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Chromosome arm aneuploidies shape tumour
evolution and drug response
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Chromosome arm aneuploidies (CAAs) are pervasive in cancers. However, how they affect

cancer development, prognosis and treatment remains largely unknown. Here, we analyse

CAA profiles of 23,427 tumours, identifying aspects of tumour evolution including probable

orders in which CAAs occur and CAAs predicting tissue-specific metastasis. Both haema-

tological and solid cancers initially gain chromosome arms, while only solid cancers subse-

quently preferentially lose multiple arms. 72 CAAs and 88 synergistically co-occurring CAA

pairs multivariately predict good or poor survival for 58% of 6977 patients, with negligible

impact of whole-genome doubling. Additionally, machine learning identifies 31 CAAs that

robustly alter response to 56 chemotherapeutic drugs across cell lines representing 17 cancer

types. We also uncover 1024 potential synthetic lethal pharmacogenomic interactions.

Notably, in predicting drug response, CAAs substantially outperform mutations and focal

deletions/amplifications combined. Thus, CAAs predict cancer prognosis, shape tumour

evolution, metastasis and drug response, and may advance precision oncology.
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Cancer cells typically adopt a number of features that dis-
tinguish them from normal cells, such as the ability to
proliferate in an uncontrolled manner1. The acquisition of

such malignant properties invariably has a genetic or genomic
basis2,3. For instance, oncogenes may harbour activating muta-
tions or be subject to amplification, while tumour suppressor
genes may acquire inactivating mutations or suffer from copy
number loss. The gain of mutations and copy number changes,
collectively referred to as genomic instability, are common in
cancer cells and are potent drivers of tumorigenesis, intra-
tumour heterogeneity and drug resistance1–5. A range of
mechanisms of genomic instability have been identified3,6. Point
mutations can be caused by extrinsic or cell-autonomous factors,
including defective DNA replication or DNA repair pathways7–9.
Somatic copy number changes may emerge following replication
stress, telomere crisis, defects in DNA damage response and
repair pathways or chromosomal instability (CIN), which result
in structural or numerical chromosomal abnormalities3,6,10.

Cancerous copy number aberrations include small segmental
deletions and amplifications, genomic regions of multiple mega-
bases, gain or loss of chromosome arms or whole chromosomes
and whole-genome doubling. Many translational studies have
focussed on individual chromosomal aberrations in cancer, such
as HER2 amplification in breast cancers11,12, whereas others have
studied combinations of copy number changes. For instance,
simultaneous loss of chromosome arms 1p and 19q occurs fre-
quently in gliomas and strongly predicts good patient outcome13.

Other studies determined somatic copy number alteration
(SCNA) landscapes across individual or multiple cancer types
using systems genomics approaches. For example, tumour cells
were found to depend on focal amplifications of anti-apoptotic
genes in order to survive14. Loci on chromosome arm 9p were
identified as potential cancer drivers and therapeutic targets in
lower grade glioma15. Moreover, aneuploidy and SCNA levels in
cancers were shown to positively correlate with mutation load
and cell proliferation, while negatively correlating with immune
cell infiltration and patient survival in immunotherapy trials16–18.
Finally, loss of chromosome arm 3p is common in squamous
tumours17,19,20.

A recent landmark study identified a large number of mutations
and focal SCNA-drug interactions across many cancer types21.
Functionally, such associations between focal SCNAs and drug
response may be easily understood, if the drug target is encoded by
a gene located on the focal SCNA. However, it is possible that more
complex pharmacogenomic interactions exist. Compared to those
of focal SCNAs, the frequencies of chromosome arm-level aneu-
ploidies (CAAs) are about 30 times higher than expected based on
the inverse-length distribution of focal SCNAs and this phenom-
enon is widespread among cancer types14. In addition, CAAs on
average affect about 25% of the cancer genome, whereas focal
SCNAs involve 10%14. Thus, CAAs may profoundly affect how
cancer cells respond to drug treatment. Yet, this has not been
thoroughly investigated.

Here, we determine the frequencies of CAAs in 31 cancer types.
In-depth CAA analyses provide insights into tumour evolution. In
addition, we identify 160 individual CAAs or co-occurring CAA
pairs that predict good or poor cancer patient prognosis. Finally,
using machine learning, we identify CAAs that predict increased
sensitivity or resistance to dozens of chemotherapeutic drugs and
show that CAAs are considerably stronger predictors of drug
response than mutations and focal SCNAs combined.

Results
Pan-cancer chromosome arm aneuploidies. Using Genome-
wide SNP6 Array data from The Cancer Genome Atlas (TCGA),

we determined numerical CAAs in 11,019 human tumour sam-
ples across 31 cancer types (Supplementary Data 1; see Methods).
We used the largest dataset (breast cancer, BRCA) to directly
compare our CAA frequencies to CAA frequencies determined:
(1) by Taylor et al.17, who also used TCGA SNP6 array data, (2)
using TCGA whole-genome array copy number data, (3) using
SNP6 array data from an independent dataset, METABRIC22 and
(4) using ICGC/PCAWG (Pan-cancer Analysis of Whole Gen-
omes) whole-genome sequencing data23. These comparisons
showed strong correlations with Pearson coefficients of r=
0.9280, r= 0.9106, r= 0.9688 and r= 0.6154, respectively (Sup-
plementary Fig. 1a–e). Thus, this provided both technical and
biological validation.

Cancer type-specific bias towards chromosome arm gain/loss.
In comparing CAA burden between cancer types, we noticed that
haematological cancers accrue significantly fewer CAAs per
tumour than solid tumours (median 0 and 5, mean 1.5 and 6.5,
respectively; p= 2.6 × 10−60, Mann–Whitney U test; Fig. 1a).
However, per cancer type, the average CAA burden ranged
considerably, from 0.5 to 14.7 (Fig. 1b). Importantly, we thus far
determined CAAs in tumours irrespective of whether they had
undergone whole-genome doubling (WGD), a common phe-
nomenon in tumours24,25. We found that CAA burden is higher
in WGD-positive (WGD+) samples than in WGD-negative
(WGD−) samples, however, increased CAA burden in solid
cancers compared to haematological malignancies is independent
of WGD status (Supplementary Fig. 2a, b).

Per sample, haematological cancers show more gains than
losses, whereas solid cancers show more losses than gains (p=
0.0167 and p= 1.77 × 10−36, unpaired Mann–Whitney U test)
(Fig. 1c). Within samples, this difference is even more significant
(p= 0.0015 and p= 1.08 × 10−111, paired Wilcoxon signed-rank
test) (Fig. 1c). The bias towards loss in solid cancers is
independent of WGD status and the bias towards gain in
haematological tumours applies to at least the vast majority (158/
171= 92%) of these malignancies that do not undergo WGD
(Supplementary Fig. 2a–d).

Thus, we conclude that haematological cancers preferentially
gain chromosome arms, whereas solid tumours exhibit a bias
towards arm loss, irrespective of WGD status.

