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Model-driven generation of artificial yeast
promoters
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Promoters play a central role in controlling gene regulation; however, a small set of promoters

is used for most genetic construct design in the yeast Saccharomyces cerevisiae. Generating

and utilizing models that accurately predict protein expression from promoter sequences

would enable rapid generation of useful promoters and facilitate synthetic biology efforts in

this model organism. We measure the gene expression activity of over 675,000 sequences in

a constitutive promoter library and over 327,000 sequences in an inducible promoter library.

Training an ensemble of convolutional neural networks jointly on the two data sets enables

very high (R2 > 0.79) predictive accuracies on multiple sequence-activity prediction tasks.

We describe model-guided design strategies that yield large, sequence-diverse sets of pro-

moters exhibiting activities higher than those represented in training data and similar to

current best-in-class sequences. Our results show the value of model-guided design as an

approach for generating useful DNA parts.
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Promoters are critical in regulating protein expression, a key
task for biological systems. In bioengineered systems, pre-
cise gene expression control is needed for balancing enzyme

expression levels in engineered metabolic pathways1–3 and
building gene circuits to control cell behavior4,5. Thus, access to
large promoter sets with useful properties may advance genetic
construct design.

Construct design in the model yeast Saccharomyces cerevisiae
currently relies on a small number of native promoters. While
additional useful sequences have been uncovered by genome
mining6, natural genomes contain a limited number of strong
promoters that reliably induce high levels of protein production.
Methods for generating artificial promoters offer an alternative
source of useful promoters.

Typically, sequence-diverse2, short7, and transcriptionally
active sequences are desired. Artificial promoter libraries have
been generated through mutagenesis of a wild-type template8 or
by screening libraries7,9. Alternatively, natural promoters can be
rationally modified; for example, binding sites for the artificial
transcription factor ZEV, which induces expression in the pre-
sence of beta-estradiol, were introduced into the yeast PGAL1 and
PCYC1 promoters to create a set of inducible sequences10. How-
ever, mutagenesis-derived promoters have similar sequences,
which may complicate the use of homology-guided sequence
assembly methods11, and assembly from random sequences can
require screening tens of millions of constructs to identify a
handful of useful promoters7.

In contrast, model-guided approaches to sequence design can
deliver sequences exhibiting desirable biological properties. In
one example, a Hidden Markov Model predicting nucleosome
occupancy from sequence12 using yeast nucleosome positioning
data13 was used to boost expression in both native and artificial
promoters14. Such approaches require large data sets to train an
accurate model.

Massively parallel reporter assays (MPRAs), which characterize
large (105–108) DNA sequence libraries, can provide the needed
data. FACS-seq is an MPRA15,16 for measuring gene-regulatory
activities in a single fluorescence-activated cell sorting (FACS)
sort and next-generation sequencing experiment15,16. In this
technique, a library is sorted by the abundance of a fluorescent
protein regulated by the sequence of interest. The distribution of
cells in each sort bin is used to estimate protein production.
FACS-seq has been used to characterize libraries of randomized 5′
untranslated regions (UTRs)17 and short, complete artificial
promoters18–20 in yeast. These data sets were used to investigate
the effect on promoter activity of hand-selected sequence prop-
erties17–20.

Additionally, researchers have built models to predict pro-
moter activity directly from sequence. Deep learning techniques
such as convolutional neural networks (CNNs) have performed
well on genomics modeling tasks21,22. CNNs were applied to
modeling yeast MPRA data sets23, and CNNs trained on MPRA
data sets of artificial 5′ UTRs were exploited to design 5′ UTRs in
both yeast and human cells23,24. However, exploiting this
approach for synthetic biology applications requires modeling
longer and more complex full-scale promoters, making data
collection and modeling more challenging.

To model and design entire promoters, we adopt a strategy that
borrows conserved motifs from known promoters and seeks to
learn a sequence−function relationship for the spacer sequences
between these motifs. We perform FACS-seq on two libraries
comprising over 675,000 constitutive and over 327,000 ZEV-
inducible promoters. Using these data sets, we develop highly
accurate predictive models of promoter activity. We implement
model-guided sequence design strategies to generate large,
sequence-diverse promoter sets, which we confirm to be highly

active in vivo. In silico mutagenesis of designed sequences elu-
cidates sequence features identified as significant by the model.
Our work provides promoter sets with useful properties for
synthetic biology applications, as well as a tool for generating
promoters with useful properties, demonstrating the value of
CNNs trained on MPRA-generated data for designing complex
functional DNA sequences.

Results
High-throughput promoter library characterization. We
developed a promoter activity model in order to generate useful
promoters. We first characterized a promoter library based on
PGPD (also called PTDH3). PGPD reliably exhibits high activity25,
making it popular in promoter engineering26.

Conserved motifs in yeast promoters include transcription
factor binding sites (TFBSes) and general transcription factor
motifs, such as the TATA box27. While the transcription start site
(TSS) can vary28, certain motifs are preferred29,30. The less-
conserved spacer sequences between these motifs also influence
activity, particularly the core promoter from the TATA box to the
TSS31 and the 5′ UTR32. We identified conserved motifs in PGPD,
including TFBSes for Rap1p and Gcr1p, the TATA box, and the
TSS through published literature33 and the JASPAR database34.
We defined PGPD as starting approximately 100 bp upstream of
the first Rap1p site. This sequence was used to design libraries
(Supplementary Fig. 1).

Promoter libraries were designed to preserve conserved motifs
and randomize spacer sequences. Most spacers were designed
with equal frequencies of the four bases. However, because the
abundance of T nucleotides in the core promoter strongly affects
activity31, we designed this region with base frequencies matching
the original PGPD core promoter. G was excluded after the TSS to
avoid premature ATG start codons, which weaken activity17.

We designed seven PGPD libraries to test four parameters
(Supplementary Fig. 2): length of Rap1p motifs, base frequency in
spacers between the TFBSes, spacer length between the TFBSes
and the TATA motif, and TATA motif length. The libraries were
generated by PCR-amplifying oligonucleotides containing the
constant and randomized regions. Amplification products were
Golden Gate-assembled and cloned into a two-color plasmid, in
which green fluorescent protein (GFP) expression was driven by
the promoters, and mCherry expression was driven by constitu-
tive PTEF1 (Fig. 1a). To control for expression noise, the GFP:
mCherry fluorescence ratio served as an expression activity
measure35 (Supplementary Fig. 3).

We determined the expression activity distribution in the
libraries via flow cytometry after transforming them into yeast
strain CSY3 (W303 MATα) (Supplementary Fig. 2). Only deleting
the Rap1p binding sites had a marked impact on the activity
distribution. We designed a final library (Final, Supplementary
Fig. 2) to maximize library diversity without sacrificing activity.
This library included 10-bp Rap1p sites, short constant regions,
and long randomized spacers. The expression activities spanned
over an order of magnitude, with the highest activities
approximately three times lower than PGPD (Supplementary
Fig. 2). Sequences in this library were 312 bp long, with 83% of
the sequence randomized (Supplementary Fig. 4).

We designed inducible promoter libraries based on the ZEV
system36. We characterized four PZEV libraries, varying the
number of ATF binding sites, internal spacer length, and TATA
motif length (Supplementary Fig. 5). We generated a strain
expressing the ZEV ATF from PACT1 (CSY1252) and character-
ized activity in the presence of 0, 0.01, and 1 µM beta-estradiol.
We observed similar uninduced activities for all designs.
Activities in 1 µM beta-estradiol were higher in designs with the
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18-bp TATA box. To maximize diversity, we proceeded with
design 4 (3 ZEV sites, 37-bp internal spacer, 18-bp TATA box).
Sequences in this library were 246 bp long, with 79% sequence
randomized (Supplementary Fig. 6).

