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Spatial planning with long visual range benefits
escape from visual predators in complex
naturalistic environments
Ugurcan Mugan 1,2 & Malcolm A. MacIver 1,2,3,4✉

It is uncontroversial that land animals have more elaborated cognitive abilities than their

aquatic counterparts such as fish. Yet there is no apparent a-priori reason for this. A key

cognitive faculty is planning. We show that in visually guided predator-prey interactions,

planning provides a significant advantage, but only on land. During animal evolution, the

water-to-land transition resulted in a massive increase in visual range. Simulations of

behavior identify a specific type of terrestrial habitat, clustered open and closed areas

(savanna-like), where the advantage of planning peaks. Our computational experiments

demonstrate how this patchy terrestrial structure, in combination with enhanced visual range,

can reveal and hide agents as a function of their movement and create a selective benefit for

imagining, evaluating, and selecting among possible future scenarios—in short, for planning.

The vertebrate invasion of land may have been an important step in their cognitive evolution.
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A crucial feature of the history of vertebrates is the massive
increase in the range of visual perception that occurred
around 380 million years ago when they started invading

land1. In water, short visual ranges cause visually guided inter-
actions to be urgent and reactive. After the vertebrate invasion of
land, this limitation in reaction time is lifted with the increased
transparency of the viewing medium and a consequent increase in
visual range by a factor of 1001 (Supplementary Fig. 1). Thus,
whereas an aquatic animal has to make decisions on the order of
a second with limited information, the same animal on land has
at least 100 times longer and much more information.

This increase in time-to-act—while a necessary condition for
deliberation2—may not have been a sufficient condition for the
evolution of planning in dynamic scenarios. Importantly, within
the greatly enhanced range of Devonian aerial vision was rich
structure provided by vegetation3 and terrestrial topography,
resulting in environments with greater complexity compared to
aquatic habitats4 (Supplementary Fig. 2a–c). While the increase in
time-to-act extended the available time for deliberation, the
concomitant increase in spatial complexity may have been
essential in increasing the number of potential future scenarios,
which depend on the dynamics of the agents (e.g., predator/prey)
involved (Supplementary Fig. 2d–f).

This study builds on research into the neural basis of decision
making that suggests the existence of two competing, and largely
parallel systems: habit- and plan-based action selection5. Under
habit-based action selection, there is no explicit consideration of
action outcomes. Instead, action choices are sculpted by prior
experience. Research in rodents shows that for both appetitive
and aversive stimuli, a shift in behavior from plan-based to habit-
based action selection occurs in conjunction with a shift from the
associative to the sensorimotor cortico-basal ganglia network6. A
similar paradigm also exists for birds7. The conserved organiza-
tional structure of the basal ganglia from lamprey, jawless fish
that preceded mammals by 560 million years, to mammals8,
suggests that this structure—and thus the habit-based system it
supports—evolved very early on in vertebrate evolution.

In contrast, plan-based action selection occurs by extrapolating
from actions to their possible outcomes, drawing on diverse
mnemonic representations such as spatial maps and requires the
hippocampus (or its functional homologs)9,10. In mammals,
spatial planning has been related to the phenomenon of nonlocal
spatial representations in hippocampal activity11, sometimes
interpreted as prediction or imagination. Two quintessential
examples of this are sharp-wave ripple12 associated replays/tra-
jectory events13, and vicarious trial and error11. Current theories
suggest that flexible decision making that depends on such ima-
gined simulations requires interactions between the hippocampus
and prefrontal cortex (PFC)11,14,15. Despite the differences in
brain architecture between birds and mammals16, planning in
birds also requires interactions between the avian homologs of the
hippocampus and PFC17. While there has been significant
research into neural systems involved with habit and planning in
tasks with stationary rewards18 (termed habitizable), the role that
increased visual range and environmental complexity might have
played in altering the relative advantage of these two decision
making systems in dynamic tasks with high reward uncertainty
(termed non-habitizable) has not yet been explored.

Here, we test the hypothesis that in non-habitizable scenarios,
plan-based action selection is advantaged in proportion to visual
range and environmental complexity. Using computational
simulations, we model prey evading a predator while trying to
reach a distant goal. We then systematically vary visual range and
environmental parameters—such as aquatic versus terrestrial
structure—to understand how these parameters may contribute
to the appropriate decision making strategy. We find that

independent of environmental parameters, planning advantage
was proportional to visual range. In spatially simple environ-
ments (uncluttered or highly cluttered), evasion strategies were
highly stereotyped, enabling habit to perform as well as planning.
In spatially complex environments that featured clustered open
and closed areas—not unlike savannas—the existence of multiple
viable futures maximally advantaged planning and caused habit
to fail.

We discuss the relevance of our findings for visually dominant
mammals and birds that depend on prediction rather than
detection while hunting, as well as planning in other non-
habitizable scenarios. Our results suggest a possible connection
between the emergence of vertebrate life on land and the evolu-
tion of planning in dynamic scenarios.

Results
Overview of habit- and plan-based action selection. In both
habit- and plan-based action selection, action choices are
dependent on the current state of the animal—spatial location of
the prey and the predator—which creates an association between
outcome and chosen action. This enables the prey to predict long-
term reward. Neurobiologically, we can assume that sensory
information allows the prey to detect the location of the predator,
while the hippocampus (or its functional homologs) and memory
provides allocentric location, and connections to PFC19 or its
homolog in birds20 provides a state-value estimate.

The habit solution for long-term reward prediction (model-
free5,18) assigns a value to an action or state based on prior
experience. Thus, the state-action values are divorced from their
immediate outcomes, resulting in inflexible responses to changed
circumstances6. Conversely, the planning solution (model-
based5,18) relies on an action-outcome knowledge structure to
generate action sequences by imagining future states and their
expected outcomes. While this method is computationally
expensive, it also creates flexible responses to changing
circumstances that may not have been previously encountered,
such as those caused by the movement of a mobile threat or
opportunity.

To study the effects of these decision making paradigms on
performance and behavioral complexity as a function of visual
range and environmental complexity, predator–prey interactions
within highly idealized pseudo-aquatic and pseudo-terrestrial
scenarios were considered (Fig. 1a, b). For both of these
computational experiments, the predator was designed as a reflex
agent (aggressive prey pursuit with some randomness) with a
belief distribution reflecting the likely locations of the prey when
it was out of view. The prey was configured to have either habit-
based action selection, or plan-based action selection with a preset
number of states that it could forward simulate. Note that we
were constrained to simulate planning in only the prey due to the
high computational burden of simulating planning in more than
one agent21; the choice of prey rather than predator was arbitrary,
and we do not expect it to affect our primary findings. First, we
simulated midwater aquatic conditions (Fig. 1a) where the prey’s
visual range was varied in a simple (open) environment.
Structured aquatic environments such coral reefs are also
considered in a subsequent analysis. Second, we simulated
terrestrial conditions (Fig. 1b) by adding obstacles until a
predetermined level of clutter density was reached (quantified
by entropy (Eq. (2)), see Methods). Unlike the aquatic condition,
visual range was limited only by the presence of occlusions, where
the prey and the predator could not observe each other if an
occlusion existed on the ray between them.

The prey’s start location and goal location (Fig. 1a, b: Safety)
was fixed, and the predator start location was randomly selected
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for each trial. Both the predator and the prey had a complete
cognitive map of the space (see Supplementary Note 1).
Moreover, the prey had an accurate model of predator action
selection.