CAA frequencies reveal aspects of tumour evolution. Sub-
sequent to our global observation of opposite chromosome arm
gain/loss biases in haematological and solid cancers (Fig. 1c), we
performed several in-depth analyses. We first determined how
many individual CAA-positive tumours show more chromosome
arm gains than losses (G > L), equal numbers of gains and losses
(G= L) or more arm losses than gains (G < L). Consistent with
our previous observation, this analysis indicates that haematolo-
gical cancers show a strong bias towards chromosome arm gain,
while solid tumours preferentially lose chromosome arms (p=
4.0 × 10−5 and p= 5.9 × 10−104, Chi-square test) (Fig. 1d).

We next assessed whether these opposing biases were
dependent on the total number of CAAs per tumour. For
haematological cancers, the fractions of tumours with G > L were
always higher than expected by chance (except when #CAAs= 5)
(Fig. 1e). However, solid cancers with 1 or 2 CAAs also showed a
significant bias towards gain (Fig. 1e). In contrast—and in line
with our expectation given observations in Fig. 1c, d—solid
cancers with 3 to 17 CAAs per tumour consistently showed a
significant bias towards chromosome arm loss (Fig. 1e). Inter-
estingly, for solid cancers, there is a slight shift in the ‘turning
point’ from bias towards gain to bias towards loss depending on
WGD status. In WGD- samples, this turning point is between 2
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and 3 CAAs/sample, whereas for WGD+ samples, this point also
roughly doubles, as it is between 4 and 5 CAAs/sample
(Supplementary Fig. 3a–d). Collectively, these data suggest that
during tumorigenesis, haematological cancers gain few arms,
whereas solid cancers initially often also gain few chromosome
arms, but at later stages they preferentially lose multiple arms
(Fig. 1f).

Consistent with this, solid tumours show increasing CAA
burden as they progress to more advanced stages (Supplementary
Fig. 4a). In addition, the fraction of CAA-positive tumours with
G > L is significantly higher in stage I than in stage II–IV solid
tumours (Fig. 1g, Supplementary Fig. 4c). This is typical for
individual solid cancer types (Supplementary Fig. 4e) and both
WGD− and WGD+ tumours show larger G > L fractions in stage
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I (Supplementary Fig. 4f, g). We note, however, that even in stage
I solid tumours, the median CAA burden is above the CAA
burden ‘turning point’ that marks the switch between bias
towards gain and bias towards loss (Fig. 1g, Supplementary
Figs. 3a–d, 4f, g). This heterogeneity probably explains why even
stage I tumours collectively show a slight bias towards loss.

CAAs in primary and metastatic tumours. Other features of
tumour evolution may surface from studying metastasis, a key
feature of advanced tumours. We used the MSK-IMPACT data-
set26 to compare 5778 primary solid tumour samples to 4424
metastatic solid tumour samples (Supplementary Data 2). Meta-
static samples mostly show increased CAA burden compared to
type-matched primary samples (Fig. 2a, Supplementary Fig. 5a).
Strikingly, irrespective of the primary site, brain metastases show
a significantly higher CAA burden than metastases at other
common sites (Fig. 2a, Supplementary Fig. 5b) and this is inde-
pendent of WGD status (Supplementary Fig. 6a–c).

We also identified individual CAAs that associate with
metastasis, most significantly for prostate and non-small cell
lung cancer (Fig. 2b, Supplementary Figs. 5c, 6d). Notably,
these are mostly tumour type-specific; there is no universal
pan-cancer CAA linked to metastasis (Fig. 2b, Supplementary
Fig. 5c). However, several CAAs show moderate to strong
specificity for metastasis specifically to liver, bone or brain
(Fig. 2c, Supplementary Fig. 5d), although WGD status affects
this specificity for liver metastases (Supplementary Fig. 6e).
Interestingly, some CAAs that are acquired by brain metastases
are also common in primary brain tumours (Fig. 2c, Supple-
mentary Fig. 6e).

A stochastic model for CAAs in breast cancer. We built a tree
with k levels to model the sequential acquisition of CAAs during
tumour evolution (see Methods, Supplementary Fig. 7). On each
level k, nodes referred to ‘CAA karyotypes’ and included all
possible karyotypes with exactly k CAAs. Edges, all directed from
level k to level k+ 1, referred to transitions between karyotypes
acquiring one additional CAA. Using the frequencies of each
observed CAA karyotype in the breast cancer (BRCA) dataset, we
estimated the probability of acquiring one specific CAA before
another during breast cancer development. This resulted in a 78 ×
78 transition probability matrix (Supplementary Data 3). Along
with the observed frequencies of each individual CAA, we gen-
erated a network for predicted high-probability sequential acqui-
sitions of CAAs (Fig. 2d). Examples of such transitions of various
path lengths include: þ19q ! þ1qð Þ, �12q !ð �17p ! þ1qÞ
and þ7p ! �7q ! þ3q ! �13q ! þ8qð Þ. Thus, this provided
probable orders in which CAAs are acquired during cancer
development.

72 CAAs predict patient survival outcome. We next performed
robust multivariate patient survival analyses using cancer type,
clinical stage, age and all univariately significant CAAs as cov-
ariates. This identified 36 CAAs significantly associated with
overall survival and 36 CAAs associated with disease-free survival
across 19 analysed solid cancer types (multivariate Cox propor-
tional hazard (Cox-ph) model with significance level α= 0.05;
Supplementary Data 4, 5). Importantly, this included CAAs that
predicted poor or indeed good survival outcome (Fig. 3a, b,
Supplementary Data 4 and 5). Interestingly, CAAs that predicted
good survival outcome on average did so for more patients than
CAAs that predicted poor survival (p= 0.0002, Mann–Whitney
U test; Supplementary Fig. 8). However, the number of identified
significant associations for poor survival is 2.4 times higher than
for good survival (51 versus 21). Hence, on aggregate, CAAs
predicted good and poor prognosis for similar fractions of
patients (25% and 23%, respectively).

88 CAA pairs synergistically predict survival outcome. We
hypothesised that specific CAAs co-occur in tumours more fre-
quently than expected and thereby synergistically predict poor
patient outcome. To test this, we first used a probabilistic model
originally developed to identify statistically significant pair-wise
patterns of species co-occurrence27. This method determines the
probability that two events co-occur, while accounting for the
frequencies of the individual events. We generated matrices of co-
occurring CAAs for all 29 solid cancer types to identify CAAs
that co-occur at significantly higher frequencies (positive co-
occurrence) or lower frequencies (negative co-occurrence) than
expected by chance (Fig. 4a, Supplementary Fig. 9, Supplementary
Data 6). To better visualise the frequencies, complexities and
significance levels, we also generated networks of significant co-
occurrences (Fig. 4b, Supplementary Fig. 9) and volcano plots
(Fig. 4c, Supplementary Fig. 10). Altogether, this identified 293
negative and 8,373 positive significant CAA co-occurrences
across 29 solid cancer types (q < 0.05; Supplementary Data 6).

We then assessed whether CAA pairs that co-occurred both
frequently and at high statistical significance predict patient
survival outcome. This yielded mixed results (Supplementary
Fig. 11a–i). For instance, −1p and −19q co-occurred in 30.7% of
low-grade gliomas (LGG)—while only 14.5% was expected by
chance (q < 10−5; Fig. 4a, b)—and this strongly predicted good
overall patient survival (log-rank p= 6.7 × 10−5; Supplementary
Fig. 11a), a phenomenon that is in fact well-established13. On the
other hand, in all other datasets the most significant and
abundant co-occurring CAAs did not significantly predict patient
outcome (Fig. 4c, Supplementary Fig. 11b–i).

