proof-of-concept data set by a factor rc and
applied to it the minimal read threshold θ resulting in a number of variants above-
threshold nsimul (θ, rc) < npoc. The estimated final number of variants is therefore
noutput (θ, rc, rt) = nsimul (θ, rc) × rc × rt. Figure 2e illustrates the estimation of the
number of variants for rt = nt / 9, several minimal read thresholds θ and several
downsampling factors rc.

RBS library design. Initial efforts for training a convolutional neural network
(CNN)51 based on the proof-of-concept data set resulted in a systematic under-
estimation of RBS strength, in particular for strong RBSs. This is likely due to the
library being skewed towards weak sequences as a result of the full randomization
of the 17 bases upstream of the Bxb1 start codon (Supplementary Fig. 7). To
overcome this, three libraries (High1-3) presumably enriched in moderate-to-
strong RBSs were designed in silico based on the proof-of-concept data set and
added to a fully randomized library (N17). Libraries High1 and High2 were
designed using position probability matrices (PPMs), 2D matrices in which each
element represents the proportion of times a nucleotide occurs at a given position
in the sequence. To this end, RBSs from the proof-of-concept data set were
grouped into 10 linearly distributed bins according to a proxy for the normalized
integral of their flipping profile (IFPtrz, contained in [0, 1]), for each of which a
PPM was computed. The IFPtrz was computed using the trapezoidal rule on the
flipping profiles. Degenerate RBS sequences for High1 and High2 were designed
with the goal to obtain PPMs that most closely resemble (minimal mean-squared
error) the PPMs of the highest and second highest bin, respectively. Library High3
was designed using a genetic algorithm on the basis of predictions from an initial
CNN trained on the proof-of-concept data set. The RBS sequences from the three
highest IFPtrz bins were randomly mutated for 200 iterations (1–2 mutations
per sequence and iteration). Only sequences for which the predicted IFPtrz was
increased due to the mutations were propagated to the next iteration. At the end of
this process, we calculated the PPM of the resulting pool of sequences with high
predicted IFPtrz, randomly selected 20,000 sequences from this PPM, and com-
puted the predicted IFPtrz distribution for this sub-sample. Finally, the degenerate
RBS sequence of High3 was obtained by greedily minimizing the
Kolmogorov–Smirnov distance between the predicted IFPtrz distribution of the
sub-sample and the predicted IFPtrz distribution for the respective degenerate
candidate RBS sequence. For further details regarding the computation of the
IFPtrz, the CNN and the genetic algorithm please refer to the ML Annex.

Normalization of biological replicates. In order to facilitate comparison of bio-
logical replicates, we capitalized on the 31 internal-standard RBSs. These serve as
internal references spanning a large range of RBS activities and allow to com-
pensate for potential batch effects and other systematic biases between replicates.
Formally, for each of the 31 internal-standard RBSs, we denote by x and y the
measured normalized integral of the flipping profile (IFP) for the biological
replicate to be normalized and the reference replicate, respectively. We fit either a
polynomial function of degree two, f : 0; 1½ � ! R with f(x) = I + Ax + Bx2, or its
inverse f(x) = g−1(x) with g(z) = I + Az + Bz2, such that the mean-squared error
between f(x) and y is minimized across the 31 measurement pairs. Moreover, we
impose the following constraints on the parameters of f: first, RBSs that show no
activity in one replicate should remain inactive in the other replicates (f(0) = 0).
Second, RBSs whose discriminators are entirely flipped before induction in one
replicate should exhibit that behavior in the other replicates (f(1) = 1). Third, the
ranking of RBSs according to their strength should be preserved across replicates (f
is monotonically non-decreasing in [0, 1]). It should be noted that, empirically,
these assumptions appear to hold across the three biological replicates in this study.
Imposing the first two constraints above reduces the number of free parameters of
the polynomial function from three to one, resulting in the family of functions
parametrized by A: f(x) = Ax + (1 − A)x2. Moreover, the third constraint
translates into the following bounds on the set of allowed values for the free
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parameter A: 0 ≤ A ≤ 2. This procedure was carried out for each pair of biological
replicates. The quality of the resulting fits was then evaluated on the full data sets,
excluding the 31 internal-standard RBSs that were used to optimize A.