Algorithmic implementation of behavioral controllers. Habit-
based action selection exploited prior action sequences that
resulted in survival for a given visual range and/or environment
(Fig. 1c). Similar to prior approaches5, we used successful tra-
jectories generated by the planning algorithm at the maximum
planning level (5000 states) to initialize the set of habit-based
trajectories. In doing so, we ensure that we isolate the effect of
behavior being driven by a previously learned sequence of actions,

in the absence of sensitivity to changes in predator location and in
the absence of sensitivity to immediate outcomes. If instead we
initialized a set of habits by a large number of training trials
through model-free methods, differences in performance between
habit and planing may stem from differences in initial knowledge.
We note, however, that the limitation we set on the number of
forward states simulated by the planner may result in suboptimal
policies.

After initialization of the set of trajectories that seeded the habit-
based action selector, a trajectory was chosen with probability
proportional to its total discounted reward22 (Eq. (1)), provided
that it led to survival. While the probability of choosing an action
sequence increased if it resulted in past survival, the action
sequence itself was not changed and was executed until
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termination (prey death or survival: reaching safety), which
resulted in inflexible responses. In contrast, with plan-based action
selection, within the imagination of the prey, each virtual action
was evaluated based on the virtual action’s possible outcomes. The
prey thereby generated action sequences in imagination (Fig. 1d)
that were dependent on the provided cognitive map and model of
predator policy. This creates a tree structure (Fig. 1e) of virtual
actions over the environment and their respective expected
outcomes. This is somewhat similar to a chess player thinking
through potential lines of play and counter-moves by an opponent.
After each move by the prey and the predator, the prey re-planned,
which resulted in flexible responses to changing predator location.
Planning implemented in this study is based on Monte-Carlo tree
search23, a previously established efficient tree growth and search
algorithm used within artificial intelligence approaches to games
including AlphaZero24. Note that at 5000 states, assuming all four
directions are available at each step, the planner can only evaluate
six moves ahead, whereas the minimum number of moves to get to
the goal is fourteen. Therefore the planner is likely finding policies
that are locally optimal which may not be globally optimal.

Performance in simple habitats while varying visual range. In
the pseudo-aquatic simulations of idealized predator-prey inter-
actions (Fig. 1a), the increase in survival rate is proportional to
visual range (Fig. 2a). The utility of planning, defined as the
average change in survival rate across planning levels, is sig-
nificantly higher for long visual ranges (Fig. 2b).

The two most important determinants of survival in open
environments are: (1) distance at which the predator is detected—
proportional to visual range—and (2) the number of times the
predator is within view of the prey. Long visual range facilitates
early predator detection, allowing the prey to react further away
(Supplementary Movie 1). At these ranges, the prey’s belief
distribution (see Methods) is less diffuse than with short visual
ranges (Supplementary Fig. 4), tailoring action choices to a
smaller set of possible predator locations.

To analyze the behaviors that result from increased planning
across visual ranges, we quantified the frequency of actions
between linked cells, provided that the episode terminated with
prey survival. The set of such action sequences are termed success
paths. Interestingly, across all tested visual ranges, success paths
are highly stereotypical and simple (Fig. 2c; Supplementary
Movie 1). These emergent policies resemble a natural behavior to
approach solid objects or boundaries—called thigmotaxis—
commonly observed in terrestrial and aquatic animals in both
laboratory25,26 and naturalistic conditions27,28. These strategies
most likely occur as a result of the prey trying to increase its
distance from the predator while trying to get to the goal location.
Notably, habit-based action selection that uses these success paths
results in comparable performance to planning at 5000 states
forward simulated (Fig. 2d; Supplementary Movie 2).

Performance in environments while varying complexity. Next
we examined prey behavior in more cluttered environments. At
midrange levels of environmental clutter (entropy 0.4–0.6), both
the prey survival rate (Fig. 3a), and the utility of planning peaks
(Fig. 3b). In environments that have either low (entropy 0.0–0.3)
or high (entropy 0.7–0.9) levels of clutter, the environment and
predator dynamics restricts both the survival rate (Fig. 3a) and
the advantage gained from increased planning (Fig. 3b).

Performance and behavioral variability are affected by the
spatial distribution of clutter. The spatial distribution of clutter—
not captured by entropy—can be assessed using a quantitative
measure termed visually occlusive spatial complexity (see
Methods (Eqs. (3)–(4)); Fig. 3c), which is based on a network
representation of cells connected by line-of-sight. The complexity
of these networks, defined in terms of equivalence and diversity of
the number of cells visible from a given cell, has two boundary
conditions that are simple29: fully visible environments (open),
and fully occluded environments. Between these edge cases,
visually occlusive spatial complexity (hereafter spatial complexity)
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Source Data file.
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increases until midrange levels of clutter and then decreases for
highly cluttered environments (Fig. 3c).

Similar to our analysis of behavior in pseudo-aquatic
environments, we quantified behavioral variability in terms of
action frequency and examined success paths for each environ-
ment. In spatially simple (low and high entropy) environments,
success paths under planning are highly stereotyped (Fig. 3d, e, g,
h; Supplementary Movie 3). Conversely, in spatially complex
(midrange entropy) environments, the prey’s survival strategy is
variable (Fig. 3f, h). The spatial distribution of occlusions in these
environments enables prey that plan to exhibit complex and

flexible behaviors that strategically deploy occlusions to escape
from the predator, resembling hiding and natural diversionary
tactics30 (Supplementary Movie 4).

The suggested emergence of flexible behavior in spatially
complex environments affects the success of habits. In low
complexity environments, success paths under habits are highly
stereotyped (Fig. 3i), resulting in their performing similar to
planning at 5000 states forward simulated (Fig. 3j). In contrast, in
high complexity environments, the high variability in success
paths—the result of decisions specific to predator choices—results
in significantly poorer performance under habits, as the prey
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cannot re-valuate future actions based on changes in state (Fig. 3j;
Supplementary Movie 2). When the prey visual range is restricted
(1, 3, and 5 cells ahead) in environments that have the greatest
path diversity (see Methods; Fig. 3h), performance is significantly
degraded under plan-based action selection and is not signifi-
cantly different from performance under habit-based action
selection at long visual ranges (Supplementary Fig. 6a; two-tailed
MWU test U = 410.0 p = 0.28). Notably, survival paths become
stereotypical (Supplementary Fig. 6b, c), suggesting that complex
behaviors such as hiding disappear (Supplementary Movie 1).
Despite the emergence of complex behaviors at longer visual
ranges in these same environments, the reduced visual range
results in the predator frequently being out of view. Conse-
quently, the prey often makes lethal errors as it cannot plan its
actions based on the predator’s precise location (Supplementary
Fig. 7; Supplementary Movie 1). Thus, in highly complex
environments, having long visual range—and thereby frequent
and well-resolved updates on predator position—is necessary for
the rapidly changing action values to reflect the actual adversary
location, rather than reflecting an average across all the believed
locations of the adversary as occurs in the shortened visual range
condition.

These results suggest that emergent strategies for survival are
dependent on environmental properties interacting with well-
resolved dynamic contingencies. Non-habitizable complex envir-
onments may generate multiple viable futures, which might
require planning to discover their diverse values.

