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Mutualist and pathogen traits interact to affect
plant community structure in a spatially explicit
model
John W. Schroeder 1,2✉, Andrew Dobson3,4, Scott A. Mangan1,5, Daniel F. Petticord 1 & Edward Allen Herre1

Empirical studies show that plant-soil feedbacks (PSF) can generate negative density

dependent (NDD) recruitment capable of maintaining plant community diversity at landscape

scales. However, the observation that common plants often exhibit relatively weaker NDD

than rare plants at local scales is difficult to reconcile with the maintenance of overall plant

diversity. We develop a spatially explicit simulation model that tracks the community

dynamics of microbial mutualists, pathogens, and their plant hosts. We find that net PSF

effects vary as a function of both host abundance and key microbial traits (e.g., host affinity)

in ways that are compatible with both common plants exhibiting relatively weaker local NDD,

while promoting overall species diversity. The model generates a series of testable predic-

tions linking key microbial traits and the relative abundance of host species, to the strength

and scale of PSF and overall plant community diversity.
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P lant-soil feedbacks (PSF) are the processes by which plants
influence the composition of the local soil microbiome (e.g.
within the plant’s rooting, or leaf litter zone), which, in

turn, differentially affects the success of conspecific vs. hetero-
specific plant recruitment. Plant-soil feedback echoes the diversity
maintenance mechanisms proposed by Janzen1 and Connell2, but
shifts the focus from the effects of herbivorous and seed-eating
insects to those of soil borne pathogens and mutualists. It is
increasingly recognized that the strength and direction of PSF can
profoundly affect plant community structure and diversity3,4.
Negative PSF between two plant species occurs when the effect of
a local build-up of pathogens reduces the recruitment of con-
specific seedlings relative to heterospecific seedlings (see Supple-
mentary Fig. 1, and Eq. (6), for an overview of the interaction
coefficient, Is, that measures plant-soil feedback). Theoretical
studies have shown that negative PSF can promote the coex-
istence of competing plant species at large spatial scales by
creating negative frequency dependent recruitment5–8. In con-
trast, positive PSF can result from a local build-up of beneficial
microbial mutualists (e.g. mycorrhizal fungi or nitrogen-fixing
rhizobia) that show moderate host affinity9–11. Positive feedbacks
are expected to reduce species diversity12. In nature, net microbial
PSF comprises the combined effects of pathogens (−) and
mutualists (+)13–15.

A key challenge to understanding how soil microbiomes affect
plant community structure is correctly identifying the causes and
consequences of interspecific variation in the strength of
PSF5,6,16,17. Specifically, why do some plant species exhibit
stronger negative PSF than others, and how does this variation
relate to plant community dynamics? Following early studies, it
has been proposed that common species should accumulate more
pathogens and thereby suffer greater localized pressure from
natural enemies1,2. However, multiple experimental studies have
shown the opposite is apparently true; common plant species
generally exhibit weaker negative PSF than rare species6,13,18

(Fig. 1). Such studies have therefore suggested that the strength of
PSF determines plant relative abundance; common species are
common because they experience weaker net PSF effects. Given
this apparent contradiction, the mechanisms underlying PSF
effects on host species diversity and relative abundance require an
explicit theoretical framework that will generate predictions for
clear empirical tests.

Previous theoretical models of PSF have largely treated the
host-associated soil microbiome of any given plant species and its
resulting net effect on that host as a fixed, plant-associated
trait8,19. This simplifying assumption ignores the empirical reality
that plant microbiomes are not static, they are dynamic, changing
with plant location, size and age20–22. It is therefore clear that the
identity of the host plant indirectly affects the local microbial
community composition by affecting the dynamics of the existing
microbial community. Accordingly, factors such as the spatial
arrangement of neighbouring plants, and their local species
abundances, may influence the dynamics of the soil microbiota
that mediate PSF6,13,18. The assumption that target host plant
identity directly determines the local soil microbiome thus
obscures potentially important mechanisms underlying the rela-
tionship between PSF and plant community structure. Crucially,
if it is possible for the strength of PSF to affect host abundance, is
it also possible that host abundance affects the strength of PSF by
influencing the dynamics of soil biota?

Understanding what drives interspecific variation in feedback
strength requires understanding microbial characteristics that
affect population dynamics of the mutualists and pathogens that
underlie feedbacks. These traits, such as host affinity and dis-
persal, may differ between microbes with mutualistic and those
with pathogenic effects on their hosts. For example, studies

comparing host association patterns of mutualists and pathogens
suggest that putative pathogens show stronger affinity for parti-
cular hosts than mutualistic arbuscular mycorrhizal fungi23–25. In
addition, both mutualists and pathogens can vary in dispersal
propensity, from broad dispersal by wind26,27, to limited dispersal
via hyphal growth or belowground spores26,28. Thus, depending
on which types of mutualists or pathogens predominate in a given
system, the two guilds can differ in relative dispersal. This
potential for pathogens and mutualists to differ in life history
traits underscores the importance of considering how both
mutualists and pathogens independently affect feedback.