Machine learning core model. We fitted the flipping profile of each RBS with a
generalized logistic function (ML Annex), integrating the fitted kinetic curves
between the time points at 0 and 480 min. and normalized the integral value by
dividing by 480 (min). The resulting normalized integral value (range between 0
and 1; IFP0–480min) was used as a descriptor of RBS behavior and was selected as an
exemplary target for prediction since it exhibits high correlation with cellular Bxb1-
sfGFP levels and a high diversity across the RBS libraries (Supplementary Fig. 12).
Initially, we defined a set of preliminary candidate deep-learning architectures for a
predictive model according to standard practices12,65. These included convolu-
tional neural networks (CNNs) with and without residual blocks, as well as mul-
tilayer perceptrons. These architectures were assessed as part of the
hyperparameter selection process, which indicated superior performance of the
CNN with residual blocks (ResNet)49,50 for this particular application, resulting in
a model with three residual blocks of two convolutional layers and two sets of two
fully connected layers. We applied three main variations to the ResNet model in
order to improve predictive accuracy and additionally provide a measure for
predictive uncertainty. First, we chose the negative log-likelihood, which is a proper
scoring rule, as the training criterion to achieve better uncertainty estimates56. The
predicted IFP0–480min was modeled using a beta distribution, as it provides a
flexible distribution with support in the interval [0, 1]. Second, the last two fully
connected layers in the network were modified to output two values instead of one,
thereby allowing to independently parametrize the two shape parameters of the
predictive beta distribution for each input sequence. Equivalently, as the first two
moments of the beta distribution are functions of the shape parameters, we were
able to retrieve the mean and the standard deviation of the predictive distribution
for each input sequence. Third, we used an ensemble of N = 2 × 5 ResNet
models56, each trained separately with a different random initialization of network
parameters, a random order of training sequences during stochastic gradient-based
optimization and different architecture and optimizer hyperparameters. This third
variation helped increase predictive accuracy and capture epistemic uncertainty.
The final model, SAPIENs, is an ensemble composed of five ResNet models with
three residual blocks of two convolutional layers, composed of 64 filters of sizes 9
and 1, respectively, followed by two sets of two fully connected layers with 64 and 1
units, respectively (weight decay parameter: 10−6, learning rate: 0.01) and five
ResNet models with three residual blocks of two convolutional layers, composed of
512 filters of sizes 10 and 1, respectively, followed by two sets of two fully con-
nected layers with 64 and 1 units, respectively (weight decay parameter: 10−6,
learning rate: 0.001). In all cases, we kept a held-out test set and split the remaining
data set into a training and a validation set while keeping the same proportion of
strong RBSs as defined by the 15th percentile of the IFP0–480min distribution and
softplus activation functions for the two output layers. We used batch-
normalization66 followed by LeakyReLU activation functions between each layer.
For optimization, we used the Adam optimizer67. The model was implemented in
Keras with the Tensorflow68 backend. All hyperparameters (number of filters and
layers, filters sizes, number of units of the fully connected layers, weight decay,
learning rate, batch size) were selected with random search69 on the basis of their
performance on the validation set. Additional details about the neural network can
be found in the ML Annex.

Uncertainty estimation. The measured IFP0–480min for each RBS was modeled as a
draw from a beta distribution. The mean and variance of this distribution estimated
by the ResNet model (see above) correspond to the predicted IFP0–480min value and
an indication of the aleatoric uncertainty of prediction, respectively. To comple-
ment this aleatoric estimate with an estimate of epistemic uncertainty, we first used
an ensemble of N = 5 ResNet models with identical architecture and optimizer
hyperparameters but different random parameter initialization and ordering of the
input sequences. The uncertainty estimate is therefore given by the standard
deviation of the mixture of N = 5 beta distributions (Supplementary Fig. 15a–c).
Furthermore, we extended this ensemble strategy at a later stage by also including
M different configurations for the higher level hyperparameters, such as archi-
tecture and optimizer hyperparameters, with five ResNet models per configuration,
resulting in a total of N = M × 5 ResNet models in the ensemble. Finally, a number
of configurations M = 2 was fixed as a trade-off between predictive performance
and computational complexity (Supplementary Fig. 15d). The reliability diagram
for this final ResNet ensemble (SAPIENs, N = 2 × 5) showed well-calibrated
uncertainty estimates (Fig. 4f) indicating that the uncertainty of each predicted
target value seems to be accounted for. This is confirmed by the fact that the mean
absolute error is positively correlated with the predicted standard deviations
(Supplementary Fig. 15e). Both these results suggest that the predicted standard
deviations can be used as scores to evaluate the quality of each individual
prediction.

