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Low replicability can support robust and efficient
science
Stephan Lewandowsky 1,2* & Klaus Oberauer 3

There is a broad agreement that psychology is facing a replication crisis. Even some

seemingly well-established findings have failed to replicate. Numerous causes of the crisis

have been identified, such as underpowered studies, publication bias, imprecise theories, and

inadequate statistical procedures. The replication crisis is real, but it is less clear how it

should be resolved. Here we examine potential solutions by modeling a scientific community

under various different replication regimes. In one regime, all findings are replicated

before publication to guard against subsequent replication failures. In an alternative regime,

individual studies are published and are replicated after publication, but only if they attract

the community’s interest. We find that the publication of potentially non-replicable studies

minimizes cost and maximizes efficiency of knowledge gain for the scientific community

under a variety of assumptions. Provided it is properly managed, our findings suggest that low

replicability can support robust and efficient science.
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Replicability is fundamental to science1. Any finding that
cannot be replicated at best fails to contribute to knowledge
and, at worst, wastes other researchers’ time when they

pursue a blind alley based on an unreliable result. The fact that
the replicability of published findings is <30% in social psychol-
ogy, hovers ~50% in cognitive psychology2, and remains at ~67%
even for studies published in Nature and Science3, has therefore
justifiably stimulated much concern and debate4,5. At one end of
the spectrum, it has been suggested that failures to replicate are
best considered as an interaction triggered by one or more
(typically unknown) moderator variables that capture the idio-
syncratic conditions prevailing during the original study, but that
were absent during the replication attempt6. (An overview of this
position can be found in ref. 1). On this account, what matters is
not whether an exact replication can reproduce the original effect
but whether the underlying theory finds further support in con-
ceptual replications (studies that use a variety of different
manipulations or measures to operationalize the crucial theore-
tical variables)6. Contrary to this position, the success of inde-
pendent replications is no greater for effects that were initially
reported together with conceptual replications than effects that
were reported in isolation7.

At the other end of the spectrum is the view that low replic-
ability arises for a number of reasons related to currently wide-
spread—but suboptimal—research practices8. Several factors have
been identified: (1) The use of small samples and the resultant low
power of studies contributes to low replicability because the sig-
nificant effect reported in an underpowered study is more likely
to represent a type I error than the same effect obtained with a
powerful study9. The harmful effects of low power can be
amplified by questionable statistical practices, often referred to as
p-hacking. (2) One form of p-hacking involves multiple sequen-
tial analyses that are used to inform further data collection. This
process, known as the optional stopping rule10, can lead to dra-
matic increases in type I error rates11. If applied repeatedly,
testing of additional participants can guarantee a significant result
under the null hypothesis if data collection continues until the
desired p value is ultimately obtained. (3) Data are explored
without differentiating between a priori hypotheses and post hoc
reasoning. This is known as Hypothesizing After the Results are
Known (HARKing) and, because the same data are used to
identify a hypothesis as well as test it, HARKing renders the
reported p values uninformative because they are known to be
inflated12. (4) Publication bias in favor of significant results13,14

amplifies the preceding three problems and additionally prevents
the community from discovering when findings have failed to
replicate.

Recommendations to avoid suboptimal research practices15

and introduce transparency5, such as through preregistration
of method and analysis plan16, more stringent significance
levels17,18, reliance on strong theories19, or reporting all data
irrespective of significance20, therefore deserve support. None-
theless, even flawless and transparent research may yield spurious
results for the simple reason that all psychological measurements
involve random variables and hence the possibility of type I
errors. Spurious results can only be avoided if replications
become a mainstream component of psychological research1.
Highlighting the virtues of replications is, however, not particu-
larly helpful without careful consideration of when, how, why,
and by whom experiments should be replicated.