In order to understand the implications of microbial commu-
nity dynamics for plant community structure and diversity, we
present a spatially explicit stochastic model that simulates trees
interacting with their mutualistic and pathogenic soil symbionts
through time. Departing from previous simulations, we use
competition equations to control the change of the mutualist and
pathogen communities through time on each host. We assume
host plant identity does not directly determine microbial com-
munity composition; rather, plant identity affects the parameter
values of the competition equations controlling microbial com-
munity dynamics. The resulting composition of mutualists and
pathogens at a site determines seedling recruitment probabilities.
In order to assess the importance of the role of PSF in maintaining
plant diversity, we also assume that tree species can inherently
differ in fitness, such that the fittest tree species would go to
fixation in the absence of any stabilizing mechanisms generated by
PSF. Using results of many simulation runs with random micro-
bial trait values, we quantify the influence of each microbial trait
on model outcomes, such as the strength and direction of PSF for
each host species, as well as the overall diversity and relative
abundance of host species (see Supplementary Note 1 for a brief
explanation of our modelling philosophy).

Finally, we also use a combination of machine learning
approaches (particle swarm optimization29 and random forests30)
to identify combinations of microbial trait values that (1) create a
frequency dependent rare-species advantage that can maintain
overall plant diversity, and (2) generate the commonly observed
positive correlation between host abundance and PSF (i.e. com-
mon plants exhibit weaker negative local PSF). Using a general
framework that directly links quantifiable microbial traits to
observable outcomes, we develop testable mechanistic explana-
tions for recent puzzling results, such as the existence of negative
feedback driven by seemingly generalist pathogens31,32, and the
persistence of rare species even when they appear to be subject to
stronger negative feedback than common species5,6.

Results
Overview. We determined the influence of different plant and
microbial traits (illustrated in Table 1) on plant community
dynamics by analysing the output of 16 K simulation runs with
random, uniformly distributed values for our target traits. These
model runs captured a wide range of simulation behaviours.
We also used an adaptive learning algorithm29 to identify para-
meterizations that (1) maintain diversity of microbes and trees
through negative feedback, even in cases in which we assigned
different fitness levels to different tree species, and (2) create a
positive correlation between host abundance and PSF. After
describing the dynamics of the simulation in the context of these
specific requirements, we discuss the respective contributions of
mutualists, pathogens, and dynamic (versus fixed) microbial
communities to plant community dynamics. We then report the
relative contributions of microbial traits to model outcomes.

We found that microbial community dynamics can create a
correlation between host abundance and PSF, such that common
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plant species experience weaker local negative PSF than rare plant
species (Fig. 2). For example, when a new host colonizes a site, the
pathogens with a relative affinity for that host rapidly increase in
abundance (Fig. 3a), which decreases the relative survival
probability of the focal host’s seedlings (Fig. 3b). Concurrently,
pathogens with affinity for other host species persist, slowly
declining in abundance. When pathogens are not strictly host-
specific (i.e. show some tendency to be generalists and persist on
non-target hosts), it is possible for pathogens with a relative
affinity for the most common host species to maintain higher
abundances on non-target hosts than pathogens with a relative
affinity for rare species (Fig. 2a). Therefore, seedlings of common
species are expected to experience greater pathogen pressure
beneath heterospecific adults (resulting in decreased survival
probabilities) than seedlings of rare species (Fig. 2b).

In addition, mutualists with a relative affinity for common tree
species as a primary host tend to reach relatively higher
abundances beneath their hosts than mutualists with a relative
affinity for rare trees do beneath their primary hosts. Thus,
seedlings of common trees are expected to experience a greater
benefit from their mutualists beneath conspecifics than seedlings
of rare tree species (Fig. 2a). Acting together, the combined effects
of the accumulation of pathogens of common tree species beneath
heterospecifics, and the accumulation of their mutualists beneath
conspecifics, each decrease the net strength of negative PSF
experienced by common plants, resulting in a positive correlation
between PSF and host abundance (Fig. 2c).

The dynamic mutualist and pathogen communities can also
generate higher-order patterns of plant-soil feedback. Specifically,
each plant species can have a different effect on the relative

Table 1 Explanation and summary of simulation parameters.

Parameter Equation Range Fig. 2 value Definition

sf 1 [0, 1] sm= 0.35 Host affinity of mutualists (f=m) and pathogens (f= p).
sp= 0.03

γf 2a [0.1, 0.5] γm= 0.21 Fecundity of microbes, represented as a proportion of microbes in any given cell that are dispersed
as propagules.