Thus, as an alternative, we used the aforementioned unbiased
multivariate approach. This highly robust analysis identified 88
co-occurring CAA pairs that were significantly associated with
patient survival across 19 solid cancer types (Supplementary

Fig. 1 CAA frequencies provide insights into tumour evolution. a Box plot comparing CAA burden per tumour for haematological and solid cancers.
Shown are mean (+), median with 95% confidence intervals (notches), interquartile ranges and all data points. P value: Mann–Whitney U test. b Box plot
as in a showing CAA burden per cancer type. Abbreviations of each cancer type are shown in Supplementary Data 1. c Box plot as in a showing the number
of chromosome arms lost or gained in haematological and solid cancers. P values: Mann–Whitney U test (unpaired), Wilcoxon signed-rank test (paired).
d Contingency tables showing expected (E) and observed (O) numbers (n) and percentages (%) of CAA-positive haematological and solid tumours with
indicated arm-level gain:loss ratios. Bar graphs show the respective expected and observed fractions. P values: Chi-square tests. e Shooting star plots
showing fractions of tumours with G > L as a function of the total number of CAAs per sample. Odd and even numbers are shown separately. Dot sizes are
proportional to the fractions of haematological (orange) and solid tumours (blue). P values: binomial tests. f Tumour evolution model showing that both
haematological and solid cancers initially gain few chromosome arms, whereas only solid cancers subsequently preferentially lose chromosome arms.
g Distributions of CAA-positive solid tumours with indicated intra-tumour chromosome arm gain (G):loss (L) ratios according to clinical stage. Median
CAA burden and sample sizes are shown for each stage. P values: p= 7.1 × 10−5, p= 1.4 × 10−4, p= 0.0013, respectively, Chi-square tests relative to stage
I. P value abbreviations are defined in the Methods section. Source data are provided as a Source Data file.
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Fig. 4 Identification of 88 co-occurring CAA pairs that synergistically predict good or poor cancer patient survival outcome. a Matrices and table of
selected results from pan-cancer CAA probabilistic cooccurrence analyses. Tile colours indicate whether CAA combinations occur significantly more
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Data 4 and 5). These co-occurrences predicted poor or good
patient survival outcome and typically occurred at low frequen-
cies, on average involving 9% of patients (Fig. 4c–e, Supplemen-
tary Data 7).

Overall, our multivariate survival analyses identified more
associations with co-occurring CAAs than with single CAAs
(Fig. 5a). However, the latter involved more patients (Fig. 5b).
Notably, 86% of significant co-occurring CAAs involved two
CAAs that individually were not significant predictors, indicating
synergism (Fig. 5a). In addition, a considerable number of CAAs
predicted good patient outcome (Fig. 5b) and co-occurring CAAs
were predictive for survival in 10% of patients for whom single
CAAs were not (Fig. 5b). Together, individual and co-occurring
CAAs significantly predicted good or poor survival for 58% of
patients (Fig. 5b).

We also assessed the effect of WGD on the survival prognostic
power of CAAs. Univariate Cox-ph analyses identified WGD to
significantly impact survival outcome in 7 out of our 33 cancer
type-survival type combinations (Fig. 5c, Supplementary Data 4
and 5). This involved 44 individual CAAs or co-occurring CAA
pairs that we previously identified as significant survival
predictors (Supplementary Data 4 and 5). For these, inclusion

of WGD as a co-variate in multivariate analyses yielded a Cox-ph
p value > 0.05 in only 1 of these 44 cases (specifically, p= 0.057;
Fig. 5c, Supplementary Data 4 and 5). Thus, WGD has a
negligible effect on the patient survival prognostic power
of CAAs.

CAAs are independent predictors of drug response. We
investigated relationships between CAAs and chemotherapeutic
drug response. First, CAA burden is typically positively asso-
ciated with increased predicted pathologic complete response
(pCR) to preoperative paclitaxel and fluorouracil-doxorubicin-
cyclophosphamide (T/FAC) chemotherapy, as determined
using a pharmacogenomic predictor28 (Fig. 6a, Supplementary
Data 8 and 9).

This encouraged us to comprehensively investigate if CAAs
could predict response to individual chemotherapeutic drugs. To
this end, we utilised data from the Sanger Institute’s Genomics of
Drug Sensitivity in Cancer (GDSC) project, which comprehen-
sively profiled the landscape of responses of 1,001 human pan-
cancer cell lines to 265 anti-cancer drugs21. To ensure that the
predictive potential of CAAs can be directly compared to
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previously established pharmacogenomic predictors21, we used
the same machine learning pipeline, specifically elastic net
regression. Our model included the following: (a) 710 established
pan-cancer pharmacogenomic features, referred to as cancer
functional events (CFEs), including mutations in 285 high-
confidence cancer genes (GCs) and 425 recurrently copy number-
altered chromosomal segments (RACSs) (Fig. 6b)21,29; (b) the 78
CAAs that we determined here (Fig. 6b); (c) 386,293 IC50 values
of an expanded panel of 453 anti-cancer drugs, including 265

previously reported21 and 188 additional drugs (see Methods);
and (d) 988 cancer cell lines. This identified 365 significant CFE/
CAA-drug interactions (at p < 0.001 and FDR < 0.25) with a
Glass’s Δ IC50 effect size > 1.0 across 22 cancer types (Fig. 6c, d,
Supplementary Data 10). Of these 365 interactions, 301 involved
CFEs and 64 involved CAAs (Supplementary Data 10). CAAs
consistently ranked among the top 50 features most frequently
associated with drug response, alongside known CFE-drug
interactions, both at the individual tissue and pan-cancer levels
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(Supplementary Data 10). On aggregate, we identified 31 distinct
CAAs that robustly alter response to 56 chemotherapeutic drugs
across cell lines representing 17 cancer types.

It is possible that some CAA-drug interactions do not
represent new information if focal CNAs on the respective
chromosome arms already predict such interaction. This was the
case for 2 of the 64 CAA-drug interactions (4q loss and 4q13-q31
focal deletions: AURK inhibitor resistance in KIRC (which may
be linked to loss of the gene encoding the Aurora A interactor
HNRNPD30); 17p loss and 17p11-p13 focal deletions: MCL-1
inhibitor resistance in LAML (which may be linked to TP53 loss,
as p53 interacts with MCL-131)) (Supplementary Data 10). Using
Fisher’s exact tests, additional systematic in-depth analysis of all
possible 788C2= 310, 078 co-occurring CFEs/CAAs, including co-
occurring focal CNAs, on the 988 cell lines (Supplementary
Data 11) did not identify any additional such cases, even at a
relaxed threshold of raw p value < 0.05 without FDR correction
(Supplementary Data 12). Thus, our high-dimensional analyses
indicate that individual CAAs can be used as independent
predictors of chemotherapeutic drug response in cell lines.

Potential synthetic lethal interactions of drug sensitivity.
We systematically tested whether, for each of the 28 cancer types,

as well as pan-cancer, any of the possible
788
2

� �
¼ 310; 078

co-occurring CFE/CAA pairs are significantly more frequently
associated with drug sensitivity than with drug resistance, or vice
versa, using Fisher’s exact tests. Using cut-offs of p < 0.05 and
FDR% < 0.001, we identified 1,024 potential synthetic lethal
interactions, i.e., co-occurring events associated with increased
sensitivity, and 89 potential synergistic resistance interactions
(Supplementary Data 11).