To examine those questions, we simulate an idealized and
transparent scientific community that eschews p-hacking and
other questionable research practices and conducts studies with
adequate power (P ¼ :8). We focuse on an idealized community
precisely because we wanted to examine the issues surrounding
replication in the absence of contamination by questionable

research practices, although we also show later that our
conclusions are robust to the injection of questionable practices
and fraud. We measure the community’s success (the number
of correctly identified true phenomena that were of interest
to the scientific community) and efficiency (the number of
experiments conducted overall) under two different knowledge
acquisition strategies and, orthogonally, two different replica-
tion regimes. The key attribute of our model is that not all
findings are deemed to be equally interesting by the scientific
community.

Knowledge acquisition is either discovery-oriented21 or guided
by theory (with the predictive merit of the theory being another
design variable). Discovery-oriented research seeks to identify
interesting findings by foraging across a wide landscape of pos-
sible variables and measures. On this approach, failure of any
given experiment is uninformative because the underlying theory
makes no exact predictions about specific phenomena, only that
they should arise somewhere in the search space19. For example,
researchers may look for instances in which people’s repre-
sentation of time, and its tacit link to future events and progress,
can be primed by a bodily action. Exploration of various options
may eventually reveal that turning a crank clockwise rather
than anticlockwise primes people’s openness to experience22.
Discovery-oriented research is particularly vulnerable to produ-
cing nonreplicable results23 because it relies on few constraints
from theory or previous findings to select hypotheses for test-
ing24. Moreover, because these hypotheses target eye-catching
and counterintuitive findings that are a priori unexpected24, the
chance of testing a true hypothesis is low. Low prior probabilities
of hypotheses, in turn, imply low replicability21,24,25. Theory-
testing research, by contrast, focuses on a tightly constrained
space of variables and measures for which the theory necessarily
predicts an effect19. That is, predictions are tightly tethered to
the theory, and falsification of a hypothesis provides more
information than in discovery-oriented research. For example, if a
theory of memory predicts that temporally isolated items should
be recalled better than those that are temporally crowded, the fact
that they are not (or only under some conditions) challenges
the theory26. Conversely, if the theory has survived initial test,
then it is unlikely to be completely off target. In consequence, the
hypotheses that are chosen for further test have greater prior odds
of being true, which in turn implies that positive findings are
more likely to replicate21.

In the simulation, the two knowledge acquisition regimes differ
only in the manner in which true discoverable effects and the
search for those effects are structured: for discovery-oriented
research, both are random, whereas for theory-testing research,
true effects are clustered together and the theory guides search in
various degrees of proximity to the true cluster. For both regimes,
9% of all possible simulated experiments can discover a true effect
(PðH1Þ ¼ :09). This value reflects estimates of the baserate of a
psychological hypothesis being true4.

Replication decisions are either private or public. Private
replication decisions are modeled by investigators replicating any
notable result and publishing only successfully replicated phe-
nomena. Public replication decisions are modeled by investigators
publishing any notable result, with the scientific community
deciding which of those to replicate based on whether the
results are deemed interesting. For discovery-oriented research,
we consider only positive and significant results to be notable,
because only the discovery of effects is informative19. By contrast,
for theory-testing research, the discovery of reliable null effects is
also informative—because they may falsify necessary predictions
of a theory19—and in one of our simulations, we therefore also
consider reliably established null effects to be notable candidates
for replication.
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Figure 1 contrasts the two replication regimes. In both regimes
decision making is shared between individual investigators and
the scientific community (represented by orange shading), and in
both regimes the scientific community determines whether or
not a finding is deemed interesting. The principal difference is
whether the community selects interesting findings from among
those known to have been replicated (private regime; Fig. 1a) or
selects from a larger published set of studies of unknown
r3eplicability and communally determines which of those studies
deserve replication because of their potential interest (public
regime; Fig. 1b).