γp= 0.15
bf 2b [2, 3] bt= 2.40 Exponent of power-law distribution. This indicates the dispersal limitation of both microbial guilds (f

=m, f= p), or plants (f= t).
bm= 2.82
bp= 2.50

g 4 [5, 15] 8.80 The impact of microbes on host survival.
h [0.2, 1.5] 0.40 Relative contribution of the mutualist community to seedling recruitment probability.
ζ [0.8] 0.8 Relative fitness of the least fit plant species. The fitness values of plant species (i.e. ζj where j is the

plant species), are evenly distributed between ζ and 1.
cf 5 [0.5, 2] cm= 0.78 Exponent that scales the competitive ability of a microbe according to its effect on host survival.

cp= 1.47
qf [−0.5, 2] qm= 0.91 Exponent that scales intrinsic growth rate of microbes with host affinity.

qp= 1.64
rf [0.1, 2] rm= 1.31 Intrinsic growth rate of mutualists and pathogens.

rp= 1.64
αf [0.5, 1.5] αm= 1.30 Competition coefficients of mutualists and pathogens.

αp= 1.00

Parameter ranges represent the total range over which parameters were allowed to vary between runs. Values represent the values identified by a random forest model as most likely to drive a positive
correlation between host abundance and feedback (i.e. those used in simulation runs depicted in Fig. 2). See Supplementary Table 1 for expanded parameter descriptions.
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survival probability of the other species. For example, seedlings of
the rare species are relatively more likely to survive beneath
individuals of the intermediately abundant species than beneath
individuals of a common species (Fig. 3b).

Importance of mutualists and pathogens dynamics. To deter-
mine the relative importance of mutualists, pathogens, and
dynamic (versus fixed) microbial communities, we observed
simulation dynamics after removing each of these features,
respectively. When we remove mutualists or pathogens, or
assume that microbial populations are fixed on each tree species,
we observe qualitatively different plant population dynamics
(Fig. 4a–e) that result in different frequency distributions of plant

species abundances (Fig. 4f–j). Figure 4a shows that feedbacks
between trees and their soil mutualists and pathogens can allow
tree species to coexist at different stable equilibria over long
periods of time (despite intrinsic fitness differences), leading to a
skewed normal distribution of abundances (Fig. 4f). When
pathogens are removed from the simulation, negative PSF is lost
and the system moves to a monoculture with fixation of the fittest
tree species (Fig. 4b, c). In contrast, when mutualists are removed
from the simulation, all host species coexist, and the variation in
equilibrium abundance values among plant species decreases
(Fig. 4d).

In addition to assessing the effects of the presence or absence of
pathogens and mutualists, we also assessed the importance of
spatial and temporal variation in microbial communities
associated with each host. We did this by fixing microbial
communities at the species-specific averages (as has been
assumed in previous plant community models5,6) that were
generated after the equivalent of 4 K years of simulation runs (i.e.
stable plant communities). Once microbial populations are fixed,
plant-soil feedback provides a much weaker stabilizing effect, and
rare plant species frequently go locally extinct in the simulation
(Fig. 4e). Thus, the spatial and temporal dynamics of microbial
communities emerges as a potentially key factor in promoting
host species diversity.
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and feedback strength, Is. Each point represents the mean final abundance
and feedback strength of each species. Model parameters represent those
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between host abundance and PSF according to the random forest classifier
trained on data generated using particle swarm optimization. Shaded bands
(a, b), and error bars (c) span mean values ± s.e.m., where n= 48
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their preferred host than mutualists of rare hosts. Pathogens of common
hosts maintain higher abundances on non-preferred hosts than pathogens
of rare hosts, whence (b) common hosts are less likely to survive beneath
heterospecifics than rare hosts. c As a result of the spatial distributions of
survival probabilities driven by microbes, common trees experience less
negative feedback than rare plants.
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16047-5

4 NATURE COMMUNICATIONS |         (2020) 11:2204 | https://doi.org/10.1038/s41467-020-16047-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Relationships between microbial traits and simulation
dynamics. Conducting many individual simulations (16 K) that
were parameterized using random values of our target variables
allowed us to characterize the importance of each model para-
meter (including microbial traits) as a determinant of model
behaviour. Here, we report the results of three random forest
classification models30 that measure the contribution of

simulation parameters to (1) the maintenance of plant species
diversity, (2) the development of strong negative PSF, and (3)
a correlation between host abundance and PSF. The first random
forest (accuracy= 0.88, precision= 0.87, recall= 0.71) identified
plant-soil feedback strength (defined in Eq. (6)) as the primary
determinant of plant diversity maintenance (Fig. 5, Supplemen-
tary Fig. 2). According to the random forest feature contribution
plot, strong negative and positive feedback are both associated
with the maintenance of diversity over the course of the simu-
lation; strong negative feedback tends to generate more even
spatial distributions of plants, while positive feedback is asso-
ciated with strong spatial aggregation (Fig. 5b). Furthermore,
plant abundances are much more likely to reach a stable temporal
equilibrium under negative feedback than under positive feedback
(Supplementary Fig. 3). Thus, the simulation indicates that
positive feedback would not maintain diversity indefinitely.

