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Colloidal interactions and unusual crystallization
versus de-mixing of elastic multipoles formed by
gold mesoflowers
Ye Yuan 1, Mykola Tasinkevych2,3 & Ivan I. Smalyukh 1,4,5*

Colloidal interactions in nematic liquid crystals can be described as interactions between

elastic multipoles that depend on particle shape, topology, chirality, boundary conditions and

induced topological defects. Here, we describe a nematic colloidal system consisting of

mesostructures of gold capable of inducing elastic multipoles of different order. Elastic

monopoles are formed by relatively large asymmetric mesoflower particles, for which gravity

and elastic torque balancing yields monopole-type interactions. High-order multipoles are

instead formed by smaller mesoflowers with a myriad of shapes corresponding to multipoles

of different orders, consistent with our computer simulations based on free energy mini-

mization. We reveal unexpected many-body interactions in this colloidal system, ranging

from de-mixing of elastic monopoles to a zoo of unusual colloidal crystals formed by high-

order multipoles like hexadecapoles. Our findings show that gold mesoflowers may serve as a

designer toolkit for engineering colloidal interaction and self-assembly, potentially exceeding

that in atomic and molecular systems.
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Introduced by Einstein within a theoretical framework
explaining Brownian motion of tiny particles1, colloidal atom
paradigm has provided the motivation and means for orga-

nizing particles into crystals and other structures, mimicking and
even exceeding the diversity of structures in naturally occurring
molecular and atomic materials2. Long-range elasticity-mediated
colloidal interactions between particles3 in liquid crystal (LC)4

fluids have enabled a host of anisotropic colloidal self-assemblies
and composite materials5–26. Colloidal inclusions perturb the
uniform background of nematic LC’s ground-state unidirectional
molecular orientations, producing distortions in the molecular
ordering described by the coordinate-dependent director field n
(r). These director distortions propagate far beyond the physical
extent of the particles themselves3, though confining surfaces with
strong boundary conditions can partially localize and limit the
extent of spatial propagation of these distortions11. Minimization
of director distortions to lower the total free energy cost when
colloidal particles are in a close proximity leads to elasticity-
mediated interactions not present in isotropic host media3,11.
Under the one-elastic-constant approximation, the governing
Euler-Lagrange equation, derived from the minimization of free
energy, is of Laplace’s type, similar to that of electrostatics, thus
allowing for interpreting the nature of long-ranged n(r) distor-
tions based on the multipole expansions3,11,21. At small inter-
particle distances, this multipole description is limited by the
presence of topological singularities and non-spherical topo-
graphic features of the colloidal particles, whereas surface con-
finement and boundary conditions on sample surfaces effectively
limit this description at large inter-particle distances11. The
confinement effects effectively screen the long-range nature of
interactions and can be accounted for analogously to the
screening of electrostatic colloidal interactions in presence of
counterions and many other types of screening of physical forces
described using the mathematical language of multipoles27–31.
Deviations of n(r) in opposite directions away from the far-field
uniform alignment can be interpreted analogously to opposite
charges in electrostatic charge distributions, defining the design
principles for achieving diverse types of colloidal interactions and
assemblies that mimic the well-understood interactions between
electrostatic charge distributions11. In addition to theoretical
analysis5–7,12–15,17, a number of elastic multipoles have been
discovered experimentally3,8–11,16–21. Surface anchoring bound-
ary conditions on the particles and size, shape, topology and
chirality are all found to be important factors, defining the
behavior of nematic LC colloids11. Besides, colloidal particles can
induce different multipoles depending on the types of defects that
occur. For example, colloidal spheres can induce elastic dipoles3,
quadrupoles12, or hexadecapoles17 depending on whether sin-
gular point3 or “Saturn ring” disclination loop32,33 or simulta-
neously both types of defects17 are formed, respectively. However,
such ability of achieving different types of elastic multipoles by
colloidal inclusions of the same type is limited, consequently
limiting the diversity of assemblies and composite materials that
can be achieved. Although two-photon polymerization based
fabrication of colloidal particles with complex shapes can allow
for designing many different types of elastic LC multipoles11,16, it
is limited to particles made of polymers and elastomers and
cannot be easily scaled, which is a limitation as compared to wet
chemical synthesis of colloids.