CAAs outperform other genomic events in predicting drug
response. We found that, corrected for the number of input
alterations, CAAs are involved in drug interactions nearly twice
as often as CFEs across 22 cancer types (p= 0.0138, paired-
sample Wilcoxon test; p= 7.9 × 10−7, Chi-square test) (Fig. 6e,
Supplementary Fig. 12a, Supplementary Data 10).

To assess how well CAAs could predict drug response
compared to CFEs, we developed a deep neural network model
to predict drug sensitivity and used binary resistant/sensitive calls
for the above 988 cell lines and 265 anti-cancer drugs, as
previously reported21. The vast majority of these calls were
‘resistant’. Hence, to avoid mostly identifying genomic events
associated with drug resistance, we used drugs for which at least
15% of the cell lines had sensitive calls (see Methods).

Accordingly, our deep neural network models included 39 drugs
in 971 cell lines. We used these data to train and 5-fold cross-
validate three independent pan-cancer deep neural network
models, which were respectively based on CFEs only (710 CFEs),
CAAs only (78 CAAs) and the combination of CFEs and CAAs
(788 features) (Fig. 6b).

The validation accuracy of the CFE-based model was 57%.
With an accuracy of 69%, the CAA-based model performed
considerably better (Fig. 6f, Supplementary Fig. 12b, c). While,
with an accuracy of 70%, the model based on both CFEs and
CAAs performed best, this was a negligible improvement
compared to the model based on CAAs alone (Fig. 6f,
Supplementary Fig. 12d). For more in-depth evaluation of the
models, we carried out performance analyses for each drug. This
revealed that CAAs performed better than CFEs for 30 of the 39
drugs, as assessed by higher F1 scores (Fig. 6g, Supplementary
Data 13). This represents a statistically significant difference (p=
3.6 × 10−6, Fisher’s exact test, Fig. 6g). Notably, for drugs where
CFEs performed better, there is often a well-established CFE-drug
interaction, such as for lapatinib and focal gain of ERBB2/EGFR
(Supplementary Data 10, 13). We also found that on average, the
difference in F1 scores showed a significant bias towards CAAs (p
= 0.0020, one-sample t-test; Fig. 6g). Thus, 78 CAAs both
quantitatively and qualitatively outperform 710 well-established
CFEs and improve the power of predicting drug response based
on pharmacogenomic parameters.

Discussion
Herein, we performed comprehensive pan-cancer analyses of
chromosome arm-level aneuploidies (CAAs), a common con-
sequence of genomic instability in cancer cells1–5. Several studies
have previously studied CAAs across multiple cancer types15–17.
These revealed that CAAs are common in cancers, yet they are
tumour type-specific, and CAA burden is associated with TP53
mutations, cell proliferation, cell cycle gene expression and low
levels of tumour-infiltrating immune cells. In contrast, our study
utilises CAAs to identify aspects of tumour evolution, metastasis,
patient survival and chemotherapeutic drug response.

Our analyses provide thus far unknown broad and specific
insights into tumour evolution. Solid cancers show a considerably
higher CAA burden than haematological cancers. This may
reflect the fact that haematological cancer development is largely
driven by translocations, or that TP53 mutations are less pre-
valent in these cancers16,17,32,33. Another discriminating feature
between haematological and solid cancers is their opposing bias
towards gain and loss of chromosome arms, respectively.
Importantly, however, in solid cancers the bias towards arm loss
is a function of the total CAA burden. Indeed, these cancers show

Fig. 6 CAAs shape drug response and outperform other genomic events in response prediction. a Heatmap of Spearman correlations between CAA
burden and a pharmacogenomic predictor of pathologic complete response (pCR) to preoperative paclitaxel and fluorouracil-doxorubicin-
cyclophosphamide (T/FAC) chemotherapy. Numbers in tiles show q values, i.e., FDR-corrected significance from Fisher’s exact tests, as Fig. 2b. Ns, not
significant (q > 0.05). b Sunburst plot showing the distribution of pharmacogenomic alterations used in our machine learning model, including 285 high-
confidence cancer genes (GCs), 425 recurrently copy number-altered chromosomal segments (RACSs), collectively referred to as cancer functional events
(CFEs), and 78 CAAs. c Bubble volcano plot showing how specific CFEs and CAAs alter response to anti-cancer drugs, as determined by elastic net
regression. The impact is shown as Glass’ Δ log10(IC50) effect size between cell lines with and without the alteration. Bubble colours correspond to cancer
types. Bubble sizes are proportional to the numbers of cell lines. Selected CFEs and CAAs are highlighted in blue and red, respectively. Two CAA-drug
interactions can be explained by focal CNAs (*). d Beeswarm plots showing the extent to which several CAAs significantly increase drug resistance or
sensitivity. Cell lines negative (−) and positive (+) for indicated CAAs are shown. Horizontal lines represent the mean IC50 value. See Supplementary
Data 10 for full data. e Tukey boxplot showing the fractions of CFEs or CAAs that significantly alter drug response. Shown are the medians with
interquartile ranges and all data points. Lines connect the respective fractions for each of the 22 cancer types. P value: Paired Wilcoxon signed-rank test.
f Summary table showing the performance of machine learning models based on CFEs alone, CAAs alone and CFEs and CAAs combined. g Beeswarm plot
showing the differences between the F1 performance scores from the CFE-based and the CAA-based models for each of the tested 39 drugs. Mean and
95% confidence interval are shown. P values: one sample t-test (top), Fisher’s exact test (right). Source data are provided as a Source Data file.
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a preference towards chromosome arm gain when the CAA
burden is low, akin to haematological cancers, but preferential
loss when the CAA burden is high.

We propose a tumour evolution model in which solid cancers
initially preferentially gain chromosome arms, whereas they
preferentially lose chromosome arms later during development
(Fig. 1f). Aside from the above observation, two lines of evidence
further support this model. First, the number of CAAs sig-
nificantly increases with more advanced stages of disease, in
particular from stages I to II and II to III (Fig. 1g, Supplementary
Fig. 4e). Second, the fraction of CAA-positive solid tumours with
more chromosome arm gains than losses is significantly higher in
stage I tumours than in tumours at advanced stages. Interestingly,
even stage I tumours show a slight bias towards chromosome arm
loss. This suggests that the bias towards gain may be restricted to
the earliest stages of solid tumour development. Consistently, we
observe this bias only in tumours with 1 and 2 CAAs and the
median CAA burden of stage I tumours is 4. This suggests that
early during tumorigenesis, the gain of oncogenes may be more
important than the loss of tumour suppressor genes, although this
requires overcoming oncogene-induced senescence34,35. Alter-
natively, or additionally, instantaneous hemizygous deletion of
multiple genes, including essential genes, may reduce the fitness
of incipient cancer cells17,36–38. Such losses may be better toler-
ated in a 4n background, as suggested by our observation that
WGD predisposes to increased CAA burden.