A second random forest classification model identified
simulation parameters that determine whether strong negative
feedback develops (i.e. whether Imax <−1.5; accuracy= 0.94,
precision= 0.79, recall= 0.92). The strongest predictor of
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negative feedback is the relative effect of mutualists on seedling
survival, h (Eq. (4)), followed by the relative host affinity of
pathogens, sp, and mutualists, sm (Eq. (1), Fig. 6a, Supplementary
Fig. 4). As the host affinity of pathogens increases (i.e. as the
proportional effect of pathogens on the survival of non-preferred
hosts decreases), negative feedback is more likely to develop
(Fig. 6b). Conversely, as the host affinity of mutualists increases,
the probability that negative feedback will develop decreases.
Negative feedback can still develop when pathogens show only
moderate host affinity (Fig. 6b).

A third random forest classification model (accuracy= 0.87,
precision= 0.04, recall= 0.72) determined that a key variable
predicting whether a positive correlation between plant abun-
dance and feedback will develop is qp (Eq. (5)), the parameter
scaling a pathogen’s intrinsic growth rate with its effect on a host
(Supplementary Fig. 5, Supplementary Fig. 6). When qp increases,
pathogen populations decline more slowly on non-preferred
hosts. Thus, when qp is higher, pathogens persist at a site after
their host dies (e.g. population dynamics illustrated in Figs. 2–4).
In this way, pathogens of common plant species maintain higher
abundances on non-preferred hosts than pathogens of rare plant
species. Notably, qp is much more important as a predictor of a
positive correlation between host abundance and PSF strength
than pathogen dispersal propensity, bp (Eq. (2b)), or fecundity, γp
(Eq. (2a)). This shows that pathogen persistence, rather than
more recent spill-over from nearby common hosts, primarily
drives the correlation between host abundance and PSF strength.

Discussion
Understanding the mechanisms underlying plant community
diversity and structure is central to understanding drivers of
terrestrial biodiversity33. Previous work has explored the role of
plant-soil feedback (PSF) as a process structuring plant
communities6,13,19, but a lack of detailed mechanistic PSF models
has limited our understanding of the causes and consequences of

PSF for plant community structure. The general mechanistic
model described here explicitly simulates the community
dynamics of soil symbionts and uses the resulting microbial
community structure to determine plant recruitment prob-
abilities. We use this simulation framework to disentangle the
relationship between observed PSF and the microbial life history
traits that create these effects: dispersal, persistence, host affinity,
and competitive ability of microbial pathogens and mutualists.
Specifically, we find (1) negative PSF maintains diversity and
spatial dispersion of plant species, (2) microbial traits, particularly
the relative host affinity and effect of mutualists and pathogens on
plant survival, are key to determining whether negative PSF
develops, and (3) mutualist and pathogen community dynamics
can interact to produce the observed positive correlation between
host abundance and PSF in a way that also contributes to stable
coexistence of plant species. These insights only become apparent
when we allow microbial communities to change dynamically. By
explicitly linking microbial ecology with plant-soil feedback, we
make testable predictions about how quantifiable microbial life
history traits correspond to observable aspects of plant and
microbial diversity and community structure.

Our findings corroborate previous experimental, demographic,
and theoretical results by showing that negative feedback main-
tains overall diversity and promotes spatial dispersion of
plants6,8,19. Building on this previous work, we determine how
observable microbial traits and dynamics may produce such
feedback patterns. For example, one salient result from our
simulation was the potential importance of mutualist traits in
affecting PSF. Specifically, we found that the host affinity of
pathogens and mutualists both strongly influence the direction of
PSF (more host-specific pathogens drive negative feedback, and
more host-specific mutualists drive positive feedback). In tropical
forests, where PSF has been observed to be negative6, plant-
associated mutualists appear to be less host-specific in their
association patterns than pathogens9,23,24. This topic deserves
more attention, ideally empirical quantification of the effects of
mutualists and pathogens on host growth and survival, and how
these effects differ between host plant species and environments.
Theory provides some important clues as to how these traits are
expected to vary between environments. For example, Thrall
et al.34 predict that pathogens more strongly affect host survival
with increasing resource availability, while mutualists become
increasingly host-specific (and pathogens less-so) with increasing
host diversity. Unfortunately, direct comparisons between char-
acteristics of mutualists and pathogens are rare or lacking.
Everything described above emphasizes the need for these studies.