We measured individual sequence activities in the final
libraries using FACS-seq15. Each library was sorted into 12 bins
based on the GFP:mCherry ratio (Fig. 1b). Preliminary experi-
ments and prior studies15 indicated that this ratio is log-normally
distributed. We define promoter activity as the base-10 logarithm
of this ratio. Promoters from each bin were recovered, tagged
with a bin identifier barcode, and analyzed through NGS. Count
distributions across the bins were used to estimate individual
promoter activities. Over 700,000 PGPD sequences (Fig. 1c) and
328,000 PZEV sequences (Fig. 1d) were characterized. After outlier
removal (see Methods), approximately 675,000 PGPD and 327,000
PZEV sequences remained.

The PGPD FACS-seq was performed in duplicate. Data from the
replicate experiments were consistent, with a coefficient of
determination (R2) of 0.94. Our final activity estimate was the
mean of replicate activities. The PGPD data set contains sequences
spanning promoter activities from −0.521 to 0.560 (median of
0.064, interquartile range of 0.273) (Fig. 1c, Supplementary
Fig. 7). The PZEV FACS-seq was performed in the presence and

absence of 1 µM beta-estradiol. Uninduced activities ranged from
−0.76 to 0.62 (median of 0.04, interquartile range of 0.272).
Induced activities ranged from 0.69 to 1.84 (median of 1.33,
interquartile range of 0.122).

Convolutional neural networks predict promoter activity. We
next built a model that predicts promoter activity using the data
sets. We modeled activity as a function of sequence by imple-
menting a CNN that accepts a DNA sequence as input and
outputs an activity prediction, using the approach described in
the Methods section.

The PGPD and PZEV promoter designs are nearly identical
(apart from the TFBSes and surrounding sequence), and deep
learning performs best on very large data sets, including in
genomics applications37,38. We hypothesized that the data sets
could be merged and used to train a single model, taking
advantage of the increased data set size. To further improve the
model’s performance, we trained an ensemble of submodels. All
submodels used the same held-out test data (10% of the original
data set), but the remaining data were divided equally into nine
partitions, and each submodel used a different partition of these
data for validation to prevent overfitting. For each submodel,

ba
TATA TSSGCR1GCR1RAP1 RAP1

TATA TSSZEV

pGPD
(312 bp)

pZEV
(246 bp)

pTEF1Construct library

c d

NGS on 
sorted bins

mCherry (log10)

G
F

P
 (

lo
g1

0)

Promoter activity
GFP/mCherry (log10)

Library FACS NGS bin counts

pGPD activity

B
in

 c
ou

nt
s

pZEV uninduced activity

pZ
E

V
 in

du
ce

d 
ac

tiv
ity Density

B
in

 c
ou

nt
s

mCherryGFP

50,000

40,000

30,000

20,000

10,000

0

–0.3 0.0 0.3 0.6

1.8

1.5

1.2

0.9

0.6

–0.6 –0.3 0.0 0.3 0.6

25
20
15
10
5

Fig. 1 FACS-seq experimental strategy and data set overview. a Schematic of tested libraries (above), indicating regions held constant in promoter
design (gray boxes); schematic of two-color reporter device used to characterize promoter activity (below). RAP1, GCR1, ZEV transcription factor binding
sites, TATA TATA box motif, TSS transcription start site motif. b Schematic of FACS-seq approach for high-throughput promoter activity characterization,
in which next-generation sequencing (NGS)-derived histograms of sequence counts in FACS bins generated by sorting a library on promoter activity are
used to derive promoter activity (log10 ratio of GFP to mCherry intensity, in arbitrary units) for each sequence in a library. Solid line: point estimate of
promoter activity for an example sequence (blue points and histogram bins). Color gradient qualitatively indicates GFP:mCherry ratio for each cell or bin.
c Histogram of promoter activities (log10 ratio of GFP to mCherry intensity, in arbitrary units) in the final PGPD library. Only sequences for which at least ten
NextSeq reads were counted in each replicate were used in this analysis. Color gradient qualitatively indicates GFP:mCherry ratio for each sequence.
d Density scatter plot of induced and uninduced promoter activities measured in the final PZEV library. Only sequences for which at least 20 NextSeq reads
were counted in each replicate were used in this analysis. Density: density of plotted points (arbitrary units).
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training was interrupted after five epochs passed without
improved performance on the validation data. Final predictions
on test data were generated by averaging the submodels’
predictions on the test data set.

We evaluated the model’s performance by comparing model
predictions to ground-truth measurements of PGPD promoter
activity (Fig. 2a), PZEV activity in the uninduced (Fig. 2b) and
induced (Fig. 2c) conditions, and the ratio of induced to uninduced
PZEV activity (Activation ratio, Fig. 2d). Model predictions
generalized well to test data, achieving an R2 of 0.80 for PGPD
activity, 0.84 for PZEV uninduced activity, 0.79 for PZEV-induced
activity, and 0.82 for PZEV activation ratio. To determine whether
merging the data sets and training a model ensemble improved
predictions, we trained models with the same architecture but with
only the PGPD or only the PZEV data as input; prediction results for
these models on the measures of promoter activity tested in Fig. 2
appear in Supplementary Fig. 8. Comparing the R2 achieved by
these models to the median R2 achieved by the ensemble of
submodels and to that of the final joined model showed that both
merging the data sets and averaging the predictions of the model
ensemble contributed to the performance of the final model, which
outperformed the single-data set models on all prediction tasks
shown in Fig. 2 (Supplementary Table 1).

Model-guided design yields high-activity promoters. To vali-
date model predictions and generate promoters, we developed

model-guided sequence design strategies. We designed promoters
maximizing three objectives: PGPD promoter activity, PZEV
induced, and PZEV activation ratio.

Three sequence-design strategies were developed: screening,
evolution, and gradient ascent. In the screening strategy, random
sequences were generated following the specification of the
original libraries, and accepted if their scores — predicted values
for the objective property — exceeded a threshold (Supplemen-
tary Fig. 9). In the evolution strategy, mutagenized variants were
generated from a candidate sequence. The variant with the
highest predicted activity was accepted if its score exceeded the
threshold. If not, a new set of variants was generated from this
sequence, and the evolutionary cycle continued (Supplementary
Fig. 10). The gradient ascent strategy (Supplementary Fig. 11) is a
modification of the gradient descent process used to train neural
networks39,40. It iteratively modifies initially random sequences
by determining what incremental change would most increase the
predicted score. These strategies are described in more detail in
the Methods.

In addition to testing these design strategies, we tested applying
an extrapolation penalty and/or a GC constraint when estimating
promoter activities. Merging the predictions of the ensemble’s
submodels by taking their mean may allow outlier mispredictions
to bias the final estimate. When using the extrapolation penalty,
we merged ensemble predictions by computing the mean of
predictions minus their standard deviation. Under the GC
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Fig. 2 A neural network ensemble trained on PGPD and PZEV data accurately predicts promoter activity. Only sequences for which at least ten NextSeq
reads were counted in each replicate were used in analyses of PGPD data; only sequences for which at least 20 NextSeq reads were counted in each
replicate were used in analyses of PZEV data. Density: density of plotted points (arbitrary units). a Predicted promoter activities versus FACS-seq
measurements for PGPD sequences in the held-out test data. b Predicted promoter activities in the uninduced condition versus FACS-seq measurements for
PZEV sequences in the held-out test data. c Predicted promoter activities in the induced condition versus FACS-seq measurements for PZEV sequences in
the held-out test data. d Predicted activation ratios (ratio of predicted induced and uninduced promoter activities) versus FACS-seq-derived activation
ratios for PZEV sequences in the held-out test data.
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constraint, no 20-bp window in a sequence can have a GC
content under 25% or over 80%. As extremes in GC content can
complicate molecular biology procedures like PCR and Sanger
sequencing41, the GC constraint ensures promoter designs are
tractable for downstream applications.