Our study demonstrates the value of CAAs for cancer diag-
nostic and, potentially, therapeutic purposes in various ways. We
identified 72 specific CAAs and 88 co-occurring CAA pairs that
significantly predict good or poor patient survival outcome in
multivariate analyses and these respectively involve 48% and 12%
of patients. We noted that there is very low patient overlap
between these percentages. Hence, for 58% of all patients, good or
poor survival can be predicted using CAAs alone. Additionally,
increased CAA burden predicts increased rate of metastasis, in
particular to brain, and several CAAs show specificity for meta-
static sites, similar to recent observations39. WGD has a negligible
effect on the prognostic power of CAAs.

Loss of chromosome arm 3p was previously identified as
common in renal cell carcinoma and in squamous cancers of the
lung, head and neck, oesophagus and cervix17,19,20. However, 3p
loss does not promote proliferation of primary human lung
cells17. This suggests that additional aberrations are required.
This could include TP53 mutations in some—but not all—can-
cers, as these strongly correlate with SCNA burden and aneu-
ploidy, and p53 protects against structural aneuploidies that
originate in mitosis17–19,40. Alternatively, 3p loss may con-
comitantly require other specific SCNAs. We identify 5q loss as a
strong candidate, because it significantly cooccurs with 3p loss in
11 cancer types, including all five of the aforementioned cancer
types with frequent 3p loss (q < 10−5; Supplementary Data 6).
This includes frequencies of up to 2.4-fold higher than expected
in lung cancers, involving 38% of lung squamous cell carcinoma
patients (Supplementary Data 6). Also, our multivariate survival
analyses identified 3p loss as a significant prognostic predictor for
poor survival in 1 of 19 analysed cancer types (UCEC, Supple-
mentary Data 4 and 5). Yet, cooccurrence of 3p loss with other
CAAs, including 5q loss, significantly predicts poor patient sur-
vival for three cancer types (Supplementary Data 5). This
example demonstrates the value of our integrative approach
utilising CAA frequencies, cooccurrence analysis and multivariate
survival analysis for clinical prognostic purposes.

Finally, we performed machine learning drug response mod-
elling to identify CAA-drug interactions. We included a broad
range of 788 genomic features. Among them were mutations in
high-confidence cancer genes and recurrently copy number-

altered chromosomal segments, collectively CFEs, as well as
CAAs. Our model identified previously identified CFEs that sig-
nificantly predict drug response21,41. In addition, we identified
31 specific CAAs, 30 of which independently increase resistance
or sensitivity to 54 chemotherapeutic drugs across cell lines
representing 17 cancer types. Only 2 of the total 64 CAA-drug
interactions could be explained by focal CNAs.

CAAs considerably outperform CFEs in predicting drug
response. This is remarkable, because over 90% of the 788 fea-
tures were CFEs and less than 10% were CAAs. In addition, the
710 included CFEs were preselected, only comprising high-
confident and recurrent events, whereas all 78 CAAs were
included without preselection. However, with a combined accu-
racy of 70%, there is room for improvement of the predictive
performance. Our model was exclusively based on pharmacoge-
nomic features. Thus, we anticipate that inclusion of tran-
scriptomic or proteomic parameters could further improve
performance. In addition, a potential problem in machine
learning involves the presence of confounding factors, known or
unknown, which can affect model performance42. Such factors
could include cancer subtypes, which our models did not account
for. Thus, inclusion of subtype and application of confounder
control methods could improve model performance43.

The functional consequences of CAAs are not always easily
understood. Two of the identified 64 CAA-drug interactions
could be explained by focal CNAs, suggesting involvement of
HNRNPD and TP53 loss (see above). Other CAA-drug interac-
tions could not be explained by co-occurring focal CNAs on the
same chromosome arm, even if distant from each other. Thus,
more complex interactions exist, potentially synthetic lethal
events involving three or more loci. While in vitro studies are
required to understand the full consequences of individual
CAAs17, our work does provide some clues. For example, 17p loss
increases resistance to seven different drugs in leukaemia (LAML)
and five of these target cell cycle/mitotic regulators (KIF11,
CDK2/7/9, WEE1, PLK1, microtubules) (Supplementary
Data 10). This links 17p loss to resistance to cell cycle inhibitors.
This may well involve a complex interaction with TP53, as it is
located at 17p13.1, while TP53 loss (or mutation) alone is not
predictive (Supplementary Data 10).

We also highlight that context matters at several levels. This
applies to the broad genomic context, as evidenced by our ana-
lyses involving individual CAAs, which are akin to a large
number of focal CNAs, and co-occurrence analyses, including in
the context of patient survival and potential synthetic lethal
interactions. There are also vast cancer type-specific differences.
Additionally, the tumour microenvironment is complex, invol-
ving clonal and sub-clonal aberrations, as well as other cell types,
including tumour-infiltrating lymphocytes, whose abundance
inversely correlates with aneuploidy16,17. In this light, our
observation that CAAs strongly predict drug response may lay a
foundation for pre-clinical studies, involving validation in mouse
xenograft, patient-derived cancer organoid (PDO) or xenograft
(PDX) models44,45. This will be critical, because even though cell
lines typically well represent genetic and genomic somatic
alterations found in tumours21, PDX models in particular much
better mimic the complexities that exist in the tumour micro-
environment45. Taken together, our findings can be a starting
point for pre-clinical studies and hence have the potential to
ultimately advance precision oncology.

Methods
Ethical compliance. All data from human subjects were obtained from public
resources and access was either unrestricted or restricted (see also Data Availability
Statement below). All subject data were non-identifiable and all participants pro-
vided written informed consent and complied with ethical regulations as
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determined by the Ethical Boards reported: TCGA: https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga/history/policies; MSK-
IMPACT26; METABRIC22. In addition, we received Institutional Human Research
Ethics Approval from the Medical Research Ethics Committee (MREC) at the
University of Queensland.

Chromosome arm-level aneuploidy profiling. Pre-processed SNP6.0 array seg-
mental copy number data were available for TCGA and MSK-IMPACT. For
METABRIC and GDSC, raw CEL files were downloaded. These data were pro-
cessed in Python (version 3, www.python.org) using the TCGA pipeline to provide
coherence between datasets. This pipeline uses raw SNP6 CEL files as input and
generates segmented copy number calls (log2 ratios) for each patient sample or cell
line. Specifically, raw data were processed as follows. Signal intensities were cali-
brated using SNPFileCreator_SNP6. Genotype calls were computed using Bird-
seed46. Signal intensities were converted into copy number calls using
CopyNumberInference. Copy number noise was calculated using CopyNumberNoise
and reduced first by removing outlier probes using RemoveCopyNumberOutliers
and second by subtracting variation observed in normal samples using Tangen-
tNormalization. Finally, contiguous chromosome regions with log2 ratio segment
means were obtained using the package DNACopy in the R statistical environment
(R Core Team, Vienna, Austria). SNP6 copy number segments were considered
lost, gained or unchanged with respect to the ploidy status of the sample. Thus,
copy numbers were called independent of whole-genome doubling (WGD) status,
unless indicated otherwise (see also section Whole-genome doubling analyses
below). TCGA, MSK-IMPACT, METABRIC and GDSC data were post-processed
with GISTIC2.0 using a threshold of >0.2 for amplification and <−0.2 for dele-
tion47. Segmental somatic copy number calls were extracted along with frequencies
by cancer type. Somatic copy number alterations (SCNAs) were determined by
subtracting germline copy number calls from tumour copy number calls aligned to
Human Genome Build GRCh37/hg19 using Python (version 3). For each segment
in the SCNA file, if the segment intersected the centromere positions (as down-
loaded from UCSC genome browser for GRCh37/hg19 human genome reference
build; Supplementary Data 14), it was discarded. For each sample in the SCNA file,
total segment lengths (regardless of direction or segment mean) were summed for
each chromosome arm. For each chromosome arm the length of amplification or
deletion (with |segment men| > 0.2) was summed. Fractions reported were lengths
of amplification/deletion divided by total length of segments (per chromosome
arm). Chromosome arm-level SCNAs/aneuploidies (CAAs) were called by scoring
individual chromosome arms as gained or lost if ≥0.9 of the arm was gained or lost.
These cut-offs allow for background noise, heterogeneity and deviating focal copy
number aberrations14,15,24. This did not distinguish between heterologous loss,
homozygous loss or both, which were analysed as one group. This method was
then subjected to technical and biological validation, as described below.