Our simulation framework makes predictions about the con-
sequences of such variation in microbial traits for forest
dynamics. Monodominance in some forests dominated by ecto-
mycorrhizal tree species, such as the Ituri forest in the Congo, is
one example35,36, but see ref. 37. Here, an increased role of
mutualists in seedling survival is expected to create strong posi-
tive feedbacks that, in turn, promote monodominance. Environ-
mental conditions may also affect the relative importance of
mutualists vs. pathogens in determining plant recruitment more
generally. For example, mycorrhizal associations facilitate abiotic
stress tolerance in plants, such as drought and salt tolerance38,39.
Where environmental stressors shift the primary drivers of
recruitment limitation from pathogens to mutualists, our simu-
lation predicts that feedbacks will be more positive, thereby
decreasing local plant diversity, and increasing spatial aggregation
of hosts. Conversely, where key mutualisms are potentially less
important, such as in areas of high concentrations of particularly
relevant resources34, feedback strength should be more negative,
as suggested by La Manna et al.40, thereby increasing plant
diversity and spatial dispersion of hosts. This and related
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Fig. 6 Predictors of strong negative feedback according to random forest.
Results from a random forest classifier using each variable to predict
whether strong negative feedback develops. a Importance of each variable
as a predictor of the development of strong negative PSF (true if Imax <−1.5,
and false if Imax >−1.5). b Conditional feature contributions of mutualist and
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propositions can, and should, be explicitly tested in a variety of
plant communities.

Recent work has proposed that variation in plant susceptibility
to pathogens (e.g., innate genetic differences in pathogen resis-
tance) drives the observed correlation between host abundance
and plant-soil feedback strength5,6,17. Our work expands these
initial insights, and provides a vital additional mechanism by
which common plants may develop less negative PSF than rare
plants. As plants become more common, their pathogens become
relatively more abundant beneath heterospecifics than those of
rare plants, thereby reducing the strength of net negative feedback
for common plants, and reducing their survival probability.
Concomitantly, common plants accumulate more of their pre-
ferred mutualists than rare plants, increasing survival probability
beneath conspecifics, and decreasing the strength of negative
feedback. Even when different plant species are equally suscep-
tible to their symbionts (both pathogens and mutualists),
microbial community dynamics drive a positive correlation
between overall host abundance and local plant-soil feedback.
Thus, while many factors can affect the overall abundance of
plants, it is possible that a positive correlation between host
abundance and PSF will develop largely due to the effects of
microbial community dynamics.

Determining whether the mechanisms we describe above can
explain interspecific differences in PSF strength has important
implications for plant community dynamics. In the simulation
presented here, as species become rarer, the survival probability of
their seedlings beneath heterospecific trees increases relative to
common species, effectively generating a rare species advantage.
This strong negative feedback among rare plants provides a buffer
against extinction41. Conversely, a decrease in survival probability
beneath conspecifics would undermine this buffer against
extinction for rare species41. So far, too few studies have explicitly
addressed the dichotomy of whether interspecific variation in PSF
is dominated by interspecific variation in survival beneath con-
specifics versus survival beneath heterospecifics but see ref. 42.

Our results provide predictions that can be tested to determine
whether feedback strength tracks host abundance. According to
our simulation, if the relative abundances of certain plants are
artificially increased for long periods of time, their pathogens will
increase in abundance on non-target hosts. If this is the case, then
plant species that have been selectively cultivated (e.g. tree species
domesticated in pre-Columbian America43,44), should exhibit
relatively weaker negative feedbacks in areas where they have
been selectively cultivated. Measuring plant-soil feedback along
gradients of selective cultivation provide tests of the spatial and
temporal scales over which the microbial communities that affect
PSF track host abundance.

The suite of microbial traits required to drive the correlation
between feedback and host abundance in our simulation (e.g.,
strong functional host specificity, but an ability to persist on all
hosts) also provides potential explanations for some apparently
counterintuitive results. Our results show that strict host speci-
ficity is not necessary for PSF effects to maintain host diversity.
Indeed, the degree to which pathogens persist on non-target hosts
in our simulation could be interpreted as an indication of gen-
erality. Many pathogens appear to be host generalists in
nature45,46, despite the fact that they often drive negative plant-
soil feedbacks47. This result is relevant to the interpretation of
empirical studies that increasingly show that functionally specific
pathogens with broad host ranges are the norm32,48. An addi-
tional possibility is that such generalist pathogens rapidly adapt
or evolve to exploit a host occupying a given site49. In this case,
the model results referring to microbial abundance could be
interpreted as the degree of adaptation to a specific host species.
Future studies should determine the degree to which microbial

plant-soil feedbacks are driven by shifts in the abundances of
different microbial species, and/or rapid adaptation of these same
microbial species to particular hosts.