Spatial connectivity to arbitrate between planning and habit.
The stereotypy of prey success paths in simple environments
allows the predator to follow a competing strategy that is similarly
dependent on environmental properties. Complementary to our
previous analysis, we quantified success paths for the predator by
calculating the frequency of actions taken by the predator in
episodes that resulted in prey capture (Fig. 4a, b, Supplementary
Fig. 8). These resulting predator success paths resemble trajec-
tories taken by primates in pursuit tasks31 and seem to arise as a
result of easy access to predicted prey locations.

Access and connectedness can be quantified using centrality
measures on an equivalent graphical representation of environ-
ments (see Methods (Eq. (5))). One such measure is eigenvector
centrality (eigencentrality (Eq. (6))), which in this case represents
the weighted sum of direct connections (actions to and from a
cell) and indirect connections of every length32 (Fig. 4b). Graph
theoretic measures in general have been used to describe
neurobiological relational knowledge structures (e.g., hippocam-
pal formation and the cognitive map)33. Such an approach allows
for generalizations of emergent phenomena based on connected-
ness of an abstract representation. The emergent stereotypical
prey policy in open environments is along poorly connected cells
(correlation between cell eigencentrality and action frequency:
Spearman ρmean=−0.55); while the emergent predator policy is
distributed over highly connected cells to facilitate easy transi-
tions between neighboring regions (Fig. 4b). Unlike open
environments (Fig. 4b), which have a region of high eigencen-
trality that tapers away in all directions, spatially complex
environments exhibit adjacent clusters of highly and poorly
connected regions (correlation between spatial complexity and
spatial clustering of eigencentrality (global Moran’s I): Pearson ρ
= 0.61, p < 10−21) (Fig. 4d, e). In such environments stereotypical
action sequences do not emerge.

We hypothesize that in environments with high eigencentrality
clustering, planning becomes imperative during transitions from
low to high eigencentrality and results in behavioral variability in
regions of high eigencentrality (Fig. 4d–e). Preliminary support

for this is found in the pattern of nonlocal hippocampal spatial
representations that sweep in front of rodents at high-cost choice
points34,35 where there is a sharp change in eigencentrality
(Fig. 4c). To examine this hypothesis, we implemented a hybrid
controller that executed habit-based action selection in regions of
low eigencentrality and switched to plan-based action selec-
tion when the prey was transitioning into and navigating a region
of high eigencentrality.

In environments with low eigencentrality clustering (low
complexity), behavioral control was rarely transferred over from
habit to planning (Fig. 4f). Consistent with our previous findings
(Fig. 3j), in these environments, all examined types of behavioral
control strategies (habit, planning, and hybrid) performed
similarly (Fig. 4g). In contrast, in environments that featured
adjacent clusters of low and high eigencentrality (high complex-
ity), our hybrid controller engaged planning more often (Fig. 4f;
two-tailed MWU test U= 361.0, p < 10−10) and resulted in
survival rates that were not significantly different from those
attained with full-time planning (Fig. 4g). The success of this
hybrid strategy also agrees with prior research that suggests
behavioral control should be transferred from habit to planning
as uncertainty in state values increases5. Here, the prey’s
uncertainty increases in highly connected regions as a conse-
quence of an increase in regional openness.

Relating the generated environments to natural habitats. The
assumption of a detailed allocentric cognitive map (see Supple-
mentary Note 1) and the limitation of actions to the 2-D plane
has the consequence that for both agents, the 2-D randomly
generated environments examined in this study (Fig. 1a, b)
generate a 2-D perspective-independent representation of space
through which these agents navigate. In extending these idealized
2-D environments out of the plane as a first step toward real
environments, it is important to note that the planar motion
restriction in our study implies that the 3-D height distribution of
occlusions will not influence the planning process or the con-
sequent action choice so long as the occlusions break the line of
sight. Consequently, approaches to quantifying habitat spatial
patterning based on a top-down orthographic projection, pro-
vided that the structures being projected down break the line of
sight of the interacting animals, will provide a reasonable way to
relate our 2-D environments to natural habitats for animals that
are mostly confined to the ground or stay near to biogenic
structure on the substrate of water bodies as do many fish.

Lacunarity36, a measure commonly used by ecologists,
quantifies the spatial heterogeneity of gaps that arise from, for
example, spatially discontinuous biogenic structure such as
grassland between wooded forests. It is typically based on a
top-down projection of space. Lacunarity has been used to study
the effects of habitat spatial patterning on ecological processes,
such as the dispersion of predators and prey, and to characterize a
wide range of aquatic and terrestrial habitats (Supplementary
Table 1; Supplementary Methods 1). Based on this analysis,
coastal aquatic environments such as those with small patches of
seagrass have average lacunarities above 1.16 (n= 5), while flat
seabeds or midwater aquatic conditions that have no structure
approach infinite lacunarity. In contrast, highly cluttered aquatic
environments such as those containing large patches of seagrass,
salt marshes, and coral reefs result in average lacunarities between
0.12 and 0.49 (n= 16). Terrestrial environments, featuring both
largely open environments such as herbaceous rangelands and
highly cluttered environments such as dense forests, have average
lacunarities between 0.23 and 1.35 (n= 9). We computed the
lacunarity of the randomly generated environments we have
examined (see Methods), and used these ranges to categorize
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them into one of three major groups: coastal aquatic, terrestrial,
and structured aquatic (Fig. 5a; Supplementary Table 1).

As we do not have the source data to compute the spatial
complexity of the measured natural environments directly, we
instead indirectly estimated this quantity by categorizing the
generated environments into these three natural habitat domains
via their lacunarity. We used the spatial complexity of each
category as an approximation of the true spatial complexity of the
corresponding natural habitat. Assuming gaps are transparent to
vision, both coastal aquatic and highly structured aquatic
environments like coral reefs have lower spatial complexity than
terrestrial environments (Fig. 5b).

These results indicate that terrestrial environments advantage
planning (Fig. 5c) in non-habitizable contexts and facilitate the
emergence of complex behaviors. Notably, the subset of terrestrial

environments where planning outperforms habit (green circle,
Fig. 5d)—due to the emergence of flexible behavior—feature
clustered open and closed spaces not unlike savannas. In contrast,
there is unlikely to be a significant advantage to planning in
aquatic environments that are either largely open or closed (low
and high entropy environments) where a habit-based approach is
successful (Fig. 5d).

Discussion
We show that in simulated aquatic environments similar to a flat
seabed with small patches of seagrass or highly structured aquatic
habitats such as salt marshes or coral reefs, the simplicity of the
environment generates stereotypical strategies. This allows habit-
based strategies to succeed in dynamic tasks. This conclusion is
buttressed by ethological analyses of predator-prey dynamics in
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open water or on open ground, which typically concern habitual
and stereotyped responses. In aquatic contexts, stereotypical
responses are mediated by a specialized neuron called the
Mauthner cell that reduces the latency of an escape response37.
Interestingly, this circuit disappears in the vertebrate line after
amphibians37, possibly related to the lowered importance of short
range reactions once fully on land. The stereotypical strategy
observed in both pseudo-aquatic and pseudo-terrestrial envir-
onments is following the boundaries of the space (Fig. 2c, Sup-
plementary Movies 1 and 3). Similarly, in studies of live animals
in both aquatic and terrestrial contexts, retreating from exposed
areas to edges after detecting increased predation risk is well
documented28 and is used as an assay of anxiety in laboratory
experiments25,26. Although the vast majority of the underwater
predator-prey literature concerns reactive stereotyped behaviors,
there are rare exceptions, such as cooperative hunting between
moray eels and groupers38 and triggerfish hunting behavior39.