Technical and biological validation of CAA frequencies. The above method was
technically validated on the breast cancer datasets by comparing our CAA fre-
quencies (n= 1094) to those recently reported by Taylor et al.17 (n= 1048), who
also determined CAA frequencies in TCGA samples using a similar method, and to
CAA frequencies determined from TCGA whole-genome (WG) microarray data
(n= 1081). For the latter, thresholded gene-level copy number estimates were used,
as determined by GISTIC2 and the TCGA firehose pipeline (https://gdac.
broadinstitute.org)47, and these were mapped to the human genome using UCSC
xena HUGO probeMap. Consistent with our method using SNP6 array data, CAAs
were called if ≥90% on each arm were gained or lost. For biological validation, our
CAA frequencies of the largest TCGA dataset (BRCA, n= 1094) were compared to
the CAA frequencies of the METABRIC breast cancer dataset (n= 1980)22. Finally,
whole-genome sequencing data from the ICGC/PCAWG project were used for
validation (n= 214). For this, PCAWG-11 consensus segmented copy numbers
were used as determined by the PCAWG-11 working group: “These profiles
contain clonal copy number for nearly the complete genomes and are the result of a
bespoke procedure that combines output from 6 different copy number callers:
ABSOLUTE, ACEseq, Battenberg, CloneHD, JaBbA and Sclust. PCAWG-11
working group first ran all methods across all samples with the consensus SVs
included and applied an algorithm across the segmentations to obtain consensus
breakpoints. With these mandatory breakpoints the methods were rerun without
calling any additional breakpoints. Samples for which the methods disagreed on the
ploidy have gone through an adjustment algorithm that applies various ploidy
adjustments in order to maximise the agreement and were assessed through a
rigorous review procedure. After obtaining consensus on the ploidy, segments are
considered individually to assign copy number states: Clonal agreement (3 stars),
majority vote agreement and agreement after rounding subclonal copy number
(2 stars) and a call from the best method on that sample (1 star). This finally yields
a complete, clonal copy number profile.” Subsequently, the segmented copy
numbers were subjected to the same pipeline described above for SNP6 data to call
the CAAs.

Statistical analysis. False discovery rate (FDR), yielding q values, was applied to
account for multiple-hypothesis testing48. Where p or q values are summarised,
abbreviations are as follows: ****<0.0001; ***<0.001; **<0.05; n/s, not statistically

significant. Alternatively, where indicated, q values are summarised as follows: ns,
not significant (q > 0.05); 1, q < 0.05; 2, q < 10−2; 3, q < 10−3, etc. All statistical tests
were two-tailed, unless specifically indicated otherwise. Other statistical methods
are explained in detail below.

Whole-genome doubling analyses. As described above, CAAs were determined
with respect to the ploidy status of the sample and hence independent of whole-
genome doubling (WGD) status. Whether tumours had undergone WGD was
assessed using the ABSOLUTE algorithm49 (TCGA samples) or called if more than
half of the autosomal genome had two or more copies of the more frequent
(maternal or paternal) allele25 (MSK-IMPACT samples). To determine the rela-
tionship between CAAs and WGD, various analyses on all samples, which included
both WGD- and WGD+ samples, were either repeated for WGD− and WGD+
samples separately, as indicated, or WGD status was included as a covariate in
multivariate analyses (see also Patient survival analyses section below). Where
WGD status is not specified, analyses included both WGD− and WGD+ samples.

CAA burden and response to selected chemotherapeutic drugs. The pathologic
complete response (pCR) to preoperative paclitaxel and fluorouracil-doxorubicin-
cyclophosphamide (T/FAC) chemotherapy was assessed using a pharmacogenomic
predictor that was previously described28 (Supplementary Data 9). Per cancer type,
the extent to which the number of CAAs per tumour correlated with this parameter
was determined by Spearman’s rank correlations. This rendered regression coef-
ficients and p values. False discovery rate (FDR)-adjusted q values were calculated
to correct for multiple-hypothesis testing48 (Supplementary Data 8). Only q values
smaller than 0.05 were considered statistically significant.

Probabilistic computation of intra-tumour gain:loss ratios. For each of the
intra-tumour categories ‘gain > loss’, ‘loss > gain’ and ‘gain = loss’, expected CAA
frequencies in haematological and solid cancers are a function of the total number
of CAAs per tumour sample. Let a be the total number of CAAs in a sample and fa
the observed frequency of samples with a CAAs. Equation (1) was used to calculate
the expected frequency of the number of samples with more chromosome arm
gains than losses for a given a.

Egain>lossðfaÞ ¼
1
2 �

a

a=2

� �
2aþ1

0
BB@

1
CCA ´ fa if a ¼ 2k : k 2 Zþ

� �

1
2 ´ fa if a ¼ 2kþ 1 : k 2 Z�0

� �

8>>>>><
>>>>>:

ð1Þ

In addition, Eloss>gainðfaÞ ¼ Egain>lossðfaÞ, while Egain¼lossðfaÞ was calculated
using Eq. (2).

Egain¼lossðfaÞ ¼
a

a=2

� �
2a ´ fa if a ¼ 2k : k 2 Zþ

� �
0 if a ¼ 2kþ 1 : k 2 Z�0

� �
8>><
>>: ð2Þ

Overall expected frequencies are a function of both a and fa, as specified
in Eq. (3).

Eoverall i fið Þ ¼ Pamax

a¼1
Ei fið Þwith i 2 gain> loss; loss> gain; gain ¼ lossf g ð3Þ

Primary and metastatic samples. SNP6 array data from the MSK-IMPACT study
were obtained and processed as described above to identify CAAs in each of the
10,202 samples (Supplementary Data 2). These were used to compare CAA fre-
quencies and burden between primary and metastatic samples26. Fisher’s exact
tests and FDR-adjusted q values were used to determine whether frequencies of
individual CAAs differed between tumour types or primary and metastatic sites.
Mann–Whitney U tests and FDR-adjusted q values were used to assess if CAA
burden differed between tumour types or primary and metastatic sites.