We designed 33 design approaches applying combinations of
these techniques, as described in the Methods (Supplementary
Table 2). Over 100 sequences were generated for each promoter
set. Sequences from the original PGPD and PZEV libraries were
synthesized as controls to validate the data sets, examine whether
prediction outliers resulted from errors in FACS-seq data, and
compare the best-performing promoters in the original libraries
to the model-designed promoters. The control promoter sets are
summarized in Supplementary Table 3. We transformed the
resulting library into CSY1252 and characterized the sequences
using FACS-seq (Supplementary Fig. 12). We classified a
sequence as successfully measured if the sequence was detected
at least 20 times in the experiment. Two of the PGPD control sets
and three of the PGPD design sets failed to meet this threshold
(Supplementary Tables 2 and 3).

Control promoter set results were used to validate the original
FACS-seq data for sequences with extreme activity values
(outliers) and sequences whose activities were mispredicted by
the model (inliers). Activity measurements in the original and the
validation experiments for outlier sequences were poorly

correlated, in contrast to those for inlier sequences (Supplemen-
tary Fig. 13). Thus, outlier values from the original FACS-seq
experiments were likely unreliable, supporting our decision to
exclude these sequences from modeling. Sequences from
nonoutlier control promoter sets were accurately measured
(Supplementary Fig. 13, set 11, ZEV-grid), except that adjust-
ments made to bin edges in order to measure highly active PGPD
and PZEV-uninduced sequences reduced the sensitivity of mean
measurements for low-activity PZEV-uninduced sequences. To
determine whether our model-designed sequences outperformed
the training data, high-activity control promoter sets were
selected as training data benchmarks (Supplementary Table 3).
Additionally, we fit linear models to the measured activities of
PZEV sequences measured in the original PZEV FACS-seq and
validation experiments in order to rescale the PZEV means to
correspond with validation results (Supplementary Fig. 14).

We next evaluated the performance of our design strategies.
When measuring activities for PGPD-Activity designs (Fig. 3a,
Supplementary Fig. 15), in all cases, promoter sets using the
extrapolation penalty exhibited significantly higher activities than
corresponding designs where it was not applied (p < 0.01 for all,
Mann−Whitney test (MWT)). We focused on the results for
PGPD-Activity promoter design strategies using the extrapolation
penalty (Fig. 3a). Two sequences only appeared in the highest bin
in one replicate; we excluded these from further analysis after
verifying that this did not substantially affect our results.
Screening promoters exhibited higher activities than training
data sequences (median activity, screening: 4.29, training data:
3.13; p= 1.18 × 10−6, MWT). All measured Evolution and
Gradient Ascent promoter sets exhibited substantially higher
activities than Screening sets. The lowest median activity among
the evolution and gradient ascent sets was 9.39 versus 4.29 for the
screening designs. The gradient ascent strategy and the evolution
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Fig. 3 Performance of designed promoter sets in validation FACS-seq
experiment. In panels (a−c), boxes represent interquartile ranges; the bar
within each box indicates the median. Whiskers extend to the furthest
observation within 1.5 interquartile ranges of the nearest box edge.
Numbers over boxplots indicate the number of sequences measured in
FACS-seq in each promoter set. Promoter activities are shown here on a
linear scale, and were transformed to a scale comeasureable with the
results of individual promoter testing using a linear model fit to promoter
activities measured by FACS-seq and by individual testing for a set of
promoters spanning a range of expression activities. a FACS-seq
measurements of promoter activities for PGPD promoter sets (or
corresponding training data sequences). Training data: selected highly
active sequences from the initial PGPD FACS-seq; Screening: PGPD promoter
set generated using the screening approach; Evolution: PGPD promoter set
generated using the evolution approach; Evolution-GC: PGPD promoter set
generated using the evolution approach, with the GC constraint applied;
Gradient: PGPD promoter set generated using the gradient ascent approach;
Gradient-GC: PGPD promoter set generated using the gradient ascent
approach, with the GC constraint applied. Points placed along the horizontal
line were only measured in the highest-activity bin in FACS-seq. b FACS-
seq measurements of promoter activities for PZEV promoter sets designed
to maximize induced activity (or corresponding training data sequences).
Axis labels referring to PZEV-Induced sequences and designs, but otherwise
as in (a); Gradient*: PZEV-Induced promoter set generated using the
gradient approach, with an elevated target threshold set relative to other
designs. Points placed along the horizontal line were only measured in the
highest-activity bin in FACS-seq. c FACS-seq measurements of promoter
activities for PZEV promoter sets designed to maximize activation ratio (or
corresponding training data sequences). Axis labels referring to PZEV-
Activation Ratio sequences and designs, but otherwise as in (b). Source
data are available in the Source Data file.
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strategy generated designs with similar activities (without GC
constraint, evolution: 9.39, gradient ascent: 10.27; with GC
constraint, evolution: 9.55, gradient ascent: 9.97). The median
activities were almost identical between corresponding promoter
sets generated with and without the GC constraint (evolution:
9.55/9.39 with/without GC constraint; gradient ascent: 9.97/10.27
with/without GC constraint).

We next examined results for PZEV-Induced promoter designs
(Fig. 3b, Supplementary Fig. 16). The extrapolation penalty
significantly improved activities for almost all pairs of promoter
sets tested with and without the penalty (p < 0.01 for all
comparisons, MWT). We did not observe a statistically significant
effect for promoter sets using the evolution strategy without the
GC constraint (Supplementary Fig. 16).

We then focused on PZEV-Induced promoter sets using the
extrapolation penalty (Fig. 3b). Eight sequences only appeared in
the highest bin in the induced condition; we excluded these from
further analysis after verifying that their exclusion did not
substantially affect our results. Screening promoters generally
exhibited lower activities than those in the training data
(screening: 23.71, training data: 29.80, p= 3.00 × 10−6, MWT).
However, all tested evolution and gradient ascent strategies
generated promoter sets with substantially higher activities than
training data. Applying the GC constraint did not result in a
consistent impact on the model output; applying the GC
constraint with the evolution strategy resulted in promoter
sequences exhibiting higher activities (with/without GC con-
straint: 47.29/43.16, p= 0.045, MWT), whereas the opposite was
observed with the gradient ascent strategy (with/without GC
constraint: 45.90/50.18, p= 0.012, MWT). We also examined
increasing the design threshold for a promoter set generated
using the gradient ascent strategy with the extrapolation penalty
and without the GC constraint. When increasing the target
prediction value from 1.6 to 1.65, we observed an increase in
median promoter activity (original threshold: 50.18, elevated
threshold: 56.52, p= 1.70 × 10−5, MWT).

In contrast to the PGPD-Activity and PZEV-Induced results,
none of the median activation ratios for PZEV-Activation Ratio
designs outperformed the training data sequences (one-tailed
MWT, using a significance threshold of 0.05) (Fig. 3c, Supple-
mentary Fig. 17). We determined that many of the sequences
designed for this objective had uninduced activities at the lower
limit of detection (i.e., cells containing these sequences were
collected in the lowest-activity bin) (Supplementary Fig. 18).
Specifically, 21.9% of training data sequences were at the lower
limit of detection, significantly fewer than the 46.7−71.7% of
designed sequences which were at the lower limit (Fisher’s exact
test; p < 10−2 for all). This result suggests that our design
strategies selected sequences with low uninduced activities to
maximize the activation ratio.