In conclusion, here, we develop and present a general model to
investigate the mechanistic relationship between microbial com-
munity dynamics and plant community structure and diversity.
The simulation corroborates previous studies in identifying
negative plant-soil feedback (PSF) as a driver of plant diversity
maintenance. Using a machine learning approach, we also identify
key aspects of the simulation (including microbial traits) that most
affect the dynamics of PSF, such as the relative effect and host
affinity of pathogens and mutualists. Furthermore, by relaxing the
assumption that soil microbial communities are fixed by host-
plant species identity, we find that microbial community dynamics
can explain puzzling and paradoxical patterns, such as a correla-
tion between host abundance and PSF. The model presented here
offers a flexible mechanistic framework that significantly expands
the classic Janzen-Connell model of plant diversity by directly
connecting microbial ecology to plant community dynamics. It
will be intriguing to determine if similar mechanisms can explain
the maintenance of biodiversity in other hyper-diverse systems
such as coral reefs and bacterial communities.

Methods
Simulation overview. All simulations take place in a one-dimensional circular
array, occupied by a specified number of trees (n), each with a unique community
of root-associated microbial pathogens and mutualists. We chose to conduct the
simulations in one dimension to simplify interpretation, but we recognize that
simulation dynamics likely progress more slowly than they would in two dimen-
sions50. At each time step, the simulation randomly selects a subset of the tree
population for replacement. All trees produce a specified number of seeds at each
time step that disperse according to a power-law dispersal kernel. The probability
that an individual of a given tree species recruits to the adult population at a site is
a function of the community of microbial propagules (pathogens and mutualists),
and the relative abundance of the tree species’ seeds, occurring at the site. A
microbial community is then calculated for the recruit based on the abundances of
the microbes at its location, the compatibility between the microbes and the species
of recruit, and the competitive ability of the microbes. At each time step, the
populations of microbes change on each adult according to competition equations
defined below. The simulation continues for an arbitrary number of time steps.

Assumptions.

1. All plant species are equivalent, except in the identity of their microbial
pathogens and mutualists, and the absolute survival probability of their
seedlings (a representation of fitness differences that is unrelated to
interactions with microbes). In the absence of plant-microbial interactions,
plant communities develop according to neutral expectations.

2. Plants, mutualists, and pathogens are all dispersal limited, and follow a
power-law dispersal function. We allow the scale parameter (indicating
dispersal distance) of the dispersal kernel to vary between plants, pathogens,
and mutualists, respectively.

3. Microbial taxa (both pathogens and mutualists) have two host compatibility
levels: one value for their primary host, and another value—less than or
equal to the value for the primary host—for all other host species. This
means that all non-target hosts are equivalent for each microbial taxon.
Thus, in the simulation, pathogens and mutualists can be complete host
specialists, complete generalists, or capable of associating with all hosts to
varying degrees. Empirical results suggest that many pathogens and
mutualists may associate with a broad range of hosts, but that they have
host-specific effects32.

4. Mutualists are beneficial, and pathogens are detrimental to host survival.
5. Each microbial taxon has an identical carrying capacity on each host.
6. The effect of a microbial taxon on its host is correlated with the competitive

ability of the microbial taxon on that host (i.e. more beneficial mutualists
outcompete less beneficial mutualists, and more detrimental pathogens
outcompete less detrimental pathogens)51–53.

7. Once a tree becomes an adult, its microbial community is subject to change
according to internal dynamics, and immigration of microbial propagules
from nearby trees. We choose to model these changes according to
competition equations with logistic growth.

Simulation description. Each simulation starts as a circular array populated with n
trees, of k species, evenly positioned through space. Each tree species is the
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preferred host for one mutualist species and one pathogen species, but con-
comitantly has the potential to associate with all pathogens and mutualists to
varying degrees defined by the simulation. Thus, the mutualist and pathogen
community associating with each tree is described by a vector of abundances.

For each microbial taxon, the degree of affinity, s, ranges from zero (complete
specialist that only generates an effect on preferred hosts) to one (complete
generalist that generates an equal effect on all hosts). All microbial species in a
given guild, f (mutualists, m, and pathogens, p), have a guild-specific specificity
value, sf, such that the compatibility of a microbe i with host species j is:

efij ¼
1; j ¼ preferred host

sf ; j≠ preferred host

(
ð1Þ

The probability that the seedling survives to recruit successfully to the adult
population is determined by the microbial community at the location to which it
disperses, and the compatibility between the microbial taxon and the candidate
seedling. The microbial community at any given location, Fx (mutualists, Mx, or
pathogens, Px) is the sum of the microbial abundances occupying the adult in the
cell at time t, and the microbes arriving as propagules. The density of pathogen and
mutualist propagules at a given location are determined by taking the sum of the
microbial communities of all adults, scaled by their distance from the location
according to a truncated discrete power-law distribution:

Fxðt þ 1Þ ¼ FxðtÞ þ γf
X
j¼1:n

Fhj
ðtÞ � powerlaw x � pos hj

� ���� ���� �
ð2aÞ

powerlaw xð Þ ¼ ð1þ xÞ�bfP1
n¼0ð1þ nÞ�bf

ð2bÞ

where pos(hj) corresponds to the position of host j, and γf represents the fecundity
of the mutualists or pathogens. The mutualist community, Mx, and the pathogen
community, Px, are used to calculate the recruitment probability of the seedling. At
each recruitment trial, this compatibility score is used to calculate the impact of a
given microbial taxon on the probability of recruitment of its host. For mutualists
and pathogens, the impact is equal to the sum of the abundance of each microbial
taxon multiplied by its compatibility with the focal host. So, for a given seedling of
species j, at location x, the effect of the microbial community on the seedling is:

θf x; jð Þ ¼ Fx � efj ð3Þ
where Fx represents the vector of microbial abundances at location x, and efj
represents the vector of effect values of microbes on species j. The total effects of
pathogens and mutualists determine the recruitment probability, Π, of a seedling
via the following function:

Π θm; θp; j
� �

¼ ζ j logistic g hθm�θpð Þð ÞP
n¼1:k

Π θm ;θp ;nð Þ
logisticðxÞ ¼ 1

1�e�x

ð4Þ

where ζj represents the relative fitness of plant species j. The coefficient derived
from Eq. (4) is calculated for each plant species arriving at an empty cell, and
standardized by the number of seeds of each species landing in the cell. The
successful recruit is then drawn from the resulting multinomial distribution.

The recruit becomes a reproductive adult in the next time step, and begins
modifying the abundance of each microbial taxon through time according to the
following differential equation:

dFij
dt ¼ rf e

qf
fj Fij 1� Fij þ

P
n≠j

αf e
cf
fnFin

 ! !
ð5Þ

For each microbial guild, rf represents the intrinsic growth rate when
associating with its preferred host. When associating with a non-preferred host, we
multiply by the effect of the microbe on non-target hosts, sf, raised to the exponent
qf. The parameter αf represents the competitive ability of a microbial taxon when
associating with its preferred host. The competition coefficient is multiplied by s

cf
f

when the microbe is associated with a non-preferred host. The microbial
community changes on each tree in the manner described by Eq. (5) at each time
step. This cycle of mortality and replacement continues for a predetermined
number of time steps.

Measuring plant-soil feedback. To offer results that are directly comparable to
empirical studies, we tracked plant-soil feedback, the process that drives negative
density dependence. We measured plant-soil feedback strength using Bever’s
interaction coefficient, Is (See Supplementary Fig. 1)19,47. The metric can be cal-
culated for any two plant species, A and B, as follows:

Is ¼ S aAð Þ þ S bBð Þ � S aBð Þ þ S bAð Þð Þ ð6Þ
where S aAð Þ and S bBð Þ are the respective mean survival probabilities of seedlings of
species A and B grown beneath conspecific adults (home performance), and S aBð Þ
and S bAð Þ are the mean survival probabilities of seedlings of species A and B grown
beneath adults of the other species (away performance). A given plant species’
value for Is is the mean of all pairwise feedback values that include the focal species.

When using Is as a predictor of model outcomes (e.g. for random forest models),
we measured Is at the beginning of the simulation. Specifically, we measured Is after
allowing microbial communities to change on their hosts following Eq. (5) for 50
time steps without host mortality. To quantify the relationship between host
abundance and PSF (at the end of each simulation run), we calculated the
Spearman correlation coefficient between PSF and host abundance.

Determining whether simulations reached equilibrium. To establish whether
plant abundances reached a stable equilibrium at the end of the simulation, we
employed an equilibrium metric, Pe. To calculate Pe, we measured the change in
abundance of the most common plant species across all windows of 100 time steps
in the 600 time steps leading up to the end of the simulation (subsampled to
include every 10th time step in order to improve computational speed). We then
used a t-test to determine whether the average rate of change across 100 time steps
deviated from zero. The equilibrium metric, Pe, is the P-value of this two-sided t-
test. Higher values of Pe indicate that the simulation is more likely to have been at a
stable equilibrium over the final 600 time steps.

Characterizing simulation behaviour. Given the large number of possible para-
meter value combinations, we used a random search to explore parameter space,
then characterized model behaviour using a random forest classification
approach30. For each run, parameter values were drawn from independent random
uniform distributions defined in Table 1.

Random forest classification was used to construct models predicting whether
(1) all plant species coexisted throughout the simulation, (2) whether strong
negative feedback developed (i.e. the maximum strength feedback was less than
−1.5), and (3) whether a strong positive correlation between host abundance and
plant-soil feedback developed (ρ(Is) > 0.8, σ(Is) > 0.02, Imax < 0, and richness of
plants, mutualists, and pathogens= 5). For each model, all parameter values were
included as predictors. For model (1), we also included maximum PSF strength,
Imax, as a predictor. Sample sizes for random forest fitting were balanced, such that
both classes were equally represented. Hyperparameters for each random forest fit
were otherwise set to the default settings for classification using the R package
randomForest54.