Minimal read number threshold. A minimal threshold for the number of NGS
reads per RBS was determined as a quality control criterion for both training and
test sets. Increasing this threshold is expected to trade off two opposite effects since

it increases the average quality of the data leading to a decrease in the underlying
aleatoric uncertainty but at the same time reduces the data set size available for
training, which generally lowers predictive performance. To this end, we first
defined six filtered data sets obtained by keeping only sequences with at least 10, 15,
20, 30, 40, or 50 reads per sampling time point. Then, we randomly split each
filtered data set into training, validation and test sets as described above and made
sure that for each split the high-quality training, validation and test sets were
contained in the lower quality training, validation and test sets, respectively.
Moreover, a test set was held out for the following prediction experiments. In order
to identify an optimal lower read-count threshold, we trained a single ResNet
model for 150 epochs. We randomized the search for hyperparameters69 (see
above) used the same 150 sets of hyperparameters for each filtered training data set
and determined the coefficient of determination on the validation set. Hence, the
minimal threshold was effectively treated as a hyperparameter. This analysis
indicated that a minimal threshold of 20 reads per time point was optimal for
predictive performance, which saturated for lower thresholds despite the increase
in overall data set size (Supplementary Fig. 9a). We kept this training/validation/
test split (Split0) for the following prediction experiments. Finally, we confirmed
that these conclusions were not an artifact of the random split of the original data
set by repeating this analysis using five different training, validation and test-set
splits (Supplementary Fig. 9b).

Evaluation and benchmarking of the prediction model. Using Split0, we eval-
uated our model in more detail. Importantly, this implies that the test set had
not been used in previous experiments in order to avoid overfitting. First, we
used random search for selecting the best combination among 150 sets of
hyperparameters on the validation set (see above), let SAPIENs run for 300
epochs and used an early stopping criterion on the validation set to avoid
overfitting by selecting the epoch with the best validation R2 (Fig. 4c). To
compare our single ResNet models and SAPIENs to different available ML
approaches, we trained different models (Fig. 4b, e) on the training set and tuned
their hyperparameters by optimizing predictive performance on a subset of the
validation set of Split0. The single ResNet and SAPIENs models were trained for
a maximum of 150 epochs, using early stopping. A total of 100 randomly gen-
erated model architectures with 1–3 residual blocks were considered. Hyper-
parameters tuned for the other models were regularization strength for Ridge
Regression52, number of neighbors K for k-Nearest Neighbors53, number of trees
for Random Forests54, and maximum depth and learning rate for Gradient Tree
Boosting55, the later also benefited from early stopping in the validation set. The
impact of the training set size on predictive performance (Fig. 4e) was evaluated
by training the different models on different smaller data sets, while ensuring
that the training and validation sets were contained in the training and vali-
dation sets of higher sample size experiments (i.e. nested training and validation
sets). Hyperparameters for all models were optimized independently for each
training set size on the corresponding validation set. The effect of adding
designed sub-libraries to increase the fraction of stronger RBSs in the bulk
library (Fig. 3e) was further analyzed to evaluate a potential gain in predictive
performance for the intermediate and strong sequences (Supplementary Fig. 14).
To this end, we performed cross-analyses with the fully degenerate sub-library
(N17) and the bulk library (N17+High1-3). We trained on N17 and predicted on
unseen subsets of N17 and N17+High1-3, and trained N17+High1-3 and pre-
dicted on unseen subsets of N17 and N17+High1-3 (Supplementary Fig. 14a). In
another set of analyses, we omitted each of the enriched sub-libraries while
training by moving them to the test sets and evaluated the corresponding effect
(Supplementary Fig. 14b). We trained a single ResNet model for 300 epochs for
computational considerations and we used early stopping in the validation set.
Hyperparameters were tuned independently for each data set and selected from
150 random configurations in the corresponding validation set. All analyses were
done with the same training and validation set sizes. Comparative analyses were
performed with the same test set.