Finally, to examine the designed promoters’ sequence diversity,
global alignment distances were determined for each pair of
sequences within each promoter set. These alignment distances
were used as a proxy for sequence diversity (Supplementary Fig. 19).
Alignment scores in Screening and Evolution promoter sets were
comparable to scores in corresponding training data sets. However,
alignment scores in gradient ascent promoter sets exceeded scores
in corresponding training data sets (MWT, p < 10−49 for all). Thus,
the screening and evolution strategies produced promoter sets
with comparable diversity to the strongest promoters in the
training data, while some diversity was lost when using the
gradient ascent strategy.

Individual characterization of designed sequences. We char-
acterized a subset of designed promoters using flow cytometry, to

determine the reliability of measurements and compare our
designed promoters to commonly used sequences. We selected
sequences to test FACS-seq reliability across a range of activities,
characterize sequences observed only in Bins 1 or 12, and to
characterize sequences from promoter sets that were not char-
acterized in FACS-seq, as described in the Methods.

We characterized ten randomly selected sequences from one
promoter set for each of our design objectives (Final Promoter
Set, Supplementary Table 2). As benchmarks, we characterized a
set of commonly used promoters (PGPD, PTEF1, PADH1, PPGK1,
PTPI1, PCYC1) and three previously described ZEV promoters (P3,
P4, P8)10 (Supplementary Fig. 20). Activities and sequences for
final promoters and controls appear in Supplementary Tables 4
and 5. All final promoter sets used the GC constraint and the
evolution design approach. Altogether, we selected a set of 147
promoter sequences, of which 140 were successfully synthesized
and characterized by flow cytometry, using the characterization
construct (Supplementary Data). ZEV promoters were character-
ized in the presence and absence of 1 μM beta-estradiol. We
compared activities successfully measured in FACS-seq to flow
cytometry measurements (Fig. 4a); the two experiments’ results
correlated well (R2= 0.92).

We next examined flow cytometry results for the final promoter
sets. For the PGPD-Activity objective, in addition to the ten
sequences from the final promoter set, we tested five sequences
from three design strategies we were unable to test via FACS-seq
(sets 22, 24, and 28 in Supplementary Table 2) to benchmark to
control promoters (Fig. 4b, Supplementary Fig. 21). PGPD sequences
from our selected set had activities ranging from 6.29 (95%
confidence interval (CI) [5.31, 7.45]) to 13.36 (CI [12.06, 14.79]).
The activities of PTEF1 and PGPD were 1.52 (CI [1.45, 1.59]) and
14.65 (CI [13.46, 15.94]), respectively. Of the PGPD design strategies
not previously tested, two produced similar results to our final
strategy (Supplementary Fig. 21). However, of the five sequences
synthesized from a promoter set which used gradient ascent to
reach an elevated design threshold (set 28, Supplementary Table 4),
one exhibited an activity of 20.17 (CI [17.12, 23.78]) — higher than
that of the PGPD benchmark (p= 1.43 × 10−3, t test). Thus, the
gradient ascent strategy can produce promoters with higher
activities than current best-in-class promoters.

We then examined how our final PZEV-Induced designs
performed relative to ZEV benchmarks (Fig. 4c). Designed
sequences’ activities ranged from 27.03 (CI [24.77, 29.51]) to
63.85 (CI [53.30, 76.50]). All tested sequences exhibited higher
activities than P4 and P8 (p < 0.05 for all, t test), and most
exhibited activities comparable to P3 (56.47 (CI [35.45, 89.95]).
We reliably generated ZEV promoters with induced activities
comparable to the best reported sequences.

Finally, we characterized sequences from our final PZEV-
Activation Ratio design strategy (Fig. 4d). Measured activation
ratios ranged from 90.75 (CI [76.37, 106.37]) to 258.73 (CI [235.88,
281.71]), while activation ratios for benchmark sequences were
542.20 (CI [348.14, 815.16]) for P3, 105.94 (CI [54.57, 195.10]) for
P4, and 12.62 (CI [9.97, 15.67]) for P8. Examining the model-
designed sequences’ uninduced activities (Fig. 4e), we observed that
uninduced activities for all but one were significantly below that of
P3 (p < 0.05 for all, t test), generally less than that of P4, and within
the range of fluorescence levels observed from the no-GFP control
plasmid (pCS4306, Background in Fig. 4e). While our designs’
activation ratios did not surpass that of the benchmark sequence,
we generated a large set of highly inducible sequences (over 100-
fold), with particularly low uninduced expression.

In silico mutagenesis reveals sequence design rules. Finally, we
identified features in designed sequences that contributed to
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promoter activity. We examined one promoter set (In Silico,
Supplementary Table 2) for each objective. For each set, we
predicted all possible single mutants’ activities. The mutagenesis
score of each position in a sequence was defined as the greatest
difference between the original sequence’s score and that of the
three corresponding mutants. We estimated each sequence
position’s relative importance by averaging position-wise scores
across all sequences and normalizing them to the largest value,
yielding a final position importance score (Fig. 5a).

For PGPD designs, important positions appeared throughout
the sequence. For PZEV-Induced designs, the most important
positions were in the spacer sequence at the 5′ end of the
construct. For PZEV-Activation Ratio designs, these were
immediately following the ZEV ATF binding sites. We examined
the entire PGPD sequence set in more detail, but focused our
investigation of PZEV sequences on the identified regions.

We first generated sequence logos42 for the PGPD sequence set
(Fig. 5b). We observed a preference for certain bases immediately
5′ to the GCR1 motifs and following the TATA box. We also
observed that T nucleotides were disfavored at the position 3
bases before the start codon, consistent with prior results17. We
also observed this in sequence logos generated from both PZEV
designs (Supplementary Fig. 22a, b).

We then used in silico mutagenesis to uncover putative
functional motifs in PGPD sequences. We scanned each sequence
for contiguous blocks of six or more bases with mutagenesis
scores under a target value chosen to select 5% of all
randomizable bases, yielding a set of 177 candidate motifs. To
explore these sequences’ putative functions, we searched for
TFBSes in these sequences using the Yeastract database43. Ninety-
four sequences matched Yeastract TFBSes. All but 8 were 11 bp
long or shorter; examining these, we found that at all lengths,
predicted TFBSes were enriched relative to random sequences
(Fisher’s exact test, p= 0.03 or less for all). Of 121 transcription
factors tested, matches to 16 were found. To account for overlaps
in binding specificity, we pooled factors that always co-occurred
together, yielding seven groups (Fig. 5c). This result suggests that
these factors may be involved in transcription from the designed
promoters.

In PZEV-Induced designs, position importance scores (Fig. 5a)
and sequence logos (Supplemental Fig. 22c) indicated a role for
AT-rich tracts near the 5′ end of each sequence. All sequences in
the examined set contained a TA dinucleotide repeat at least 6 bp
long in the 5′ spacer. As this motif resembles the TATA initiation
motif, we speculated that the model may place this motif as an
additional RNA polymerase site, although the TATA motif is
located 3′ to TFBSes in natural promoters. Examining the longest
TA repeat in each sequence, we calculated the median decrease in
predicted promoter activity for a mutation within the repeat (the
median score differential). Comparing these values to the scores
of all bases in the PZEV-Induced 5′ spacers outside a TA repeat
(Fig. 5d, Non-TA), we found that mutations within TA repeats
had a greater predicted effect than mutations elsewhere (mean
score differential −0.071 inside repeats, −0.012 elsewhere, p <
2.2 × 10−16, MWT). In comparing median score differentials for
TA repeats of different lengths, the effect of a single mutation was
greatest for 6-bp sequences and decreased with length (Fig. 5d;
p= 2.04 × 10−5 or less for adjacent comparisons, MWT), possibly
because a longer TA repeat provides redundancy against
mutations.