Scientific interest is modeled on the basis of the observed
citation patterns in psychology. Citations, by definition, are a
good proxy for scientific interest, and expert judgment and
analysis of replicability (Methods section) confirm that citations
do not predict replicability. The actual distribution of citations is
highly skewed, with nearly 40% of articles receiving five or fewer
citations within 3 years of publication (Methods section) and only
1.3% of articles receiving >50 citations during that period. Very
few articles receive high citations beyond common bibliometric
time horizons27, confirming that lack of citations indicates lasting

lack of scientific interest. For the simulations, irrespective of
replication regime, the probability of replication of a study
increases with the number of citations. Specifically, we consider a
finding to be interesting—and hence a candidate for replication—
if its citation rate, obtained by random sample from the modeled
distribution of citations, exceeds the 90th percentile of that dis-
tribution (Methods section). Varying degrees of sharpness of the
decision were explored by varying the temperature parameter of a
logistic decision function centered on the 90th percentile. Larger
values of temperature imply a more graded threshold of scientific
interest, rendering it more likely that articles with fewer citations
are considered interesting. Figure 2 shows the distribution of
citations in psychology together with the logistic threshold
functions with the three values of temperature (1, 5, and 10) used
in the simulations.

In summary, we model a scientific community under two
different replication regimes. In one regime, all findings are
replicated before publication to guard against subsequent
replication failures. In the alternative regime, individual studies
are published and are replicated after publication, but only if
they attract the community’s interest. The outcome measure of
interest is the efficiency of knowledge generation; specifically, we
consider the number of experiments conducted by the commu-
nity overall that are required to discover a set number of true
effects. To foreshadow, we find that the publication of potentially
nonreplicable single studies minimizes cost and maximizes effi-
ciency of knowledge gain for the scientific community.

Results
Discovery-oriented research. Discovery-oriented research used a
random selection of an independent and a dependent variable for
each of the 100 studies simulated during the first round of
experimentation. Because selection was random with replace-
ment, multiple identical studies could be conducted and the same
effect discovered more than once. This mirrors scientific practice
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Fig. 2 Distribution of citations for articles published in psychology. The
blue histogram shows observed distribution of citations for all articles
published in 2014. The best-fitting Pareto distribution is represented by the
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Fig. 1 Comparison of two replication regimes. a Private replication regime:
investigators independently conduct 100 studies, and each investigator
replicates any significant result. If replication is successful, both studies are
published. The scientific community (represented by orange shading) then
determines which of those replicated findings are deemed interesting based
on a stochastic decision rule. b Public replication regime: investigators
independently conduct 100 studies, and any significant result is published
without replication. The scientific community (orange shading) then
determines which of those findings of unknown replicability are deemed
interesting, and hence worthy of replication, based on the same stochastic
decision rule.
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that frequently gives rise to independent discoveries of the same
phenomenon. Figure 3b provides an overview of the simulation
procedure. Each study during the first round was classified as
“significant” based either on its p value (p < :05, two-tailed single-
sample t-test) or its Bayes factor (BF10 > 3, Bayesian single-sample
t-test with Jeffrey-Zellner-Siow prior, Cauchy distribution on
effect size, see ref. 28), irrespective of whether the null hypothesis
was actually false. As is typical for discovery-oriented research, we
were not concerned with detection of null effects. Some or all of
the studies thus identified were then selected for replication
according to the applicable regime (Fig. 1).

For frequentist analysis, we set statistical power either at 0.5 or
0.8. Figure 4 shows the results for the higher (Fig. 4a, b) and lower
power (Fig. 4c, d). The figure reveals that regardless of statistical
power, the replication regime did not affect the success of
scientific discovery (Fig. 4b, d). Under both regimes, the number
of true and interesting discovered effects increased with
temperature, reflecting the fact that with a more diffuse threshold
of scientific interest more studies were selected for replication in
the public regime, or were deemed interesting after publication in
the private regime. When power is low (Fig. 4d), fewer effects are
discovered than when power is high (Fig. 4b). Note that nearly all
replicated effects are also true: this is because the probability of
two successive type I errors is small (α2 ¼ :0025).