Evaluation of sequence motifs and model interpretation. We analyzed the fully
degenerate sub-library (N17) in order to measure the impact of the position of
known motifs of influence on the RBS activity, such as start codons (AUG, UUG,
GUG) or the consensus Shine–Dalgarno sequence (AGGAGG and subsequences).
To this end, for each position, for each group of RBSs that presented the motif of
interest at the given position, we calculated simple statistics (median, interquartile
ranges, 20/80 percentiles) on the target IFP0–480min of the sequences in the group
(Fig. 5a, b; Supplementary Fig. 17c, d). We excluded from these groups RBSs that
contained at least one start codon other than the one at the position of interest. We
also analyzed the filters of the first convolutional layer (excluding the first skip
connection) of a ResNet model of the ensemble chosen at random (Fig. 5c). To this
end, the effect of each filter was evaluated by calculating Pearson’s correlation
coefficient between the filter activations at each position and the flipping integral
for all sequences in the test set. Consequently, each filter is represented by a vector
of correlations of size 17, which corresponds to the number of positions at which
the filter influence is estimated. Finally, the filter representations are then clustered
in 12 groups with a complete linkage clustering method using Hamming distance
as the underlying metric for comparing individual sequences in order to group
filters of similar influence. The integrated gradients57 method assigns attribution
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scores to each base and position by computing the linear path integral between the
sequence of interest and a baseline sequence chosen a priori. The attribution scores
measure the effect of individual bases on the predicted IFP0–480min, relative to a
baseline. We applied the integrated gradients method to SAPIENs and chose a
“blank” one-hot encoded sequence as a neutral baseline (i.e. an all-zeros array). We
first used a dimension reduction method, the t-distributed stochastic neighbor
embedding (tSNE) method, to visualize how sequences behave in a low-
dimensional space (perplexity = 12, early exaggeration = 30) (Fig. 5d). We also
averaged the attribution scores of all sequences in the test set, per base and per
position, to get a better understanding of the important positions and bases, which
contribute either to a high RBS activity or to a low one (Fig. 5e). Finally, in order to
account for non-linearities between positions and to understand the drivers of very
strong or very weak sequences, we selected the top 5% and the bottom 5%
sequences in the test set after removing outlier sequences and clustered each pool
with k-means according to their attribution score profiles into five clusters. The
medoids of these five clusters are displayed for the strong (Fig. 5f) and weak RBSs
(Supplementary Fig. 18). For in silico evolution, we selected the weakest (respec-
tively strongest) sequence in the test set and aimed to mutate it progressively to a
sequence presenting a maximum (respectively minimum) attainable RBS activity as
predicted by SAPIENs (Fig. 5g, h). To do so, we considered all sequences that could
result from applying one or two mutations to the current sequence and kept the
strongest (respectively weakest) one in each round until no candidate exhibited a
change in predicted IFP0–480min in the desired direction.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Plasmids pASPIre1, pASPIre2, and pASPIre3 are available from Addgene under
identification numbers ID154842, ID154843, and ID154843, respectively. Source data for
Figs. 1d, 2c–e, 3b, d, e, 4b–f, and 5a–c, e, f and Supplementary Figs. 1b, 3a, b, 4a, b, 5, 6b,
7a, b, 9a, b, 10, 11, 12a–c, 13, 14a, b, 15d, e, 16, 17a–d, 18, and 25 are provided in the
Source Data file. The raw NGS data for the three biological replicate experiments for the
large RBS library are provided in the NCBI SRA under accession codes SAMN15215026,
SAMN15215027, and SAMN15215027. Source data are provided with this paper.

Code availability
The processed NGS data sets are available under: github.com/JeschekLab/uASPIre. The
code generated and used in this study is available under: github.com/JeschekLab/uASPIre
(NGS data processing) and github.com/BorgwardtLab/SAPIENs (code for ML). Source
data are provided with this paper.
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