Our analysis is contingent on a large number of idealizations of
visually guided predator-prey interactions, a nuanced and highly
variable domain (see Supplementary Note 2 and 3). Nonetheless,
in simple environments the complementarity of predator and
prey strategy found in nature emerges out of the simulations,
shown by the negative eigencentrality-taxis of prey and positive
taxis of predator (Fig. 4b).

In complex environments, we observe complex behaviors that
arise as a consequence of a need to deliberate over multiple viable
futures (Supplementary Movie 4). Within ethology the use of
occlusions to gain advantage during stalking and pursuit is well
known in Carnivora40,41, though more common in felids than
canids42. Moreover, similar to mammalian hunters, birds of prey
are able to predict their prey’s likely paths of egress to

preemptively block and ambush the prey43 using occlusions such
as trees. This particular behavior is similar to luring strategies
employed by our simulated prey. Given the strategic use of
occlusions by the simulated prey in our environments, we would
expect similar behaviors to emerge had we simulated planning in
the predator. The response of prey to predator pursuit is relatively
less well measured, often described as fleeing behavior toward
areas of cover interspersed with concealment via freezing. While
freezing was not an action our prey could take, its functional role
in concealment44 was observed in our simulations as back-and-
forth oscillations behind a blocking occlusion (Supplementary
Movie 4).

We show that spatially complex environments have clusters of
low and high spatial connectedness. In these environments,
arbitrating between habit- and plan-based action selection based
on spatial connectivity results in no survival rate penalty com-
pared to planning continuously. Vicarious trial and error, thought
to reflect planning in rodents11, similarly occurs at transitions
into highly connected regions34,35.

Prior research suggests that an increase in theta coherence
between the hippocampus and PFC is needed to sort through
options as the hippocampus imagines potential outcomes11,14.
Interestingly, coherence between the hippocampus and PFC
increases when rodents transition from a closed arm (poorly
connected) to an anxiogenic open area (highly connected)45. This
may portend a mechanism for switching decision making modes
driven by anxiety as a proxy for spatial connectivity.

It should be noted that eigencentrality has broad applicability
to patterns of connectivity outside of spatial contexts. Extended
action sequences that require planning include tool making, non-
spatial two-step decision tasks46, and social decision making in
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primate troops. As eigencentrality has been used to examine
social grooming in primates47, one possibility is that the circuitry
for spatial planning evolved first and was later exapted for non-
spatial uses.

Given the strong evidence concerning early expansions in brain
size of mammals48, potentially related to navigation via olfactory
cues49, it seems likely that planning first evolved in situations that
are not as continuously dynamic as visually guided predator-prey
interactions. Prior research has shown that there is a transition
from plan-based to habit-based action selection after a novel set
of contingencies arise but subsequently stabilize5,11—habitizable
scenarios. An example of a habitizable use of planning would be
an olfaction-dominant animal entering a new territory with
relatively stable threats (e.g., the den of a predator) or opportu-
nities (e.g., an insect nest) (Supplementary Fig. 2b, e). After
updating the cognitive map, the planning system would be used
initially for devising paths that avoid threats or result in faster
access to the opportunities. After some time these action
sequences would shift to habit-based control.

Finlay and co-workers have discovered an inverse correlation
between the size of limbic (LI) (olfactory bulb, olfactory cortices,
amygdala, hippocampus, and septum) and isocortical (IS) com-
ponents of the telencephalon50 that may be related to the
importance of habitizable vs. non-habitizable planning in a given
species. Jacobs49 suggests that for animals whose foraging strategy
involves detection rather than prediction (roughly similar to the
habitizable case), the dependence on a cognitive map leads to an
enlargement of LI components, and planning can be supported
by an allocentric map calibrated by landmarks detected in the
near field (e.g., olfactory cues or short range vision). Animals
hunting more encephalized prey, which are predictable but dif-
ficult to capture, require planning and larger multisensory IS
components49.

Thus, one possibility is that after the rise of habitizable plan-
ning in ancestral endotherms, non-habitizable planning was
selected for in patchy terrestrial environments using rapidly
changing distal cues interrogated by vision. This may inform the
emergence of visually dominant birds with reduced olfactory
bulbs51, visually dominant simians, and terrestrial carnivores
which hunt with long range vision and olfaction40–42. Simians
show a reduction in LI and an increase in IS49,50. The origin of
bipedality in hominins, whose extant member excels in plan-
based action selection, has been related to their exploitation of
landscapes of high habitat diversity including open grasslands52.
A modern analogue of these early hominin environments is the
Okavango Delta52, samples of which exhibit lacunarity favoring
planning (Fig. 5a, Supplementary Fig. 11). In terrestrial carni-
vores, a more balanced increase in both IS and LI occurs as they
use long range vision and olfaction during hunting49,50.

We speculate that the reduction in LI, whose overall volume is
dominated by the hippocampus, in high acuity mammals could
be related to the simultaneous apprehension of distal landmark
information, thereby allowing planning over the changing sen-
sorium (rather than cognitive map only). This would be sup-
ported by recurrent isocortical connections particularly between
the PFC and hippocampus. This contrasts with the picture
emerging in teleosts, where an allocentric map53 may be gener-
ated from a sequence of landmark encounters detected at short
range, via a diencephalon to dorsolateral pallium (putative hip-
pocampal homolog) circuit54,55. How such a map is used in tel-
eosts is unclear, but it has been noted that there are multiple uses
of a cognitive map outside of planning56,57. Given our results
suggesting that planning has little to no advantage in water in the
context of predatory interactions, non-planning uses of a cogni-
tive map may help inform the presence of maps in fish39.

Similarly, for reptiles there is evidence for cognitive maps but
less evidence for planning53,58. In this case, however, as many are
terrestrial and have good vision, this group may signal an addi-
tional constraint on planning that mammals and birds have
overcome. In particular, planning requires exponential compu-
tation time with the number of steps into the future being con-
sidered, while habit requires constant computation time (see
Supplementary Note 4). The ability to plan for stationary (habi-
tizable) or dynamic rewards (non-habitizable) may therefore be
correlated with absolute brain size (similar to what has been
found for self-control59) and endothermy-related increases in the
speed of neural computation60 (see Supplementary Discussion 1).

We suggest that imaging systems—vision and echolocation—
play a special role in spatial planning. Aquatic echolocation in
whales and dolphins has significant range advantage over vision
(see Supplementary Discussion 2). Unlike mechanosensation,
audition, and olfaction, imaging systems are able to detect clutter,
and other variables with high temporal and spatial resolution
necessary for dynamic contexts. Such passive detection of objects
may be important for the calibration of the cognitive map and
may be why rodents require visual cues in maze tasks with learned
olfactory cues49. Notably, nocturnal visual range typically exceeds
diurnal aquatic range—Supplementary Fig. 1—but requires
reduced resolution to gain sensitivity61. The inference that noc-
turnality equates to reduced importance of vision in early mam-
malian evolution, and extant nocturnal species, may therefore be
suspect. While our contribution concerns dynamic planning in
vertebrates, vision seems to also be important in the two inver-
tebrates with the best evidence of planning, jumping spiders and
cephalopods. These animals have visual acuity far beyond what is
typical within this group62 (see Supplementary Discussion 3).