Examining position importance scores (Fig. 5a) and sequence
logos (Supplemental Fig. 22d) for PZEV-Activation Ratio designs, we
observed that the ZEV ATF’s binding motif, GCGTGGGCG, was
frequently extended by the sequence GCTA. For each sequence, we
determined whether the tetramer following each ZEV ATF binding
site was GCTA, as well as the median score differential for these

sequences (Fig. 5e). Mutations in GCTA sequences had a larger
impact on activation ratio than mutations in non-GCTA sequences
(median score differentials in GCTA sequences −0.080, −0.071,
−0.132 at ZEV ATF sites 1, 2, 3 vs. −0.005, −0.007, −0.019, in
non-GCTA sequences; p= 5.58 × 10−15 or less for all, MWT). This
suggests that appending GCTA to the ZEV ATF binding motif
increases activation ratio, possibly by improving the site’s binding
affinity for the ZEV ATF.

Discussion
We developed a CNN model that accurately predicts promoter
activity in two yeast promoter libraries, and developed design
strategies exploiting it to generate large, sequence-diverse pro-
moter sets. To assay full-length promoters, we developed an
FACS-seq pipeline that integrates data from two NGS platforms.
We used a low-read, full-length sequencing run to determine each
variant’s sequence, and a high-read run covering only part of each
variant to determine its abundance in each bin. In one recent
work using an MPRA to characterize an 80-bp yeast promoter
library, over 100 million sequences were measured at a low
sequencing depth (78% of measured sequences had only one read
assigned)20. By contrast, we chose to more precisely characterize a
much smaller library of longer sequences, incorporating both
constitutively active and inducible designs. Our model’s ability to
predict promoter activity for a complex sequence exemplifies the
deep neural networks’ ability to model complex data, building on
previous work modeling sequence libraries in the 50-bp length
range23.

We found that designed sequences’ properties varied depend-
ing on the design approach used. Screening sequences did not
outperform the best sequences in the original data sets. However,
when optimizing for PGPD activity and PZEV-Induced activity, the
evolution and gradient ascent strategies generated sequences with
activities comparable to or greater than benchmark promoters; we
generated high-performing sequences even when applying a GC
content constraint. These results demonstrate model-guided
design’s value in producing sequences with useful, rare proper-
ties. Generating new functional elements also tests a model’s
ability to generate accurate, generalizable predictions24.

PZEV-Activation Ratio designs had lower apparent activation
ratios than the benchmark P3 control promoter due to challenges
in measuring very low activities accurately. Measured activities in
the uninduced condition for PZEV-Activation Ratio designs were
at the lower limit of detection, while P3 had a measurable level of
uninduced expression (Fig. 4e). While activation ratio is an
intuitive and simple measure of inducibility, it has limitations
when applied to sequences with low uninduced activities.
Developing a design strategy that independently optimizes for
high induced and low uninduced activity may address this chal-
lenge. However, our designs did demonstrate a very low level of
leaky expression, which may make them useful for applications
requiring tight repression in the off state.

We also used the model to explore strategies that yielded
promoters with high predicted activity or activation ratio. A
similar in silico mutagenesis approach to ours was used pre-
viously to identify putatively functionally relevant features in
natural promoters44,45. Because our model was trained on a data
set of quantitatively characterized sequences designed using
predetermined scaffolds, we were able to instead apply this
approach to uncover sequence design strategies favored by the
model and determine their predicted contributions to activity.
The model’s ability to identify motifs with a predicted functional
role suggests that our approach may be valuable for future studies
of native yeast promoter regulation; future studies could also
investigate modifying the functional motifs that we held fixed, or
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test our hypotheses regarding the functional roles of the sequence
features we identified.

Unexpectedly, the model placed TATA-like motifs at the 5′ end of
PZEV-Induced designed promoters. While further characterization is
needed, this approach may be of interest to future rational promoter

design efforts. We additionally found that PZEV-Activation Ratio
designed promoters often contained an apparent four-base exten-
sion (GCTA) of the ZEV ATF binding site. Although further
characterization is needed, this extension may increase the sequen-
ce’s binding affinity for the ZEV ATF, thus increasing ZEV
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ATF-dependent transcription. Supporting this, previous studies have
demonstrated a role in determining binding affinity for bases outside
transcription factors’ core motifs46, including for the Zif-268 tran-
scription factor used in ZEV ATF47. Thus, our approach could be
applied to better characterize transcription factor-DNA sequence
binding affinities.

By generating large promoter sets with activities comparable to
or outperforming state-of-the-art benchmark promoters, our
work creates a useful tool for applications in synthetic biology.
Our approaches are not necessarily limited to yeast or to pro-
moters, and could be applied to expression parts for use in other
systems, such as mammalian cells, or to designing other classes of
DNA sequences, such as terminators or RNA switches. Our
results demonstrate that high-throughput characterization of
artificial DNA sequence libraries enables accurate modeling of the
DNA sequence−function relationship, which in turn enables the
design of DNA sequences fulfilling challenging design constraints.

Methods
General. Plasmids used in this study are described in Supplementary Table 6, and
yeast strains used in this study are described in Supplementary Table 7. Expand
High Fidelity PCR system (Roche Diagnostics) was used for PCR amplifications
according to the manufacturer’s instructions, unless described otherwise. Sanger
sequencing was performed by Elim Biopharmaceuticals, Inc. All oligonucleotides
used in this work appear in Supplementary Table 8. Plasmids and strains are
available from the corresponding author upon request.

Random library design and assembly. Libraries were assembled by PCR-
amplifying oligonucleotide libraries (Stanford School of Medicine Protein &
Nucleic Acid Facility (PAN); Integrated DNA Technologies) corresponding to each
spacer sequence, joining them via Golden Gate assembly48 using constant sites
located within constant regions, and PCR-amplifying the resulting products with
primers providing 40 bp of homology to vector plasmids on each side. Oligonu-
cleotides and PCR primers used to assemble libraries are listed in Supplementary
Table 8; diversity was introduced by randomizing regions of the sequence outside
the designed constant regions. The combinations of oligonucleotides used to PCR-
amplify each fragment are given in Supplementary Table 9. PCR and Golden Gate
reaction conditions are given in Supplementary Note 1; briefly, 15 fmol of each
DNA fragment was used in 10-µl, 50-cycle Golden Gate reactions.

Yeast library construction. Saccharomyces cerevisiae strain CSY3 (W303 MATα)
was used in the PGPD library experiment. To create a strain expressing the ZEV
artificial transcription factor for the PZEV library experiment, the PACT1 promoter
and the ZEV artificial transcription factor gene were PCR-amplified in a single
fragment from DBY19053 (ref. 10), and a fragment containing the TCYC1 termi-
nator and the entire plasmid backbone was PCR-amplified from pCS2657 (ref. 49).
These fragments were joined by Gibson assembly50, yielding pCS4339; the
PACT1–ZEV ATF–TCYC1 expression cassette was PCR-amplified and integrated into
the LEU2 locus of CSY3 using the Cas9-assisted integration method51 (using
pCS4187 (ref. 52) as the guide RNA plasmid), yielding strain CSY1252. CSY1252
was also used in the promoter design validation experiments.