By contrast, the cost of generating knowledge differed strikingly
between replication regimes (Fig. 4a, c), again irrespective of

statistical power. The private replication regime incurred an
additional cost of around ten studies compared to public
replications. This difference represents ~10% of the total effort
the scientific community expended on data collection. Publication
of single studies whose replicability is unknown thus boosts the
scientific community’s efficiency, whereas replicating studies before
they are published carries a considerable opportunity cost. This
cost is nearly unaffected by statistical power. Because variation in
power has no impact on our principal conclusions, we keep it
constant at 0.8 from here on. Moreover, as shown in Fig. 5, the
opportunity cost arising from the private replication regime also
persists when Bayesian statistics are used instead of conventional
frequentist analyses.

The reasons for this result are not mysterious: Notwithstanding
scientists’ best intentions and fervent hopes, much of their work is
of limited interest to the community. Any effort to replicate such
uninteresting work is thus wasted. To maximize scientific
productivity overall, that effort should be spent elsewhere, for
example in theory development and test, or in replicating
published results deemed interesting.

Theory-testing research. The basic premise of theory-testing
research is that the search for effects is structured and guided by
the theory. The quality or plausibility of a theory is reflected in
how well the theory targets real effects to be tested. We instan-
tiated those ideas by introducing structure into the landscape of
true effects and into the experimental search (Methods section).
Figure 6 illustrates the role of theory. Across panels, the corre-
spondence between the location of true effects and the search
space guided by the theory (parameter ρ) increases from 0.1 (poor
theory) to 1 (perfect theory). A poor theory is targeting a part of
the landscape that contains no real effects, whereas a highly
plausible theory targets a segment that contains many real effects.

Not unexpectedly, the introduction of theory boosts perfor-
mance considerably. Figure 7 shows results when all statistical
tests focus on rejecting the null hypothesis, with power kept
constant at 0.8. When experimentation is guided by a perfect
theory (ρ ¼ 1), the number of true phenomena being discovered
under either replication regime with a diffuse decision threshold
(high temperature) is approaching or exceeding the actual
number of existing effects. (Because the same phenomenon can
be discovered in multiple experiments, the discovery count can
exceed the true number of phenomena.) The cost associated with
those discoveries, however, again differs strikingly between
replication regimes. In the extreme case, with the most powerful
theory, the private replication regime required nearly 40%
additional experimental effort compared to the public regime.
The cost associated with private replications is thus even greater
with theory-testing research than with discovery-oriented
research. The greater penalty is an ironic consequence of the
greater accuracy of theory-testing research, because the larger
number of significant effects (many of them true) automatically
entails a larger number of private replications and hence many
additional experiments. As with discovery-oriented research, the
cost advantage of the public regime persists irrespective of
whether frequentist or Bayesian techniques are used to analyze
the experiments.

There is nonetheless an important difference between the two
classes of statistical techniques: Unlike frequentist statistics,
Bayesian techniques permit rigorous tests of the absence
of effects. This raises the issue of whether such statistically well-
supported null results are of interest to the community, and if so,
whether the interest follows the same distribution as for non-null
results. In the context of discovery-oriented research, we assumed
that null results are of little or no interest because failures to find
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an effect that is not a necessary prediction of any theory is of no
theoretical or practical value19. The matter is very different with
theory-testing research, where a convincing failure to find an
effect counts against the theory that predicted it. We therefore
performed a symmetrical Bayesian analysis for theory-testing
research and assumed that the same process applied to
determining interest in a null result as for non-null results. That
is, whenever a Bayes Factor provided evidence for the presence of
an effect (BF10 > 3) or for its absence (BF10 < 1=3 ¼ BF01 > 3), we
considered it a notable candidate for replication. Figure 8 shows

that when both presence and absence of effects are considered,
the cost for the private replication regime is increased even
further, to 50% or more. This is because there is now also
evidence for null effects (BF01 > 3) that require replication
irrespective of whether they are deemed interesting by the
community.