Parker has suggested that the origin of the Cambrian explosion
lies in the atmosphere or oceans of the period gaining higher
transparency to sunlight, triggering the evolution of the first
image-forming eye and sparking a predator–prey evolutionary
arms race that gave rise to the Cambrian’s profusion of animal
forms63. A second great change in transparency occurred with the
emergence of fish on to land, which gave rise to a sensorium large
enough to fit multiple futures. Our idealized model of spatial
planning during predator–prey interactions suggests that there
may be a link between the enlarged visual sensorium and habitat
complexity of terrestrial animals and the evolution of neural
circuits for dynamic planning.

Methods
Simulation 1: Pseudo-aquatic. A virtual prey and predator act in an empty 15 × 15
discretized environment (Fig. 1a). The prey either used habit-based or plan-based
action selection with a predetermined number of states to forward simulate. We
assumed that the prey and the predator had previously learned the environment
(where the boundaries and occlusions are; more on the perfect map assumption
in Supplementary Note 1). As the main acting agent, the prey was initialized with
an environment and predator model, which allowed the prey to forward simulate
the actions of the predator. The prey’s aim was to reach the goal location, and the
predator’s aim was to reach the prey before the prey reached the goal location.
However, the predator was not privy to the prey’s aim and therefore did not
explicitly associate any location within the environment as a goal for the prey. An
episode terminated if the prey reached the goal location (survival), if the predator
reached the prey location (death), or if the number of steps exceeded the maximum
number of steps allowed for an episode (200). For these simulations the number of
steps before termination was 19 ± 6 (mean ± std).

The predator was designed as a reflex agent that retained a memory of prey
location. The predator selected actions based on the policy: aggressively pursue the
prey with 75% probability, and act randomly with 25% probability. The predator
was on average 1.5× faster than the prey (moved two cells with 50% probability),
which fell within typical terrestrial predator speeds relative to prey of 1.2–264,65.
The predator observed the entire environment, and therefore knew the location of
the prey at all time points (rationale for the predator having larger visual range: see
Supplementary Note 2). During aggressive pursuit, the predator chose actions that
minimized the Euclidean distance between itself and the prey (if there was more
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than one action that met this criteria, then an action from this set was chosen at
random). During random action selection, if the prey was within the reach of the
predator, the predator chose actions that terminated the episode with prey capture.
Otherwise, the predator chose a random action that kept it within the confines of
the environment. The predator spawned at a random initial position exclusive of
the 3 × 3 region surrounding the prey, and the goal location.

For an overview of all general parameters see Supplementary Table 2.

Plan-based action selection. We formulated planning as a partially observable
Markov decision process (POMDP) consisting of the following variables66: a set of
states S (prey and predator spatial location), a set of observations O (0 if the
predator is not observed, cell number corresponding to predator location if the
predator is observed), a set of actions A (cardinal directions: North, East, South,
West), a list of action-observation pairs that constitutes the history h, a belief state
Bðs; hÞ specifying the probability distribution of the prey being in a state s given
history h, a reward function RðsÞ defined as the expected immediate reward for a
given state s, and discount factor γ= 0.9523 that attenuates distal rewards.

Here, the prey’s aim was to estimate V�ðhÞ (expected total optimal future
reward) by using its environmental model (further discussed below: Algorithm
of plan-based action selection). Forward simulation of future states was
implemented through construction of a tree that simulated possible actions until a
termination condition was reached (Monte-Carlo tree search adapted for POMDPs
(POMCP)23). Within this, the prey internally simulated its own actions, the
reactionary actions of the predator, and the corresponding observations and
rewards. These internal simulations are used to approximate the value function
without explicitly calculating it.

One time step consisted of: (1) The prey choosing an action with a softmax
decision maker21 a 2 A based on its estimation of V�ðhÞ. If that action brought the
prey to the goal then the episode terminated (survival); (2) The predator choosing
an action a 2 A based on its pursuit policy. If that action brought the predator to
the prey position, then the episode terminated (death); (3) The prey receiving an
observation o 2 O and reward r ¼ RðsÞ from the environment; (4) The prey
adding the action it chose and the corresponding observation to its history h; (5)
The prey updating its belief state Bðs; hÞ based on current history ht; (6) The prey
planning (internally constructing a planning tree) until a fixed number states were
forward simulated.

Vision and partial observability. The prey had a pre-specified visual cone that
faced the direction of motion and extended outward 1–5 cells ahead (fixed at a
single value per trial) (Fig. 1a). The prey always knew its own location within the
environment, but only knew the predator location if the predator was inside of the
prey’s visual cone. If the predator was outside of the prey’s visual cone, the prey
sampled a predator location from its belief state (Bð:; htÞ) proportionate to the
belief state distribution (Supplementary Fig. 4; for example, if the predator is
believed to be at cell (8, 12) with 90% probability, then 9 out of 10 draws from the
distribution would be (8, 12)). The number of samples (predator locations) the prey
drew from its belief state was equal to the number of states the prey forward
simulated23. For each of these samples, the prey constructed a planning tree
(Fig. 1d–e).

At the start of an episode, the prey rotated its visual cone 360∘ to inspect the
surrounding region. If the prey observed the predator during this initial sweep then
it knew the predator’s initial location, which conferred knowledge about the initial
state. Otherwise, the prey’s belief state was initialized to all possible predator
locations outside of the prey’s visual cone with equal probability. The rotation of
the visual cone independent of the acting direction was conducted only in the
initial time step (t= 0). At the start of plan-based action selection, K particles were
selected from this initial belief state23. Until the first observation, the prey’s belief
state was propagated based on the prey’s model of the predator’s movement; if the
predator was then expected to be within the visual cone, but was not, then the set of
belief states was correspondingly pruned (Supplementary Fig. 4). This process of
propagation and pruning was repeated for all K particles. In between two
observations, the prey’s belief state consisted of all the possible places the predator
might have moved given the location of the predator at the time of observation and
the prey’s model of the predator’s action-selection policy. In cases of particle
deprivation at large t’s, particle reinvigoration was performed. Across all the states,
M new particles that would satisfy the (at, ot) pair were added to belief state (i.e. if
the prey had not observed the predator after taking an action, M other states that
were unobservable from the prey’s location and were not in the belief state were
added to the belief state). As with prior practice23, K was set to be the number of
states forward simulated, and M was set to be 1 or the number of states forward
simulated divided by 10, with a maximum of 50,000 attempts at adding new
particles.

Algorithm of plan-based action selection. Planning was implemented through
construction of a tree23,66, which relied on a previously learned model of the
environment (boundaries and predator model). After an observation o 2 O was
received and a state sampled from the belief state Bð:; htÞ, the prey began planning
from its current history ht to estimate the optimal value function V�ðhÞ. Each node
in the search tree, denoted by T(h), had three elements associated with it: BðhÞ

specifying a set of possible predator locations (which converges to a single state
when the prey observed the predator), number of times a specific history h has
been visited (N(h)), and the expected value of an action and corresponding
observation (VðhÞ). V initðhÞ, and Ninit(h) are initialized to 0 for new nodes.