The plasmid pCS1748 (ref. 35) expresses GFP and mCherry from separate copies of
the PTEF1 promoter. The plasmid pCS4305 was generated by digesting pCS1748 with
ClaI and MfeI to remove the PTEF1 driving GFP expression; a 675-bp sequence
encoding PGPD and part of the 3′ UTR of YGR193C (Supplementary Note 2), and a
sequence replacing a portion of GFP deleted by restriction digestion, were inserted
using Gibson assembly50. The PGPD sequence was PCR-amplified from pCS2656
(ref. 49), with bases added at the 3′ end to match the 5′ UTR of the S288C reference
wild-type PGPD sequence53. To generate a vector for library integration, this plasmid
was further modified by removing the PGPD promoter by digestion with ClaI andMfeI
and using Gibson assembly to insert a sequence beginning with the first 60 bp of the
YGR193C 3′ UTR sequence present in the original PGPD promoter (to ensure that all
promoters were tested in a consistent genetic context). A ZraI cut site was created by
adding a C nucleotide at the end of this 60-bp sequence, and the excised yEGFP
sequence, lacking the first two bases of the yEGFP start codon, followed, yielding
pCS4306 (Supplementary Fig. 23). To clone a promoter library into yeast, pCS4306
was linearized with ZraI digestion, and yeast were cotransformed with linearized
plasmid and the library insert. This cotransformation was carried out as previously
described15. Briefly, 50ml yeast culture (OD600 1.3–1.5) was incubated with Tris-DTT
buffer (2.5M DTT, 1M Tris, pH 8.0) for 15−20min at 30 °C, pelleted, washed, and
resuspended in Buffer E (10mM Tris, pH 7.5, 2mM MgCl2) to 200 µl. To 50 µl of the
yeast cell suspension, 2 µg of linearized plasmid and 1 µg of library insert DNA was
added and the DNA-cell suspension was electroporated (2mm gap cuvette, 540 V, 25
µF, infinite resistance). Transformed cells were diluted to 1ml volume in yeast peptone

dextrose (YPD) media, incubated for 1 h, then further diluted in yeast nitrogen base
medium (BD Diagnostics) lacking uracil and containing 2% dextrose (YNB-U).

All libraries were grown in YNB-U, and passaged at least three times before
sorting, with at least 10 OD600*ml units transferred in each passage. For
experiments involving PZEV promoters, separate cultures with and without 1 µM
beta-estradiol added were started 18 h before the sort. Cultures were back-diluted
to an OD of 0.05−0.1 5 h before the sort to maintain them in log phase.

Library sorting. Cultures were harvested at an OD600 of 0.7−0.8, spun down, and
resuspended in phosphate-buffered saline (PBS) with 10 µg/ml DAPI (Thermo-
Fisher). The sorts were performed on a FACSAria II cell sorter (BD Biosciences).
Data was acquired using FACSDiva software (version 8.0.1), and excitation and
emission filters for GFP, mCherry, and DAPI were as previously described15.
Briefly, GFP was excited at 488 nm and measured with a splitter of 505 nm and
bandpass filter of 525/50 nm, mCherry was excited at 532 nm and measured with a
splitter of 600 nm and bandpass filter of 610/20 nm, and DAPI was excited at 355
nm and measured with a bandpass filter of 450/50 nm. Viable cells (as identified by
a viability gate based on DAPI fluorescence and side-scatter area) were sorted into
one of 12 bins of equal width on the basis of the GFP/mCherry ratio. These bins
were chosen to cover the range of promoter activities present in the sorted library.
The sort gates were generated using a MATLAB script. Supplementary Fig. 24
exemplifies this gating strategy.

Four bins were collected at a time, in three passes: one collecting bins 1, 4, 7, and
10, one collecting bins 2, 5, 8, and 11, and one collecting bins 3, 6, 9, and 12. For each
pass, cells were collected until a target number of viable cells had been sorted. In the
PGPD experiment, two replicates were collected. In experiments involving PZEV
inducible promoters, the 12 bins were each collected once for the uninduced and once
for the induced condition. In these experiments, the gating and cytometry parameters
were set separately for the uninduced and induced conditions. Counts of cells sorted
per bin for the PGPD experiment are in Supplementary Table 10, for PZEV in
Supplementary Table 11, and for the validation FACS-seq experiment testing designed
promoters in Supplementary Table 12.

The sort parameters used for the PGPD experiment were treated as reference
conditions for experiments involving inducible promoters. To relate measurements
from experiments involving inducible promoters to the results of the PGPD
experiment, flow cytometry data collected for the libraries under the conditions
used for sorting and under the reference conditions (those used to sort the PGPD
library) were used as a benchmark to convert the GFP/mCherry ratios used as bin
edges to their equivalents under the parameters used for the PGPD sort
(Supplementary Fig. 25). Promoter activities were calculated for each cell, and
approximately corresponding cells in each sample were identified by sorting these
values. A linear model was fit, and bin edges used in the experiment as measured
were converted to their equivalents under the reference conditions. For the
validation FACS-seq, the fit was carried out using the mean of three samples
collected under the experimental conditions and compared to one sample collected
under the reference conditions.

NGS sample preparation. After sorting, cells were grown to saturation in YNB-U.
1.5 ml aliquots of cell culture were used as input in minipreps with the Zymoprep
Yeast Plasmid Miniprep II kit (Zymo Research) according to the manufacturer’s
instructions. Multiple minipreps were performed where necessary so that one
miniprep was performed for every 1,000,000 cells collected. In experiments
involving inducible promoters, unsorted cells from the uninduced and induced
libraries were also regrown and miniprepped. For each bin, the entire miniprepped
volume was used as template in a PCR reaction using the KAPA HiFi PCR Kit
(Kapa Biosystems). A tenfold dilution of this PCR product was used as template in
a barcoding PCR adding Illumina adapter sequences and dual barcodes. As a
quality-control measure, variable-length sequences were included in each primer
immediately 5′ to the sequence annealing region, serving as a backup barcoding
method. These PCRs were purified using the DNA Clean & Concentrator kit
(Zymo Research) according to the manufacturer’ instructions, quantitated using a
Qubit fluorometer (ThermoFisher), and mixed at a ratio calculated to provide an
approximately equal number of sequencing reads for each cell originally collected.
This mixdown was then gel-extracted on a gel containing SybrSafe Red (Ther-
moFisher) and 2% agarose, PCR-amplified for 5−6 cycles starting from a con-
centration of 1 nM with primers corresponding to Illumina adapters to ensure full-
length products, and purified, yielding the final NGS samples. PCR reaction
parameters are given in Supplementary Note 1, oligonucleotides used in NGS
sample prep are given in Supplementary Table 8, and oligonucleotide choices for
the PGPD, PZEV, and design validation FACS-seq appear in Supplementary
Tables 13, 14, and 15, respectively.

Sample quality was checked using a Bioanalyzer 2100 (Agilent). Next-
generation sequencing was carried out on an Illumina MiSeq by either PAN or the
Chan Zuckerberg Biohub, using 2 × 300 paired-end reads, with PhiX sequencing
control added to 30% by molarity to increase diversity in constant or AT-rich
regions. In some experiments, the sample was additionally sequenced on an
Illumina NextSeq by the Biohub, using 1 × 75 unpaired reads. Illumina control
software version 3.0 was used for MiSeq experiments; version 2.1.0 was used for
Nextseq experiments. FASTQ files were generated using Illumina
bcl2fastq2 software version 2.20 with default parameters.
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Error-tolerant NGS sequence determination. NGS data processing and model
training were carried out on Google Cloud virtual machines, using Nvidia Tesla
K80 GPUs.

Sequences in the sorted libraries were determined using the MiSeq output.
Paired-end reads were first merged using Paired-End reAd mergeR (PEAR) version
0.9.6 (ref. 54). In the PGPD and PZEV experiments, there was a high risk that errors
in PCR or mutations during passage after FACS sorting could give rise to similar
sequences, differing at only a few positions. These sequences would likely have
similar activities, and could lead to inflated estimates of model quality if one
appeared in training data and another in validation or test data. To avoid this risk,
we chose to group reads with similar sequences together and determine a
consensus sequence. We sorted the sequences and compared each sequence with
the one following using Needleman−Wunsch alignment, with a gap penalty of 5
and a mismatch penalty of 1. Needleman−Wunsch alignments were carried out
using a parallelized implementation of the algorithm (https://github.com/hgbrian/
nw_align/tree/54221ee). For each experiment, we established a cutoff value for
similarity, and used this to determine where groups of related sequences began and
ended (Supplementary Fig. 26).