Here we describe a nematic colloidal system made from
mesoflower colloidal particles34 capable of inducing elastic mul-
tipoles of different order. These mesoflowers are mesostructures
of gold with highly diverse shapes and with characteristic sharp
spikes of sub-micron dimensions34. These complex yet diverse
particles allow for inducing different elastic multipoles when
dispersed in a nematic LC, which for small particles range from

dipoles to hexadecapoles, and even higher order multipoles.
Larger asymmetric mesoflowers induce elastic monopoles that
emerge due to external gravitational torques/forces that are
balanced by those originating from the LC’s orientational elasti-
city; this leads to monopole-type interactions with confining
substrates and other colloidal objects, as well as to unusual ani-
sotropy in their Brownian motion. Numerical modeling based on
Landau-de Gennes free energy minimization, while accounting
for the presence of singular defects with corresponding variations
of the scalar order parameter in addition to the director config-
urations, confirms these experimental observations and predicts
the existence of other elastic multipoles achieved by systematically
varying the distribution of spikes. We reveal changes in physical
behavior like pair interactions of colloidal particles stemming
from small changes in particle dimensions and shapes, as
exemplified by the mesoflower nematic colloidal system.
Numerical modeling of interactions in large colloidal systems
shows that these effects lead to unusual types of colloidal crystals
and transformations between them in the case of high-order
multipoles and to de-mixing of elastic monopoles of opposite
signs, very differently from electrostatic interactions in atomic
systems. In the spirit of the colloidal atom paradigm, our findings
reveal that LC colloids have a great potential of not only
expanding the length scales of self-assembly from atomic to
colloidal scales1–3, but also diversifying the forms of colloidal
organization by going beyond what is accessible to atomic
systems.

Results
Experimental generation of elastic multipoles. Gold meso-
flowers of size ranging from hundreds of nanometers to micro-
meters are synthesized by a seed-mediated growth method (see
details in “Methods” section)34. They are then dispersed in a
nematic LC, 4-cyano-4′-pentylbiphenyl (5CB) (Fig. 1). The
cetyltrimethylammonium bromide (CTAB) coating on the surface
of the particles sets perpendicular boundary conditions for the
director n(r), while the sharp spikes sticking out in all directions
perturb the uniform far-field alignment n0 of the LC defined by
the rubbing direction of the confining substrates. Although each
mesoflower possesses varying number of spikes of different size,
the analysis of n(r) around the particles allows for prediction of
their colloidal behavior based on electrostatic analogy11. In the
optical micrographs taken under crossed polarizers with an
additional 530 nm phase retardation plate, director distortions
manifest themselves as the colored regions different from the
background, indicating that n(r) deviates away from n0 around a
particle. The direction of director rotations, or rather the rotation
of projection of n(r) to the plane of the sample, in blue (yellow)
regions of polarizing optical micrographs is extracted on the basis
of addition (subtraction) of phase retardation of the waveplate and
the birefringent LC sample with the corresponding director
orientation patterns. For our experimental geometry, the blue
(yellow) polarized interference colors in optical micrographs
reveal positive (negative) x-components of director and clockwise
(counterclockwise) rotations of n(r) away from n0 (see the insets
in figures showing the details for particular experiments dis-
cussed). The diversity of the mesoflowers leads to a variety of
polarized interference color patterns, revealing n(r)-distortions
resembling that of elastic multipoles21,26, depending on the exact
patterns of inter-changing blue and yellow colored regions dis-
tributed around the particles (Fig. 1h–k and Supplementary
Fig. 1). In some peculiar cases, the mesoflowers are surrounded by
predominately one color (Figs. 1g and 2a, b), implying n(r)
rotation to one direction away from n0. Such director distortions
can be identified as elastic monopoles, although it has long been
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believed that they should relax to higher order multipoles11,18,26