Planning tree construction and node value estimation in POMCP is divided
into two stages: a tree-search policy that is on nodes with non-zero visit values
(within-tree-search), and a rollout policy for nodes that have not previously been
visited. After the evaluation of a state (predator and prey location), the node
containing the first new history visited in the second stage is added to the search
tree (Fig. 1d, e). The planner uses partially observable UCT (PO-UCT) during the
first stage within-tree-search, which selects actions based on upper confidence
bound (UCB1)67; and a uniform random rollout policy during the second stage. If
a node has all of its children expanded (i.e., all the next states have values from a
state st) the tree policy selects an action based on the in-tree policy, otherwise, the
rollout policy is used to select actions. After the tree is expanded, the process is
repeated from the root node. One iteration consists of: (1) The prey selecting a state
from its belief state BðhÞ, (2) Selection of child nodes from the root node based on
the selected state using within-tree policy, (3) Expansion of a child node, (4)
Rollout until termination condition, and (5) Backpropogation of values through the
tree based on the rollout result. Therefore, the number of states the prey samples is
equal to its number of states forward simulated (e.g., if the prey can forward
simulate 100 states ahead, then it samples 100 predator locations from its belief
state). As the search tree is constructed the set of sample states encountered during
simulation for each node is stored. PO-UCT has been proven to converge to the
optimal value function23, which implies that as the number of states to be forward
simulated increases, an action that is selected based on the search tree nears the
optimal action to perform. At 5000 states forward simulated, however, it is unlikely
we achieve global optimality.

After an action at is selected with a softmax decision maker19,21 and an
observation ot is received from the environment, the planning agent’s history is
updated to reflect the new sample 〈at, ot〉. The start node of the search tree and the
associated belief state is updated to reflect the current history. The rest of the tree is
pruned, since all other simulated histories are no longer representative of possible
futures. Initial values and parameters are provided in Supplementary Table 3.

Algorithm of habit-based action selection. To model habit-based action selec-
tion (Fig. 1c), we implemented a variant of the PRQ-Learning algorithm22. For
each visual range, a policy library L= {Π1, . . . Πn} was created based on the prey
success paths—prey going from the initial position to the goal without being
captured. If the prey was able to see the predator at the outset, then the policy
library was initialized to be all sucess policies specific to that visual range and initial
predator location. Otherwise, if the predator was outside of the prey’s visual cone to
start with, then the policy library was initialized to be all policies for that visual
range across all simulated predator locations unseen from the prey’s start-
ing position. These success paths were taken from policies implemented by the
prey using plan-based action selection at 5000 states forward simulated.

Following the PRQ-Learning algorithm, a policy Πk ∈ L was chosen by a
softmax decision maker:

PðΠkÞ ¼
expðτWkÞPn
p¼0 expðτWpÞ ð1Þ

where Wk is the reuse gain of implementing the chosen policy, and τ is the
temperature parameter. Initially all policies in the library were given zero weight.
During policy implementation the prey did not deviate from the prescribed action
sequence. After the implementation of the chosen policy Πk, if the episode resulted
in survival (prey reaching goal) the reuse gain (Wk) was weighted by the total
discounted reward R, and the number of times the policy Πk had been chosen
(Nk ←Nk+ 1):Wk  WkNkþR

Nkþ1 , and the temperature parameter τ was updated to τ ←

τ+ Δτ by the decay parameter Δτ. On the other hand, if the episode resulted in
prey death (prey capture by the predator) Nk, Wk, and τ were not updated. Initial
values and parameters are provided in Supplementary Table 4. The predator
action-selection policy was the same as the one implemented in the planning task.

Statistics and reproducibility. A total of n= 20 random predator locations per
visual range (1–5) and per number of states forward simulated (1, 10, 100, 1000,
5000) were used. Survival rate was calculated over 100 episodes for a given predator
spawn location, prey visual range, and number of states the prey could forward
simulate.

In Fig. 2b, the incremental benefit of planning is defined as the average
difference in survival rate between the tested 1, 10, 100, 1000, 5000 states forward
simulated (e.g., average of survival rate at 1000 minus survival rate at 100, survival
rate at 100 minus survival rate at 10, etc.) for a given visual range. Due to a non-
uniform increase from planning at 1000 states forward simulated to 5000
(difference is not 1 when converted to log ), a linear relationship was assumed, and
the calculated difference was multiplied by 2.

Data analysis was done using Python 3.7.4. Statistical analysis was done using
the ’numpy’ (v1.17.2) and ’scipy’ (v1.3.1) packages. Videos from raw episode files
were created in Matlab (raw episode files and Matlab created videos available in
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Source Data folder). All significance indicators follow: n.s. is not significant p ≥
0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

Simulation 2: Pseudo-terrestrial. A virtual prey and predator act in a 15 × 15
discretized environment featuring randomly added clutter with controlled density
(Fig. 1b). A total of nenv= 20 random environments, with nentropy= 10 levels of
clutter—quantified by environmental entropy (see below Environment generation
with randomized clutter)—were generated. The predator and prey model used for
this experiment were the same as Simulation 1. The prey’s plan-based action
selection was based on the algorithm described in Simulation 1: Plan-based action
selection.

The predator spawned at a random initial position exclusive of prey start
location, goal position, and occlusions. A trial terminated if the prey reached the
goal, the predator moved to the prey location, or if the episode reached the
termination condition of 200 steps.

The sequences of computations that occurred in one time step were the same as
Simulation 1.

Vision and partial observability. Unlike Simulation 1, the prey could see the
entire environment except where blocked by occlusions (Fig. 1b). If an occlusion
existed on the ray (Bresenham’s line algorithm68) between the predator and the
prey, the prey samples states from its belief state (Bð:; htÞ) (see Algorithm of plan-
based action selection). Initially, if the predator was not observed by the prey
(behind an occlusion), the prey’s belief state was all possible locations that were
unobservable from the given prey location with equal probability. Until the first
observation, the prey’s belief state was propagated and then pruned based on the
prey’s model of the predator movement and locations that were hidden from the
prey’s position. In between observations, the prey’s belief state constituted all the
possible places the predator might have moved (based on the prey’s model of
predator movement) given the location of the predator at the time of observation
and all the locations that were not visible from the prey’s position.

The existence of occlusions impeded both the prey’s and the predator’s line of
sight. Therefore, the predator knew the exact location of the prey if an occlusion
was not present on the ray between the predator and the prey. The predator kept
track (had memory) of the prey location while the prey was in view. When the prey
was hidden, the predator propagated the prey’s last known location randomly
within the environment (exclusive of occlusions) to form a belief state. During
aggressive pursuit, if the prey was within view, the predator used the actual prey
location to choose an action that minimized the Euclidean distance. If the prey was
hidden, the predator aimed to minimize its Euclidean distance to a single sampled
state, selected proportionate to the predator’s belief state distribution of possible
prey locations. During random action selection, the predator chose a random
action that did not move the predator to an occlusion or outside of the
environment.

For Supplementary Fig. 6, similar to Simulation 1, the prey had a pre-specified
visual cone that faced the direction of motion. However, for this experiment we
limited visual range to 1, 3, or 5 cells ahead (fixed at a single value per trial). The
prey only knew the predator’s location if the predator was inside the prey’s visual
cone. Unlike Simulation 1, the prey’s visual cone was cut by the presence of an
occlusion, therefore the prey could not see locations that were blocked by an
occlusion even if that location was inside the prey’s visual cone. Similar to the full
vision condition, for all locations inside the prey’s visual cone, if an occlusion
existed on the ray from that location to the prey’s location, that location was
deemed invisible (Supplementary Fig. 7). Initially, if the predator was not observed
by the prey, the prey’s belief of predator location was a uniform probability across
all possible locations (other than occlusions and goal position) that were outside of
the prey’s visual field (visual cone minus invisible locations within the visual cone).
Similar to the unlimited vision condition, and Simulation 1, the prey’s belief state
was pruned and propagated according to the prey’s model of the predator when the
predator was out of view.