Because sequences are arranged in alphabetical order in this process, mutations
near the start of a sequence need to be accounted for separately. To do this, we
repeated the process after reversing and re-sorting the original sequences; each read
was thus assigned to two clusters, one from each sorting. Clusters with reads in
common were then merged to yield the final groups of reads corresponding to each
sequence. The distribution of the numbers of reads in each cluster in the final PGPD
and PZEV libraries appears as Supplementary Fig. 27.

Read clusters were reduced to consensus sequences by taking a majority vote at
each position in the sequence to obtain a consensus call for that position. Singleton
sequences and sequences without a majority call at each position were discarded
(Supplementary Fig. 27). To verify that this procedure produced clearly defined
read clusters, we sampled 400 clusters from each data set. For each cluster, we
calculated the longest alignment distance between any pair of sequences within the
cluster, as well as the shortest alignment distance to any other cluster in the data
set. We found that the resulting distributions of alignment distances showed good
separation for both data sets (Supplementary Fig. 28).

Measuring promoter activity. In the PGPD and PZEV experiments, the MiSeq runs
yielded 0.5 or fewer reads per original cell for most bins. For many sequences, there
were enough reads to identify the sequence itself, but not enough to accurately
quantitate promoter activity. To solve this problem, the samples were resequenced
on an Illumina NextSeq using a 1 × 75 single read kit (for lack of paired-end kits
long enough to sequence this sample in its entirety on NextSeq). This allowed
many more sequences to be accurately quantitated — the distribution of read
counts in the raw NGS data for the final PGPD and PZEV libraries appears as
Supplementary Fig. 29. Measures of promoter activity derived from NextSeq data
and full promoter sequences derived from MiSeq data were related using the first
35 bp of each library member, which is fully randomized and was found to act as a
unique identifier for almost every sequence. In the validation experiment, the
MiSeq data was used to calculate promoter activity directly, since this experiment
featured a relatively small number of designed sequences.

Promoter activities were obtained following previously described methods15,16.
First, each read was assigned to a bin by identifying the barcoding oligos used to
generate it; each oligo contained either a variable-length skew sequence read as part
of the sequencing read or a barcode, determined in a separate barcoding read.
Sequences with fewer than a threshold number of reads measured in each replicate
were discarded. The choice of skew sequences and barcodes used to assign reads to
bins in each experiment, and the read count thresholds used in each experiment,
are provided in Supplementary Table 16. Read counts in each bin i were then
normalized by multiplying by Ci/Ri, where Ci is the number of cells collected in bin
i, and Ri is the total number of reads observed in the bin. A maximum-likelihood
estimation process was used to assign a mean to each sequence. As much of this
process as possible was executed in parallel on the GPU, using the Numba project’s
CUDA libraries (numba.pydata.org).

When estimating means for each sequence, each replicate of each experiment
was processed separately. Based on prior experience15 and the results of
preliminary experiments, it was assumed that the distribution of fluorescence for
each sequence in a library was log-normal, and that the standard deviation of the
fluorescence distribution σ was the same for all sequences. To provide some
robustness against outliers, it was further assumed that with a probability ε, cells
were collected not from the log-normal distribution, but from a uniform
distribution across all bins.

The mean estimation process then requires two hyperparameters: σ and ε. For a
given promoter activity μ, a given σ and ε, and a number of bins N, the probability
of a cell being observed in a bin i with edges ai and bi is

Pμ;σ;ε ið Þ ¼ Fμ;σ bið Þ � Fμ;σ aið Þ
h i

1� εð Þ þ ε

N
; ð1Þ

where Fμ,σ is the cumulative distribution function of a normal distribution with
mean μ and standard deviation σ. Supposing that the number of cells observed in

bin i is ri, the log-likelihood of a set of parameters given observed data is16

XN
i¼1

ri ´ logðPμ;σ;ε ið ÞÞ: ð2Þ

Let (σ*, ε*) be a choice of values for (σ, ε). For a set of M possible values of μ, we
can construct an N ×M matrix

Wðσ* ;ε*Þ;whereWðσ* ;ε*Þij ¼ log Pμj ;σ* ;ε* ið Þ
� �

: ð3Þ
Supposing there are S sequences total, if the S ×Nmatrix A contains the number of

cells observed in each bin for each sequence, the product AW is an S ×Mmatrix giving
the log-likelihood of each possible value of μ for each sequence. Estimates of μ are
chosen for each sequence to maximize log-likelihood, and the sum of the log-
likelihoods of each sequence acts as a score for the original choice of σ and ε.

Using parallel computation on a GPU to accelerate this process enabled us to
optimize the hyperparameters used in fitting via a grid search, to determine the
sensitivity of fits to hyperparameter choice. Optimal hyperparameter values were
found for each replicate or condition in each experiment (Supplementary Fig. 30,
Supplementary Table 17). Additionally, we tested the sensitivity of the fit to the choice
of hyperparameter scores, by calculating the root-mean-squared distance from the
vector of fit means under the final hyperparameter values to the vector of fit means
under each other choice of hyperparameters tested (Supplementary Fig. 30).

This resulted in a table of sequences and promoter activity values — for the
PGPD experiment, promoter activity was measured once in each replicate, while in
the PZEV and the validation experiment, it was measured once in the uninduced
and once in the induced condition. Sequences with mutations in the designed
constant regions were removed. In the PGPD experiment, sequences with replicate
promoter activity estimates differing by over 0.2 or which were only observed in the
highest or lowest bins were considered outliers. In the PZEV experiment, sequences
for which all observed reads fell in either the highest or lowest bins in either the
uninduced or the induced condition were considered outliers. The resulting table
was then used to train models of promoter activity.

Model implementation and training. Models were implemented in Keras (keras.
io) version 2.1.6, with Tensorflow version 1.7.0 as the backend. Following the
approach of Kelley et al.22, sequences were encoded in one-hot format; each
sequence was represented as a two-dimensional matrix with four rows, one for each
base of DNA, and a column for each position. The values of the matrix at each
column were 1 in the row corresponding to the base present at that position, and 0
elsewhere. The model consists of a series of convolutional and max-pooling layers,
followed by a two-layer fully connected network, which outputs a single prediction
of promoter activity. All convolutional layers had a width of 8 and 128 output
channels and used a rectified linear unit (ReLU) nonlinearity, with batch nor-
malization applied between the convolution and the ReLU layer. Input sequences
were processed with six rounds of convolution and max-pooling with a stride
length of 2. Two 128-unit fully connected layers, each followed by batch normal-
ization and a ReLU, were then applied, followed by a final fully connected layer
which directly provided the final output(s). In order to generate separate predic-
tions for both the uninduced and the induced PZEV conditions in one model, we
used an output layer with two units, weighting the loss on both predictions equally.
L2 regularization with a weight of 10−4 was applied at all layers except the final
output.

A training/validation/test split of 80%:10%:10% was used in training the
models. All sequences were padded on each side with at least 25 bp of the
surrounding pCS4306 vector sequence; to account for the different lengths of PGPD
and PZEV promoters when training models on the merged data sets, the pads were
extended for PZEV promoters, to a total length of 58 bp on each side. During
training and validation, the data set was augmented by applying a shift of 0−7 bp.

Models were trained with Adam as the optimizer55, with a learning rate of 10−5.
Huber loss with δ= 0.15 was used as the loss function. When the model had two
outputs, both were weighted equally in calculating the loss. Model training was
terminated using early stopping after five consecutive epochs with no improvement
in validation loss.