Another aspect of Fig. 8 is that the value of ρ matters
considerably less than when only non-null effects are considered.
This is because a poor theory that is being consistently falsified
(by the failure to find predicted effects) generates as many
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interesting (null) results as a perfect theory that is consistently
confirmed. Because our focus here is on empirical facts (i.e.,
effects and null-effects) rather than the welfare of particular
theories, we are not concerned with the balance between
confirmations and falsifications of a theory’s predictions.

Boundary conditions and limitations. We consider several
conceptual and methodological boundary conditions of our
model. One objection to our analysis might invoke doubts about
the validity of citations as an indicator of scientific quality. This
objection would be based on a misunderstanding of our reliance
on citation rates. The core of our model is the assumption that
the scientific community shows an uneven distribution of interest
in phenomena. Any differentiation between findings, no matter

how small, will render the public replication regime more effi-
cient. It is only when there is complete uniformity and all effects
are considered equally interesting, that the cost advantage of the
public replication regime is eliminated (this result trivially follows
from the fact that the public replication regime then no longer
differs from the private regime). It follows that our analysis does
not hinge on whether or not citation rates are a valid indicator of
scientific quality or merit. Even if citations were an error-prone
measure of scientific merit29, they indubitably are an indicator of
attention or interest. An article that has never been cited simply
cannot be as interesting to the community as one that has been
cited thousands of times, whatever one’s personal judgment of its
quality may be.

Another objection to our results might invoke the fact that we
simulated an idealized scientific community that eschewed fraud
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or questionable research practices. We respond to this objection
by showing that our model is robust to several perturbations of
the idealized community. The first perturbation involves
p-hacking. As noted at the outset, p-hacking may variously
involve removal of outlying observations, switching of dependent
measures, adding ad hoc covariates, such as participants’ gender,
and so on. A shared consequence of all those questionable
research practices is an increased type I error rate: the actual α

can be vastly greater than the value set by the experimenter (e.g.,
the conventional .05). Figure 9a, b shows the consequences of
p-hacking with frequentist analysis, operationalized by setting
α ¼ 0:2 in a simulation of discovery-oriented research. The most
notable effect of p-hacking is that a greater number of interesting
replicated effects are not true (difference between dashed and
solid lines in Fig. 9b). The opportunity cost associated with
private replications, however, is unaffected.
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order of thickness, ρ was 0.1, 0.5, and 1.0. Temperature refers to the temperature of the logistic decision function (Methods section). All successful
replications shown in b and d are true (i.e., the null hypothesis was actually false). Significant replications that did not capture true effects are omitted to
avoid clutter.
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Figure 9c, d explores the consequences of an optional stopping
rule, another common variant of p-hacking. This practice
involves repeated testing of additional participants, if a desired
effect has failed to reach significance with the initial sample. If
this process is repeated sufficiently often, a significant outcome is
guaranteed even if the null hypothesis is true10. We instantiated
the optional stopping rule by adding Nph 2 f1; 5; 10g additional
participants, if an effect had not reached significance with the
initial sample. This continued for a maximum of five additional
batches or until significance had been reached. Optional stopping
had little effect on the basic pattern of results, including the
opportunity cost associated with the private replication regime,
although persistent testing of additional participants, as expected,
again increased the number of replicated results that did not
represent true effects. Overall, Fig. 9 confirms that our principal
conclusions hold even if the simulated scientific community
engages in questionable research practices.

We examined two further and even more extreme cases (both
simulations are reported in the online supplement). First, we
considered the effects of extreme fraud, where all effects during
the first round are arbitrarily declared significant irrespective of
the actual outcome (Supplementary Fig. 3), and only subsequent
public replications are honest (the private replication regime
makes little sense when simulating fraud, as a fraudster would
presumably just report a second faked significance level).
Fraud was found to have two adverse consequences compared
to truthful research: (a) it incurs a greater cost in terms of
experiments conducted by other investigators (because if every-
thing is declared significant at the first round, more effects will be
of interest and hence require replication). (b) Fraud engenders a
greater number of falsely identified interesting effects because all
type I errors during the honest replications are assumed to
represent successfully replicated findings. These results clarify

that our public replication regime is not comparable to a
scenario in which completely fictitious results are offered to the
community for potential replication—this scenario would merely
mislead the community by generating numerous ostensibly
replicated results that are actually type I errors.