Algorithm of habit-based action selection. The backbone of the algorithm (e.g.,
weighting and choice of policy from the policy library) was kept the same as
Simulation 1. For each environment all the action sequences that led to prey
survival during plan-based action selection were pooled together. If initially the
prey was able to observe the predator, the policy library was pruned to reflect
action sequences that were generated during plan-based action selection for that
particular predator location. If the predator was not initially in view, the prey used
the aggregate policy library after removal of all policies in which the predator was
initially visible.

Environment generation with randomized clutter. The entropy of a general m ×
n discretized environment was calculated by treating the discretized environment
as a binary matrix, where 1’s represent occlusions, and 0’s represent unoccupied

cells. The entropy of such an environment (H(X)) can be formally written as:

HðXÞ ¼ �
Pm

i¼1
Pn

j¼1 1ðxi;j ¼ 0Þ
mn

log

Pm
i¼1
Pn

j¼1 1ðxi;j ¼ 0Þ
mn

 !

�
Pm

i¼1
Pn

j¼1 1ðxi;j ¼ 1Þ
mn

log

Pm
i¼1
Pn

j¼1 1ðxi;j ¼ 1Þ
mn

 ! ð2Þ

where xi,j refers to the value at row i and column j.
In generating the occlusions for the environment, we assumed a random walk

policy of random length that started at an unoccupied random position. The
number of random walks performed could at least be 1 and at most be the number
of occlusions for a given entropy, here denoted as k. The total number of random
walk lengths l must equal to k: ∑1≤l≤kl= k. This process was repeated if a path from
the fixed prey position to the fixed goal position did not exist.

Environment complexity analysis. If an occlusion existed on the ray between the
predator and the prey, both the prey and the predator were hidden from each
other. By using the above principle we created a visibility network Gv= (Vv, Ev) for
all randomly generated environments. Vertices in this visibility network repre-
sented individual cells in the environment. An edge ei,j exists between two vertices
{vi, vj} if an occlusion does not exist on the line between the two vertices, which is
based on the same visibility ray used in determining the prey’s and the predator’s
current observation. This can formally be written as:

Ev ¼ vi; vj
n o

jvi 2 Vv ; vj 2 Vv ; vi ≠ vj and lðvi; vjÞ \ Θ ¼ ;
n o

ð3Þ
where l(vi, vj) determines the vertices that fall on the line between vi and vj, and Θ
refers to the set of occlusions specific to the environment.

Each vertex vi has a degree <vi > that specifies the number of graph edges that
touch vi. With such a network transformation, an environment with H(X)= 0 is a
complete graph with vertex degree <vi>=N − 1, ∀ vi∈ Vv. On the other hand, an
environment that is only clutter is a disconnected graph with vertex degree <vi>=
0, ∀ vi∈ Vv. Therefore, the complexity of a graph passes through a maximum and
goes down to zero for complete and disconnected graphs (Fig. 3c). An argument in
support of this complexity definition arises from Shannon’s information theory
applied to random graphs29. Mathematically, the complexity of a network is
defined as:

α ¼f<vi>jvi 2 Vvg

HðαÞ ¼ �
Xjαj
i¼1

αi
jαj log

αi
jαj
� � ð4Þ

Eigenvector centrality of environments. Environment quantization into a grid
structure lends itself to a network representation based on how the system is
connected together internally. If we again assume each cell is a vertex, in order to
represent the environment dynamics we defined the edges in terms of actions. In
such a network Gw= (Vw, Ew), an edge ei,j between two vertices vi, and vj exists if
there is an action connecting the two vertices. Similar to before we can formally
write this as:

Ew ¼ vi; vj
n o

jvi 2 Vw; vj 2 Vw; vi ≠ vj and pðviÞ!
a
pðvjÞ 8a 2 A

n o
ð5Þ

where p(v) returns the cell for vertex v.
Eigenvector centrality (eigencentrality) depends both on the vertex degree <vi>

and neighboring vertex centralities32. The centrality score x of a vertex vi is defined
as32:

xvi ¼
1
λ

Xn
j¼1

Avi ;vj
xvj ð6Þ

where λ is the largest eigenvalue of the adjacency matrix Avi ;vj
.

Transitioning between habit and planning. We combined habit-based action
selection and planning to model the consequences on survival rate for prey that
switched between habit- and plan-based action selection based on the eigencen-
trality of the environment (Fig. 4d). We grouped environments based on their
spatial autocorrelation of eigencentrality (SAE) (Fig. 4e), in which environments
with SAE below the 25th percentile were labeled as low, and environments with
SAE above the 75th percentile were labeled as high. We then performed a habit/
planning switching protocol within these environments.

The prey switched from habit- to plan-based action selection (with 5000
number of states forward simulated) when transitioning from a low eigencentrality
region to a high eigencentrality region. During habit-based action selection, the
prey used its knowledge about the next action to determine if the new location had
a higher eigencentrality. Conversely, the prey switched from plan- to habit-based
action selection when transitioning from a high eigencentrality region to a low
eigencentrality region. During plan-based action selection, the prey compared the
eigencentrality and gradient of eigencentrality at its current location to all other
possible locations (details provided below). The transition regions were identified
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based on the magnitude of the normalized eigencentrality (XE) gradient:

∇XEj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂XE

∂x

2

þ ∂XE

∂y

2
s

ð7Þ

During habit-based action selection, given the prey’s knowledge about the
predator policy, the prey retained a belief state. The belief state was set to be the
current state when the prey observed the predator. If the prey was not able to
observe the predator, the belief state was randomly sampled and propagated based
the prey’s model of the predator. If and when the prey switched over to plan-based
action selection at a given transition point, the prey’s belief state generated during
habit-based action selection was used to initialize the belief state used by the
planner. During plan-based action selection, the belief state was set by the planner.
If the prey switched to habit-based action selection, the belief state used by the
planner was migrated over to the habit-based controller. This process was repeated
in the case of multiple switches.

At the start of each episode the prey’s first action was chosen by the habit-based
controller. Given the nature of habit-based action selection, the prey’s next position
was set by the next action prescribed by the selected policy. During plan-based
action selection, the prey’s next position was a list, comprised of all allowable
locations (e.g., not walls and obstacles). The prey’s previous location (xt−1, yt−1),
current location (xt, yt), and next location (xt+1, yt+1) were used to identify
transition points. A transition was defined as:

∇XEðxt ; ytÞ
�� ��>max ∇XEðxt�1; yt�1Þ

�� ��; ∇XEðxtþ1; ytþ1Þ
�� ��� � ð8Þ

The prey’s action selection algorithm was switched from habit- to plan-based if the
prey was at a transition point, and the current eigencentrality value was smaller
than the next eigencentrality value ((XE(xt+1, yt+1) − XE(xt, yt)) > ϵ). Conversely,
the prey’s action selection algorithm was switched from plan- to habit-based if the
prey was at a transition point, and the current eigencentrality value was greater
than the maximum of the next possible eigencentrality values
(ðXEðxt ; ytÞ �maxa2AXEðxtþ1; ytþ1ÞÞ> ϵ). We find that ϵ= 0.1 works well.

Environment lacunarity analysis. Lacunarity (denoted by Λ) of the randomly
generated environments were calculated by using the sliding box algorithm36. Simply,
a box of size r was moved over the entire image/environment, overlapping itself at
each slide, thereby sampling each part of the image/environment multiple times.