Promoter design strategies. The strategies tested for designing promoters are
summarized in Supplementary Table 2. Three objectives were optimized: overall
activity for PGPD designs, activity under beta-estradiol induction for PZEV designs,
and activation ratio for PZEV designs. In all cases, at least 100 promoters with the
objective predicted to be above a design threshold were designed. The design
thresholds were chosen empirically to generate the desired promoter sets without
expending an unreasonable amount of computational resources.

The predictions for each sequence were generated using the set of nine models
trained on the joined data sets. Predictions from the models were merged either by
taking the mean of the individual predictions, or the mean of predictions minus
their standard deviation (to buffer the possible effect of outlier predictions). To
increase the diversity and ease of assembly of the designed sequences, a filter was
applied in some experiments to reject sequences containing regions 20 bp or longer
with GC content below 25% or above 80%.

As described in “Results”, three design strategies were tested: screening, in silico
evolution, and gradient ascent. In screening, sets of sequences were randomly
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generated, using the same constant regions and base composition probabilities used in
designing the original libraries. These sequences were then tested and accepted if they
met the objective. In in silico evolution, a set of sequences was iteratively generated
from a randomly chosen parent sequence and tested; the highest-scoring sequence
was passed on to the next round of evolution. The number of mutations induced in
each round decreased over time. We implemented a gradient ascent strategy for
promoter design by calculating the gradient on the input data, with respect to the
score property to be maximized. Given a one-hot encoded DNA sequence, the
gradient was iteratively calculated and used to generate an updated version of the
input. The objective score was calculated for a rounded one-hot matrix derived from
this updated input. The sequence was accepted if its score was above a threshold.
Values of cycle-dependent parameters used in the evolution and gradient-ascent
strategies are given in Supplementary Tables 18 and 19, respectively.

The score threshold for accepting a design was set independently for each of our
three objectives. For most evolution and gradient ascent designs, it was set such
that a promoter set of 120 sequences could be generated within an hour for a
selected reference design (Supplementary Table 2, Threshold Reference in Notes).
The screening strategy was unable to generate promoter designs that reached this
threshold; so for screening designs, this threshold was decreased in increments of
0.05 until a promoter set could be generated. Additionally, an elevated-threshold
design was generated for each objective using the gradient ascent strategy and the
extrapolation penalty, not applying the GC constraint, and increasing the threshold
in increments of 0.05 until a set of 120 sequences could no longer be generated
within an hour. Sequences containing BsaI restriction sites, which interfere with the
assembly strategy, were removed. The choices of parameters used to specify each
experiment (target promoter, objective to maximize, use of optional GC filter,
function used to merge submodel outputs, design strategy, final score threshold)
are provided in Supplementary Table 2.

Assembling designed sequences from an oligo pool. Sequences derived from the
sequence evolution strategies or selected from the original FACS-seq data as
controls were assembled from an oligonucleotide pool (Twist Bioscience). Each
sequence set was assigned unique PCR amplification sites, designed using a Python
script to minimize cross-talk between pools; oligo annealing temperatures in this
script were calculated using the Primer3 library56. (All Python scripts were run
using Python 2.7 on Ubuntu 16.04.) Each sequence was then designed as a pair of
oligos (a forward and reverse oligo), which could be joined by Golden Gate
assembly using a unique assembly site.

Forward and reverse oligos for each sequence in each sequence set were
amplified from the oligonucleotide pool in KAPA PCR reactions, using selective
primers complementary to the designed unique PCR amplification sites to
selectively amplify the desired subpool. The designs for each sequence set were then
assembled by Golden Gate assembly (following the reaction conditions described in
Supplementary Note 1 as “Golden Gate Assembly of Libraries”) and further PCR-
amplified. An equimolar mixture of the resulting subpools was then cloned into
pCS4306 by gap repair as described above.

Testing individual sequences. To validate FACS-seq results and further char-
acterize designed promoters, a subset of sequences was chosen to be synthesized and
tested individually. Sequences were chosen using an R script to obtain a minimal set
of sequences needed to test hypotheses of interest. To determine FACS-seq mea-
surement reliability across a range of activities, we selected three sequences for each
of eight evenly distributed FACS-seq-derived activity values, in both the uninduced
and induced conditions. To better characterize sequences that were observed in an
extreme bin (Bins 1, 12), for each promoter set, we selected up to three sequences
observed only in an extreme bin in either the uninduced or induced condition.
Finally, we randomly selected sequences from each promoter set that was not
characterized in FACS-seq, such that 5 sequences were measured in total.

To clone single promoters, the sequences were ordered from Twist Bioscience, or
in the case of pre-existing control promoters, PCR-amplified using Expand High
Fidelity PCR from plasmids: PGPD and PTEF1 from pCS4305, PADH1 from pCS2660,
PPGK1 from pCS2663, PTPI1 from pCS2661, PCYC1 from pCS2659, P3 from pCS4307,
P4 from pCS4308, and P8 from pCS4309. Plasmids pCS4307, pCS4308, and pCS4309
were constructed by digesting pCS4306 with ZraI and using Gibson assembly to insert
the corresponding ZEV promoter sequence, which was amplified from gDNA of a
yeast strain containing the sequence (DBY19053 for P3, DBY19059 for P8) or (in the
case of P4) artificially synthesized as a gBlock Gene Fragment (IDT). We were unable
to PCR-amplify the P4 sequence from gDNA, or have it synthesized as originally
specified; we replaced the second of six closely spaced GCGTGGGCG sites in the
original sequence with TTACTCAAG. Sequences were cloned into pCS4306 by gap
repair using the Frozen-EZ Yeast Transformation II Kit (Zymo Research) according
to the manufacturer’s instructions. Colonies were inoculated into 500 μl YNB-U liquid
media in 96-well plates and grown with shaking at 30 °C overnight; 5 μl of the
resulting seed cultures were used to inoculate new 500 μl sample cultures. Each
sample culture was derived from a unique transformant colony. These were assayed
on a MACSQuant VYB flow cytometer (Miltenyi Biotec GmbH) after 24 h further
growth. We performed the manufacturer’s recommended calibration procedure
before each flow cytometry run. For each sample, the ratio of measured GFP to
mCherry fluorescence was determined for all detected events, and the median of these
values was used as the measure of promoter activity in the sample. Three biological

replicates were tested for each sequence. Confidence intervals were calculated using a
t test with the appropriate degrees of freedom for each sample. Data were confirmed
to be normally distributed (conditional on the sequences tested) using a Q−Q plot
(Supplementary Fig. 31).

Motif identification by in silico mutagenesis. Single mutants of sequences to be
characterized by mutagenesis were generated, and activities and activation ratios
estimated, using a Python script. We used a Python script to calculate score dif-
ferentials between activity predictions for double mutants and single mutants, as
described above under the heading “In silico mutagenesis reveals sequence design
rules”, as well as to identify strong motifs in PZEV-Induced and PZEV-Activation
Ratio designed promoters.

Statistics. Statistical significance was established using the Mann−Whitney test,
Student’s t test, or Fisher’s exact test, as indicated in the text. All tests, as well as
calculations of the coefficient of determination (R2), were carried out using R
scripts, using default settings. R scripts were run under R 3.5.1 and developed using
RStudio 1.1.463 for Windows 10. All tests were two-tailed except where stated
otherwise. Replicates were defined as cultures inoculated from separate yeast
colonies or streaks and cultivated in separate containers.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
NGS data that support the conclusions of this study have been deposited in the NCBI
Gene Expression Omnibus (GEO) with the accession code GSE135464. All other data is
available in Zenodo (https://doi.org/10.5281/zenodo.3735426), including R scripts and
raw data for regenerating all data figures. The source data underlying Figs. 3, 4, 5c−e and
Supplementary Figs. 15–18, 20, and 21 are provided as a Source Data file.

Code availability
All code produced in this study is available via Github (https://github.com/smolkelab/
promoter_design), under the MIT license.
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