For each random forest model, we estimated the importance of each parameter
as a predictor of model output. We quantified variable importance as the decrease
in prediction accuracy resulting from sample-wise permutation of the values
among out-of-bag samples. I.e. if removal of a parameter from the classification
model decreased the model’s prediction accuracy, the parameter was deemed
important. Feature contributions of each model parameter were visualized as the
out-of-bag cross-validated conditional contributions of each parameter value to the
predicted model outcome55. In feature contribution plots, each point represents the
average (among decision trees) contribution (y) of a parameter value (x) to the
predicted outcome. Random forest analyses were conducted using the R package
randomForest54, and the variable importance and contributions were estimated
using the R package forestFloor55.

Simulation runs. We ran 16,000 simulations, each with five species of plants
comprising 499 individuals. Parameter values were drawn randomly from the
ranges listed in Table 1. For each simulation run, the starting location of each
individual tree was randomized, and each tree and microbial species started at
equal total abundances. At each time step, ten percent of the adult trees were
replaced (equivalent to a 5-year time step, assuming two percent mortality yr−1).
Simulations were run for 3 K total steps (equivalent to 15 K years). See Figs. 2 and 3
for an overview of simulation output.

Optimizing for correlation between abundance and feedback. The probability
of randomly achieving a simulation parameterization that matched any set of PSF
patterns was low, because we explored a very broad range of parameter values. This
broad search allowed us to clearly understand the independent influence of each
parameter on simulation results using random forest models, but also meant that
any specific simulation result was poorly replicated in our random search. We
therefore used particle swarm optimization (PSO) to identify combinations of
parameter values most likely to simultaneously promote species coexistence under
negative PSF, and generate a positive correlation between PSF and plant abundance
(i.e. ρ(Is) > 0.8, σ(Is) > 0.02, Imax < 0, and richness of plants, mutualists, and
pathogens= 5).

In PSO, combinations of parameter values are described as particles, and the
population of particles is called a swarm. To update particle positions at each
iteration, t, we first employed the following equation to determine particle velocity,
v, of each particle xi in each dimension d:

vid t þ 1ð Þ ¼ w � vi;d tð Þ þ c � rand � pid � xidð Þ ð7Þ
where w and c are constants (we selected 0.5, and 0.8, respectively), rand represents
a random number drawn from a uniform distribution bounded by 0 and 1, and p
represents the position of the best solution. At each step, we trained a new random
forest classification model, then took the 10 solutions deemed most likely to
produce negative feedback and the feedback-abundance correlation. For each
particle in the swarm, we randomly selected one of the 10 best solutions to
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determine pid , then updated the position of each particle was determined with the
following equation:

xid t þ 1ð Þ ¼ xid tð Þ þ vid t þ 1ð Þ ð8Þ
At each time step, we randomly selected four particles to replace with random

parameterizations to limit premature convergence. To ensure that we were not
identifying a local optimum, we iteratively conducted PSF, starting with 16 non-
overlapping optimizations. For each optimization, we allowed a swarm of 50
particles to iteratively explore the parameter space for 20 PSO steps, starting from
random positions. We then combined all results from two optimization runs (i.e.
eight combinations of 1000 total runs), and conducted eight PSO optimizations for
another 20 time-steps. We continued this process until the final optimization
included all simulation runs. This optimization process allowed us to confirm that
independent optimizations identified similar solutions, rather than different local
optima. We then used a final random forest classification model to identify the
parameterization most likely to produce negative feedback and the feedback-
abundance correlation among all runs conducted throughout the PSO
optimizations (Figs. 2–4).

Isolating effects of model components on population dynamics. To char-
acterize the importance of mutualists and pathogens in determining plant com-
munity dynamics, we conducted additional runs in which we removed the effect of
(1) all microbes, (2) only pathogens, and (3) only mutualists, while tracking plant
abundances through time. Specifically, after letting the simulation run for an
equivalent of 4 K years, we removed each of the following model components from
independent batches of 16 runs: (1) the effect of microbes on seedling survival (i.e.
to simulate neutral dynamics); (2) only the effect of pathogens; (3) only the effect of
mutualists.

For an additional batch of 16 runs, we fixed the microbial community
composition on each plant species. At the simulation time step equivalent to 4 K
years, we calculated the mean abundances of each microbial taxon on individuals of
each host plant species. These species-specific average microbial communities were
subsequently assigned to all new recruits for the rest of the simulation. This latter
approach is analogous to the approach used in simulations that assume trees have a
fixed effect on the survival of conspecific vs. heterospecific seedlings5,8,19.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Simulation results that support the findings of this study are archived under https://doi.
org/10.5281/zenodo.3742143, and can be accessed on GitHub (see below).

Code availability
All R code required to run the simulation described here is available on GitHub at
https://github.com/johnwschroeder/PlantMicrobeSimulation, and archived under
https://doi.org/10.5281/zenodo.3742143. The code is available for reuse under an MIT
License.
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