An r × r box is placed at the starting corner of the environment, and the total
number of occupied sites S by the variable of interest is counted (n(S, r); in our case
occlusions). This value is often referred to as ‘box mass’. The box is then moved k
columns/pixels to the right (notice that if k= r we get fixed box counting), and the
process of counting is repeated. The frequency distribution of box mass S is

converted to a probability distribution QðS; rÞ ¼ nðS;rÞ
NðrÞ , where N(r) is the total

number of sliding boxes of size r. For an environment of dimension Ml ×Mw this
value is then equal to: N(r)= (Ml− (r+ k− 1))(Mw− (r+ k− 1)).

Lacunarity Λ(r) for a box size r is defined as the ratio of the second moment of
patches with mass S, E½S2� to the first moment of the patches mass S, E½S� squared,
i.e., ΛðrÞ ¼ E½S2 �

ðE½S�Þ2 , where the mean number of occupied cells per box is

E½S� ¼P SQðS; rÞ, and E½S2� ¼P S2QðS; rÞ. More intuitively, since the variance
of box masses is equal to

Var ðSÞ ¼ E½ðS�E½S�Þ2�
¼ E½S2� � 2E½S�E½S� þE½S�2
¼ E½S2� �E½S�2

ð9Þ

substituting Var ðSÞ þE½S�2 into the the lacunarity equation gives us:

ΛðrÞ ¼ Var ðSÞ
E½S�2ðSÞ þ 1, which implies that lacunarity correlates to the variance of box

masses over the mean of box masses. Therefore, empty environments (entropy=
0.0) do not have a distribution of box masses ( Var ðSÞ ¼ 0; E½S� ¼ 0), which is
therefore an asymptote. The reported values of Λ(r) in Fig. 5a are the mean

lacunarity values over the tested box sizes: Λavg ¼
PNr

g¼1 ΛðrÞ
Nr

, where Nr refers to the

number of tested box sizes.
Each of the randomly generated environments were converted to black and white

images of size 231 × 231. For these environments, the box sliding offset was set to
k = 1 and box sizes were varied from r= {1, 24, 47, 70, 93, 116, 139, 185, 231}.
These box sizes were chosen such that they would survey the space in increments of
10% (e.g., for box size r= 24 the total area being surveyed is ~10%, while for r= 47
the total area being surveyed is ~20% of the actual environment as the box is being
glided across). Lacunarity analyses of the binary images were performed using the
sliding box algorithm available in the FracLac plug-in69 for ImageJ70.

Statistics and reproducibility. A total of npred= 5 random predator locations
were used for Simulation 2 per random environment (nenv= 20), per clutter level
(nentropy= 10: 0.0–0.9 in steps of 0.1), and per number forward states the prey was
allowed to plan over (nsim ¼ 5:100, 1000, 5000). Survival rate was calculated over
50 episodes at a given predator spawn location, environment, clutter level, and
number of states forward simulated. A total of 19 predator spawn locations were

removed from the 1,000 spawn locations present across all episodes due to the
predator being stuck behind occlusions as a result of path planning using the
Euclidean distance to the believed prey location. The consequent entrapment
resulted in higher prey survival rates than would have occurred otherwise. In
addition, the 1 and 10 number of states forward simulated were removed: With 1
state, the prey only evaluates one of the (at most) four possible cardinal directions,
resulting in essentially random behavior; with 10 states, only two steps ahead are
considered, making action choices largely random. This causes the prey to get
stuck within relatively closed regions that require more than two steps ahead to
obtain a path of egress. Therefore, the total number of trials for Simulation 2 was
147,150.

In high entropy environments (0.7–0.9) there are 18 predator spawn locations
(out of the 150 total in these environments) that are on occlusions with an action
that leads it out of the occlusion. There are also 12 predator spawn locations where
a path from the predator spawn location to the prey does not exist.
Counterbalancing this is a number of spawning locations in these packed
environments which are adjacent to prey within relatively closed regions inevitably
leading to death.

The simulations for Supplementary Fig. 6 were conducted in environments with
success path occupancy (Fig. 3e, f) above the 75th percentile (n= 30). Similar to
both Simulation 1 and Simulation 2, the policy of the predator was kept constant
and the number of states forward simulated was (100, 1000, and 5000). Survival
rate was calculated over 50 episodes for a given prey visual range, and number of
states the prey could forward simulate (for a total of 22,500 trials).

In Fig. 3b the incremental benefit of planning is defined as the average
difference in survival rate between the tested 100, 1000, and 5000 states forward
simulated (e.g., the average of survival rate at 5000 minus survival rate at 1000) for
a given environment. Due to a nonuniform increase from 1000 states to 5000 states
(difference is not 1 when converted to log), a linear relationship was assumed, and
the calculated difference was multiplied by 2.

In Fig. 4e, the spatial autocorrelation of the environment eigencentrality was
calculated by using global Moran’s I. Global Moranʼs I was calculated using the
moransI function in R. Global Moran’s I evaluates whether a set of given values and
their locations are clustered, dispersed, or random. For this statistic, the null
hypothesis is that the spatial distribution of feature values (eigencentrality score of
a vertex) is random.

For habitat groupings in Fig. 5a–d, environments were grouped based on
average lacunarities of typical habitats (Supplementary Table 1).

For all environment groupings, environments with entropies below the 25th
percentile were categorized as low, and environments with entropies above the 75th
percentile were categorized as high. Mid-level entropy was classified as entropies
between low and high.

Data analysis was done using Python 3.7.4, R 3.6.1, and Mathematica 11.1.
Network analysis for visually occlusive spatial complexity and eigencentrality were
done in R and Mathematica with the ‘igraph’ package (R v1.2.4.2, Mathematica
v0.3.116), and in Python with ‘networkx’ (v2.3). Statistical analysis was done using
the ‘numpy’ (v1.17.2) and ‘scipy’ (v1.3.1) packages. Videos from raw episode files
were created in Matlab (raw episode files and Matlab created videos available in
Source Data folder). All significance indicators follow: n.s. is not significant p ≥
0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

Computing environment. The computational resources for this work were pro-
vided by the Quest high performance computing facility at Northwestern Uni-
versity which is jointly supported by the Office of the Provost, the Office for
Research, and Northwestern University Information Technology. The cluster is
composed of 244 nodes of Intel Haswell E5-2680 processors with 128 GB memory/
node, 184 nodes of Intel Xeon E5-2680 processors with 128 GB memory/node, 72
nodes of Intel Xeon Gold 6132 processors with 96 GB memory/node. Approximate
runtimes: Simulation 1: 5,000 total compute hours (50 h on 100 Quest nodes);
Simulation 2: 300,000 total compute hours (3000 h on 100 Quest nodes).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 2, 3, 4, and 5; Supplementary Figs. 3, 4, 5, 6, 7, 8, 9, 10,
11 and Supplementary Table 1 are provided as a Source Data file. Raw episode files used
to generate the Supplementary Videos are provided in the Source Data folder. Source and
binary satellite images from the Okavango Delta (Fig. 5a and Supplementary Fig. 11) are
provided in the Source Data folder. Data to generate all the figures are available at https://
github.com/MacIver-Lab/gridworld-decisionmaking/.

Code availability
These results were generated using code written in Python, R, and Mathematica. Code is
available at https://github.com/MacIver-Lab/gridworld-decisionmaking/. The
accompanying browser-based game is hosted on https://maciverlab.github.io/plangame/,
and the code is available at https://github.com/MacIver-Lab/plangame/.
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