Stochastic tumour evolution modelling. For the TCGA-BRCA dataset, a multi-
level tree was created in which each node v 2 V represents a CAA ‘karyotype’: a
one-dimensional array A with 78 elements, one for each possible CAA, which can
be absent, ‘0’, or present ‘1’ (Supplementary Fig. 7a). Let G = (V, E) be such
directed tree of a given dataset, in which E represents the edges. Level 0 is
represented by a single node of a ‘normal karyotype’ without CAAs,
A0 ¼ 0; ¼ ; 0½ �. Each subsequent level k is represented by all nodes that each
correspond to every unique ‘karyotype’ with exactly k CAAs. Each edge e 2 E is
directed from a node on level k to a node on level k+ 1, such that the ‘karyotype’ of
the node on level k+ 1 equals that of the origin node on level k plus one additional
CAA (Supplementary Fig. 7b). Each node has an associated frequency, referring to
the number of times the corresponding ‘CAA karyotype’ occurred in the dataset.
This tree was used to estimate transition probabilities and model the sequential
acquisition of CAAs during tumour evolution. The probability of acquiring CAA x
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before CAA y, i.e., the transition {x → y}, was estimated using Eq. (4).

Pðx!yÞ ¼ W x!yð ÞP
y2A W x!yð Þþ

P
y2A W x!:yð Þ ð4Þ

Here, the numerator W(x → y) is the total unnormalized weight of the transition,
i.e., the sum of karyotype frequencies at all end nodes of paths that at the starting
node include CAA x but not CAA y, and at the end node have attained y. The
denominator is the sum of unnormalized weights of all possible transitions starting
at a node with CAA x and ending at a node with or without y (Supplementary
Fig. 7b). This method was used to estimate the probabilities of all transitions. This
generated a 78 × 78 transition probability matrix for the dataset (Supplementary
Data 3). Finally, these probabilities, along with all CAA frequencies in the dataset,
were used to generate a network graph (Fig. 2d).

Patient survival analyses. Both disease-free survival and overall survival data
were extracted from the TCGA clinical files. For univariate survival analyses, log-
rank Mantel-Cox tests were conducted using GraphPad Prism software, version 7
(GraphPad Software, La Jolla, CA, USA) to determine whether differences were
statistically significant. The significance level was set to α= 0.05. Multivariate
survival analyses were performed per cancer type using Cox proportional hazard
regression with a path-wise algorithm on single CAAs (all included) and co-
occurring CAAs (included if identified in ≥5 patients) with clinical stage and age at
diagnosis as covariates in the model50,51. For this, the R packages glmnet and coxnet
were used50,52 (within R version 3.6). These algorithms use a cyclical coordinate
descent, computed along a regularisation path50, which attempts to fit a Cox model
that has been regularised by a lasso penalty (ℓ1), after which a cross validation is
performed53. The maximum number of iterations was set to 1000, as the data was
relatively highly dimensional, therefore more iterations were required for con-
vergence. The optimal regularisation parameter λ and cross-validated error plot
were obtained once the model had been fitted. The covariates that the model chose
to be contributing were then taken to fit a new Cox proportional hazards model
and the obtained Cox p values were adjusted for multiple-hypothesis testing (type I
error) using Bonferroni correction. WGD status was included as a covariate only if
it was predicted to significantly (p < 0.05) contribute to overall or disease-free
survival for the respective cancer types, as determined by univariate Cox propor-
tional hazard regression. Univariate and, if applicable, multivariate significance
levels of WGD for all cancer and survival types are provided in Supplementary
Data 4 and 5.

Pairwise probabilistic cooccurrence modelling. Probabilistic modelling of pairs
of CAAs co-occurring in the same tumour sample was based on a previously
described model27,33. This model is summarised in Eq. (5).

pk ¼
N

k

� �
´

N � k

N2 � k

� �
´

N � N2

N1 � k

� �
N

N2

� �
´

N

N1

� � ð5Þ

Herein, pk is the probability that CAA 1 and CAA 2 co-occur in k samples out of a
total number of N samples, given that CAA 1 occurs in N1 samples and CAA 2
occurs in N2 samples. Thus, the model accounts for the frequencies of each of the
two individual CAAs, as well as the total cohort sample size. Cooccurrence
matrices, networks and volcano plots were generated in the R programming
environment (R Core Team, Vienna, Austria).

Identification of pharmacogenomic interactions. To identify CFE- and CAA-
drug interactions, the multiple input genomic features (CFEs, CAAs) were corre-
lated with the drug response outcome features (IC50 values) at the levels of indi-
vidual cancer types, as well as at the pan-cancer level, using elastic net
regularisation as an approach with automatic feature selection using penalised
regression. For this, the Python package GDSCTools54 was used, which is available
via http://github.com/CancerRxGene/gdsctools. The model was trained with ‘1 and
‘2-norm regularisation of the coefficients and the function was minimised using
Eq. (6).

1
2N Yd � Xwk k22 þ αρ wk k1 þ αð1�ρÞ

2 wk k22 ð6Þ
Here, Yd represents the IC50 values for a given drug in all cell lines and X comprises
the genomic features (CFEs and CAAs) of these cell lines55. The combination of ‘1
and ‘2 penalties was controlled by the mixing parameter ρ which was fixed to ρ=
0.5 for this analysis. Equation (6) enables learning a sparse model in which few of
the weights are non-zero. The α parameter was optimised in the following way. A
range of α parameters was scanned to select the best α. For each drug, α was tuned
with α 2 ½0; 1� and equal increments of 0.01, wherein each α yielded a concordance
index. The concordance index for which the errors were minimum was used. The
model was trained on 80% of the data. The remaining 20% served as test data. To
avoid over-fitting, the training data were randomly split into 5 equal parts to enable
performing 5 times 5-fold cross-validation on the data within the training set. The
performance measure used was the average of the values computed on the 5
models. Finally, the model learned was validated on the test data. The metric used

to select the best model was the Pearson correlation between predicted and
observed IC50 values.

Interactions between drugs and co-occurring genomic features. Potential
synthetic lethal and synergistic resistance pharmacogenomic interactions, as well as
co-occurring focal copy number alterations (CNAs) that together might explain
CAA-drug interactions, were identified using a systematic co-occurrence approach
using the binary drug resistance/sensitivity calls that were previously reported21.
For each possible 788C2= 310, 078 co-occurring CFEs/CAA combination, includ-
ing co-occurring focal CNAs, a two-sided Fisher’s exact test was performed to
assess if cell lines with the co-occurring events were significantly more frequently
sensitive or resistant than the cell lines without the co-occurring events. Only
combinations with significant p values (p < 0.05) were stored and reported (Sup-
plementary Data 11). This analysis was performed 23 times, per cancer type, i.e., on
the cell lines representing the 22 cancer types listed in Fig. 6c, as well as ‘pan-
cancer’. Potential synthetic lethal and synergistic resistance pharmacogenomic
interactions were called if p < 0.05 and FDR% < 0.001. To determine whether co-
occurring focal CNAs could explain CAA-drug interactions, such focal CNAs
needed to involve segments on the same chromosome arm as the CAA, co-gain or
co-loss in the same direction as the CAA and involve the same drug and the same
cancer type as the identified CAA.