Second, we considered the consequences of true effects
being absent from the landscape of ground truths (PðH1Þ ¼ 0).
This situation likely confronts research in parapsychology. In
these circumstances, significant results from the first round can
only reflect type I errors. In consequence, the overall cost of
experimentation is lower than when true effects are present, but
the cost advantage of the public regime persists (Supplementary
Fig. 4).

Discussion
Waste of resources has been identified as a major adverse
consequence of the replication crisis30. We have shown that
prepublication replications are wasteful. Perhaps ironically, waste
is reduced by withholding replication until after publication.
Regardless of whether research is discovery-oriented or theory-
testing, and regardless of whether frequentist or Bayesian sta-
tistics are employed, the community benefits from publication of
findings that are of unclear replicability. The cost advantage of
the public replication regime was robust to various perturbations
of the idealized community, such as p-hacking, fraud, and the
pursuit of nonexistent effects.

Our model is consonant with other recent approaches that
have placed the merit of research within a cost-benefit
framework18,31–33. For example, Miller and Ulrich33 examined
the trade-off between false positives (type I errors) and false
negatives (type II) under different payoff scenarios. Their model
could determine the optimal sample size to maximize researchers’
overall payoff, based on the recognition that although larger
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sample sizes increase power, they are also costly because they
reduce the number of studies that can be carried out. In light of
estimates that upward of 85% of research effort and resources are
wasted because of correctable problems34, any new practice that
can free up resources for deployment elsewhere—e.g., to conduct
advisable replications—should be given careful consideration.

Although we have shown private replications to be wasteful,
adoption of our model would heed calls for a replication culture35

in several ways. Powerful and sophisticated replications require
much investment36, and by reducing the opportunity cost asso-
ciated with unnecessary replications, our model frees up the
resources necessary for powerful replications. Another favorable
aspect of our model is that public replications are most likely
conducted by laboratories other than the original investigator’s.
A recent expert survey (Methods section) revealed that 87% of
experts considered a replication to be more informative if it is
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Fig. 9 Effects of perturbations of the idealized scientific community. a and b show the effects of p-hacking on the number of experiments conducted and
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conducted by a different lab, with the remainder (13%) con-
sidering replications by the same investigator to be equally
informative. Out of >100 respondents, none thought that a
replication by the original author was preferable to a replication
by others. The overwhelming expert judgment is consonant with
the result that replicability (by others) does not increase with the
number of (conceptual) replications reported by the same author
together with the original finding7, and that too many low-
powered replications in an article may reveal publication bias
rather than indicate replicability37,38. In addition, our approach is
entirely compatible with other solutions to the replication crisis,
such as preregistration16 or reliance on strong theory19.

There are, however, some legitimate concerns that can be
raised about a public replication regime. First, given that the
regime is justified by greater efficiency of data collection, the
increased burden on editors and reviewers that the regime implies
through the increased number of publications is problematic.
This added burden, however, is fairly modest by comparison to
the gains in efficiency. To illustrate, for discovery-oriented
research, the expected number of initially published findings
under the public replication regime (with PðH1Þ ¼ :09, α ¼ :05,
and power 0.8) is the expected number of significant results in the
first round of experiments: 0:8 ´ 9þ 0:05 ´ 91 ¼ 11:75. This
number is only slightly greater than the number of additional
experiments carried out in the private replication regime (viz. the
difference between private and public replication in Fig. 4a).
Hence, factoring in the costs of editing and reviewing would
render the public replication policy more costly only if the cost of
reviewing and editing one publication is significantly larger than
the cost of running one replication study. We maintain that this is
rarely, if ever, the case: according to a recent detailed analysis of
the global peer review system39, each manuscript submission in
psychology attracts 1.6 peer reviews on average, and the average
duration to prepare a review is estimated at 5 h. It follows that
total average reviewer workload for a manuscript is 8 h. Even if
this estimate were doubled to accommodate the editor’s time (for
inviting reviewers, writing action letters and so on), the total
additional editorial workload for the public replication regime
would be 16 ´ 11:75 ¼ 188 h. We consider it implausible to
assume that this burden would exceed the time required to
conduct the (roughly) ten additional replications required by the
private regime. That said, careful consideration must be given to
the distribution of workload: our analysis is limited to the
aggregate level of the scientific community overall and does not
consider potential inequalities across levels of seniority, gender,
employment security, and so on. Our considerations here point to
the broader need for a comprehensive cost-benefit analysis of all
aspects of research, including replications under different
regimes, that permits different payoffs to be applied to type I and
type II errors33. However, this broader exploration goes beyond
the scope of the current paper, in particular because the payoffs
associated with statistical errors may vary with publication
practice, as we discuss below.