Machine learning models for predicting drug response. GDSC data were
downloaded and processed as described above to determine CAAs in each cell line.
Additionally, for each cell line, the mutation status of high-confidence cancer genes
(GCs), the copy number status of recurrently copy number-altered chromosomal
segments (RACSs) at the pan-cancer level, as reported by the GDSC project (see
above), and CAAs were considered.

Importantly, across cell lines, the vast majority of calls were “resistant” and a
minority of calls were “sensitive”. Artificial balancing of the drug response data
assumes equal probabilities of finding resistance and sensitive cell lines. Since the
latter was not the case, here, artificial balancing of the data would render unreliable
models that would over-predict the minority class. Hence, instead an established
under-sampling technique was adopted without introducing synthetic examples in
the data56. This method indicates that for reliable prediction of drug sensitivity, for
every drug at least 10% of the calls need to be sensitive. Furthermore, in order to
have this minimum number of sensitive cell lines per drug so that there are
sufficient examples to split between training and test sets, this worked out to be at
least 15% sensitive cell lines for each drug. There were 39 drugs that met this
criterium, overall involving 971 cell lines with 710 CFEs (GC mutations and
RACSs) and 78 CAAs.

Using these data, binary matrices were built according to Eqs. (7–9).

M ¼ mgc;cl

n o
withmgc;cl 2 0; 1f g ð7Þ

C ¼ ccna;cl
n o

with ccna;cl 2 0; 1f g ð8Þ

S ¼ scal;cl
n o

with scal;cl 2 0; 1f g ð9Þ
Herein, mgc;cl denotes the mutation state of GC gc, whereas ccna;cl defines the

copy number status of RACS cna, and scal;cl denotes the status for CAA cal. These
elements are 0 if the alteration is absent (wild-type) or 1 if the alteration is present
(mutated/copy number-altered) in cell line cl. GDSC-reported drug response data
of 1043 cancer cell lines to 265 anti-cancer drugs, measured as IC50 in micro-molar
concentration (µM), were log-transformed and used to generate matrix I.

I ¼ log10 ið Þ� �
d;cl

n o
with id;cl 2 0; 1f g ð10Þ

Herein, d denotes the dth drug and d 2 ½1;D�. Missing IC50 values in the data were
imputed using a weighted mean of IC50 values of the four nearest neighbours using
the R package VIM, for Visualisation and Imputation of Missing Values57 (within
R version 3.6). Overall, 971 cell lines with available GC mutation, RACS, CAA and
IC50 data were used. In R, a deep neural network was developed using TensorFlow
and the Keras Deep Learning Library kerasR. The models were optimised using
RMSprop optimizer with a loss function of ‘mean_squared_error’ (MSE) and
Rectified Linear Unit (ReLU) as the neuron activation function for all layers, except
the output layer, where a linear function was applied. Fully connected layers were
used. For a neuron k, its output zk was calculated using Eq. (11).

zk ¼ f
P
x
wxj ´ ox þ bk

� �
ð11Þ

Herein, f represents the activation function and ox the output of neuron x at the
previous connected layer of k, while bias and weight are respectively represented by
bk and wxj. Therefore, the overall notation for all the neurons in a layer can be
written as z ¼ f w´ oþ bð Þ. When the model is training, the weights and biases are
adjusted to minimise the loss function. The resultant models were built to predict
IC50 values based on the status of GCs and RACSs, collectively referred to as cancer
functional events (CFEs), and CAAs. Given a CFE and CAA pair in cell line cl,
M :; clð Þ;C :; clð Þ; S :; clð Þf g, the model predicts I(cl), which is a D-length vector of
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IC50. In order to determine the optimal model architecture, the hyper-parameter
optimisation method called hyperas was employed (https://github.com/
maxpumperla/hyperas). This resulted in the number of neurons in the model at the
1st layer (256 or 128), for the 2nd layer (64 or 32), for the 3rd layer (16 or 8) and a
batch size of 128 or 64. The last layer in the model had 265 neurons and was
linearly activated. All models were trained for 1000 epochs on 80% of pan-cancer
cell lines and validated on the remaining 20% of the data (5-fold cross validation).
The resultant best-performing models were stored and performance was assessed
by determining the loss and accuracy as a function of the number of epochs. In
addition, confusion matrices were built by evaluating the model on the test dataset
using a probability threshold of 0.6 and the harmonic mean of precision and recall,
F1 score, was computed according to Eq. (12).

F1 ¼
0 if precisionjrecall ¼ 0

2
precision�1þrecall�1 if precision � recall> 0

(
ð12Þ

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Publicly available datasets used in this study, and their accession information, are:
TCGA: GDC Data Portal [https://portal.gdc.cancer.gov] (unrestricted public access for
the data used in this study); MSK-IMPACT: [http://cbioportal.org/msk-impact]
(unrestricted public access); METABRIC: [https://www.ebi.ac.uk/ega/datasets/
EGAD00010000164] (restricted access); GDSC: [https://www.ebi.ac.uk/ega/studies/
EGAS00001000978] (unrestricted access). Raw data are provided in the Source Data file,
Supplementary Data files and in the repository accessible via https://github.com/
pascalduijf/CAAs_1. The Cancer Genome Atlas (TCGA) Level 3 Affymetrix Genome-
Wide SNP6.0 Array data (version 28/01/2016), mRNA expression Illumina HiSeq
RNASeq V2 log2(RSEM-normalised count+ 1) data (version 13/10/2017) and clinical
data were downloaded from the National Cancer Institute’s Genomic Data Commons
(GDC) Data Portal [https://portal.gdc.cancer.gov] for 11,019 human tumours across 31
cancer types (Supplementary Data 1). Affymetrix SNP6.0 array data from the Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) trial were available
for 1980 breast tumours under restricted access22. These data were accessed through
Synapse (synapse.org) or the European Genome-phenome Archive (EGA) (https://ega-
archive.org/). Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable
Cancer Targets (MSK-IMPACT) SNP6 array data was available for 10,945 samples and
accessed through cBioPortal [http://cbioportal.org/msk-impact]26 (Supplementary
Data 2). Raw Affymetrix SNP6.0 array data for 1022 cancer cell lines were downloaded
from the EGA [https://ega-archive.org/]. High-confidence cancer genes (GCs) and copy
number status of recurrently copy number-altered chromosomal segments (RACSs) for
both cell lines and tumours were reported by the Genomics of Drug Sensitivity in Cancer
(GDSC) project and downloaded from this project’s website [https://www.cancerrxgene.
org/downloads]21. Binary drug resistance/sensitivity data were also previously reported21.
Similarly, the drug response (total of 386,293 IC50 values) of 988 cancer cell lines towards
453 anti-cancer drugs, measured as concentration of the drug where the biological
response is reduced by half (IC50), were downloaded from the GDSC website [https://
www.cancerrxgene.org/downloads], release 8.0, July 2019).
The source data underlying Figs. 1a–c, e, g, 2a–d, 3a, b, 4a–e, 5a–c and 6a, c–g are

provided as a Source Data file. All the other data supporting the findings of this study are
available within the article, its supplementary information or data files, via a repository at
[https://github.com/pascalduijf/CAAs_1] and from the corresponding author upon
reasonable request. A reporting summary for this article is available as a Supplementary
Information file.

Code availability
The source code for the analyses in this study can be accessed via https://github.com/
pascalduijf/CAAs_1.
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