A second concern arises from the perceived status of published
nonreplicated results, which are an inevitable consequence of the
public replication regime. It is likely that the media and the public
would not understand the preliminary nature of such results,
and even other researchers—especially when strapped for the
resources required for replication—might be tempted to give
undue credence to nonreplicated results. This is particularly
serious for clinical trials, where a cautionary treatment of pre-
liminary results is critical. Moreover, there is evidence that
results, once published, are considered credible even if an article
is retracted40, and published replication failures seemingly do not
diminish a finding’s citation trajectory41. Hence, even if pre-
liminary results are eventually subjected to public replication

attempts, a failure to replicate may not expunge the initial fluke
from the community’s knowledge base.

We take this concern seriously, but we believe that it calls for a
reform of current publication practice rather than abandoning the
benefits of the public replication regime. Adopting the public
replication regime entails that published findings are routinely
considered as preliminary, and gradually gain credibility through
successful replication, or lose credibility when replications are
unsuccessful. We suggest that the public replication regime can
live up to its promise if (1) nonreplicated findings are published
provisionally and with an embargo (e.g., 1 year) against media
coverage or citation. (2) Provisional publications are accom-
panied by an invitation for replication by other researchers. (3) If
the replication is successful, the replicators become coauthors,
and an archival publication of record replaces the provisional
version. (4) Replication failure leads to a public withdrawal
of the provisional publication accompanied by a citable public
acknowledgement of the replicators. This ensures that replication
failures are known, thus eliminating publication bias. (5) If no
one seeks to replicate a provisional finding, the original pub-
lication becomes archival after the embargo expires with a note
that it did not attract interest in replication. This status can still
change into (3) or (4) if a replication is undertaken later.

Although these cultural changes may appear substantial, in
light of the replication crisis and wastefulness of current practice,
cosmetic changes may be insufficient to move science forward. A
recent initiative in Germany that provides free data collection for
(preregistered) studies through a proposal submission process
points in a promising direction (https://leibniz-psychology.org/
en/services/data-collection/).

Methods
Simulation. All simulations involved 1000 replications. The simulation comprised
three main components.

The landscape of true effects was modelded by a 10 ´ 10 grid that represented
the ground truth. For discovery-oriented research, the grid was randomly
initialized for each replication to 0 (H0) or 1 (H1), with PðH1Þ ¼ :09 (Fig. 3a). The
two dimensions of the grid are arbitrary but can be taken to represent potential
independent and dependent variables, respectively. Each grid cell therefore involves
a unique combination of an experimental intervention and an outcome measure,
and the ground truth in that cell (1 or 0) can be understood as presence or absence,
respectively, of a difference to a presumed control condition. For theory-testing
research, the same landscape was used but all effects were randomly clustered
within four rows and columns centered on a randomly chosen centroid (subject to
the constraint that all effects fit within the 10 ´ 10 grid; Fig. 6).

The second component was a decision module to determine scientific interest.
The distribution of citations for 1665 articles published in psychology in 2014
(downloaded from Scopus in April 2018) was fit by a generalized Pareto
distribution (shape parameter, k ¼ 0:115; scale parameter, σ ¼ 8:71; and location
parameter, θ ¼ 0; Fig. 2). For the simulations reported here, the 90th percentile of
the fitted distribution (q ¼ 22:98 citations) was used as threshold in a logistic
transfer function:

PðIkÞ ¼
1

1þ e�ðnk�qÞ=t ; ð1Þ

where PðIkÞ is the probability that finding k would be deemed interesting, nk
represents the finding’s citation count, and t 2 f1; 5; 10g the temperature of the
logistic function. (The reciprocal of the temperature is known as the gain of the
function.) Each nk represented a random sample from the best-fitting Pareto
distribution. Other cutoff values of q were explored, spanning the range from the
10th through the 90th percentile, which did not materially affect the results
(Supplementary Figs. 1 and 2).

The final component was an experimental module to run and interpret
experiments. Each simulation run (that is, each of 1000 replications) involved a
first round of 100 experiments. Each experiment was simulated by sampling
observations from a normal distribution with mean equal to the value of the
targeted cell in the grid of ground truths (0 or 1) and standard deviation σ. The
sample size was determined by G*Power42 to achieve the desired statistical power.
Power was either .5 or .8, mapping into sample sizes of n ¼ f18; 34g. For
frequentist analyses, σ ¼ 2:0 and α ¼ :05 in all simulations. For Bayesian analyses,
n ¼ 34 and σ ¼ 1:5 throughout, which achieved a “power” of ~0.8 with BF10 ¼ 3.
An experiment was declared “significant” if the single-sample t-statistic exceeded
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the appropriate two-tailed critical value for α ¼ :05 or if BF10 > 3, Bayesian single-
sample t-test as decribed in ref. 28.

For discovery-oriented research, the targeted cell in the landscape was chosen
randomly (Fig. 3b). Theory-testing research also used a 10 ´ 10 grid to represent
the gound truth, but all true effects (i.e., H1) were constrained to fall within a 4 ´ 4
grid that straddled a randomly chosen centroid. For each simulated experiment, the
targeted cell was chosen randomly from another 4 ´ 4 grid of predicted effects
whose centroid was a prescribed distance from the centroid of true effects. The
parameter ρ determined the proximity between the centroid of true effects and the
centroid of the predicted effects targeted by theory-testing research (Fig. 6). When
ρ ¼ 1, the centroids were identical, and for ρ< 1, the theory’s centroid was moved
ð1� ρÞ ´ 9 rows and columns away from the true centroid (subject to the
constraint that all cells predicted by the theory had to fit within the 10 ´ 10 grid). A
perfect theory (ρ ¼ 1) thus predicted effects to be present in precisely the same area
in which they actually occurred, whereas a poor theory (ρ ’ 0) would search for
effects in a place where none actually occurred.

The first round of 100 experiments was followed by replications as determined
by the applicable regime (Fig. 1). Thus, under the private regime, any significant
result from the first round was replicated, whereas under the public regime,
significant results were replicated with a probability proportional to their scientific
interest as determined by Eq. (1). (In the simulation that also examined null effects,
see Fig. 8, replication decisions were also based on Bayes Factors for the null
hypothesis).

Expert survey. Attendees of a symposium on statistical and conceptual issues
relating to replicability at the International Meeting of the Psychonomic Society
in Amsterdam (May 2018) were given the opportunity to respond to a seven-
item single-page survey that was distributed before the symposium started.
Responses were collected after each talk until a final set of 102 responses was
obtained.

Each item involved a quasi-continuous scale (14 cm horizontal line) with
marked end points. Responses were indicated by placing a tick mark or cross along
the scale. Responses were scored to a resolution of 0.5 cm (minimum 0, maximum
14, and midpoint 7). Items, scale end points, and summary of responses are shown
in Table 1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
MATLAB code for the simulation and all results are available at https://git.io/fhHjg. A
reporting summary for this Article is available as a Supplementary Information file.
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