because rotations of director in one direction would generate
elastic torque that would relax such distortions to minimize free
energy. In our system, however, gravity prompts this behavior
because the density of gold is much higher than that of the LC and
can serve as a source of external torques/forces balancing their
elastic counterparts. For sufficiently large particles, gravitational
forces and torques can compete with the elastic counterparts and
the elastic monopoles can be stabilized rather than relax to higher
order multipoles. This behavior is very different from that of
conventional colloids in isotropic fluid hosts, where the role of
gravity is associated with colloidal particle sedimentation, re-
distribution along the sample height or destabilization. As an
order of magnitude assessment of these unusual gravity effects in
LCs, we equate effective gravitational potential of the mesoflower
∝Δρ(4πR3/3)gR (here Δρ is the difference between densities of
gold 19,320 kgm−3 and the LC 1008 kgm−3; g= 9.8m s−2 is
the standard gravity; R is an effective radius of the mesoflower)
with the elastic energy / �KR (the used LC’s average elastic

constant �K ~ 6.5 pN). We obtain an estimate of effective threshold
radius for particles significantly influenced by gravitational effects,
Rt ~ 2 μm, well within the range of the studied mesoflower
dimensions (Fig. 1). Thus, depending also on particle shape,
gravitational effects can be a factor for stabilizing different elastic
multipoles when the particle size is comparable or larger than Rt.
For smaller particles, gravity is not strong enough to compete with
elastic forces (Fig. 1d, e), but it can serve as a source of symmetry-
breaking torques and forces for particles larger than Rt. Particles
with intermediate dimensions ~Rt may exhibit monopoles as
metastable states due to the interplay between the complex shape
of the particle, surrounding director distortions and satellite
defects, as well as interactions with the confining substrate.
Indeed, when we poke, heat or rotate such particles by laser
tweezers, different multipole-like color patterns can appear around
the same mesoflower of size ~Rt (Fig. 2 and Supplementary Fig. 1),
including the monopole-like structures.

The intrinsic viscoelastic anisotropy of the LC host leads to
anisotropic Brownian motion of colloidal inclusions35, which
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Fig. 1 Elastic multipoles generated by gold mesoflowers in a nematic LC. a Pure elastic multipoles that can be induced by spherical colloidal surfaces with
pre-defined boundary conditions. Each schematic shows the director field n(r) in xz plane corresponding to multipole expansions of l= 1–6 with m= 1 (top
row) and m=−1 (bottom row), and for l= 0 the sign of nx defines the color; z-axis is defined to be along n0. Blue, yellow and magenta colors indicate
positive, negative, and near-zero nx, as shown by the color scale bar on the right. The bottom inset represents pure elastic multipoles with l= 6 and all
values of m that these surfaces can induce. We emphasize that the opposite signs of monopoles have opposite signs of nx and all other multipoles of
opposite signs have opposite alternations of distorted regions around particles with positive and negative nx. b, c Scanning electron microscope images of
gold mesoflowers featuring many sharp spikes (b) with star-shaped cross-sections (c). Red scale bars are 1 μm. d, e Bright-field (d) and polarizing
(e) optical micrographs of a smaller mesoflower dispersed in a uniformly aligned LC. n0 is indicated by the white double arrow; P and A show the crossed
polarizer and analyzer; yellow double arrow shows slow axis of a 530 nm retardation plate inserted between the polarizers. f, g Bright-field (f) and
polarizing (g) optical micrographs of a larger mesoflower embedded in a uniformly aligned LC. h Polarizing optical micrographs of mesoflowers generating
dipolar (l= 1) director distortions, with the opposite dipole directions revealed by the color patterns in micrographs on the right and left sides. i Polarizing
optical micrographs of mesoflowers generating quadrupoles (l= 2) of opposite sign. j, k Generation of higher-order elastic multipoles such as octupole
(l= 3) j due to an assembly of a mesoflower and colloidal sphere and hexadecapole (l= 4) k induced by an individual particle. Micrographs h–k are taken
under the same condition as (e, g). White scale bars are 3 μm.
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further depends on the particle’s geometric shape, surface
boundary conditions and induced defects19,36,37. For mesoflowers
with comparable effective dimensions of spikes extending in
directions along and perpendicular to n0, the angular dependence
of the mean square displacement (MSD) of individual particles is
directly related to n(r) structures that they induce (Fig. 2). In an
isotropic phase of the LC, like colloidal spheres, mesoflowers
diffuse in all directions with roughly equal probability during a
long period of time38, so that the angular dependence of MSD is
isotropic. In a nematic phase, even for spherical particles,
molecular alignment breaks the symmetry and defines an easy
axis for particle diffusion35, which yields dumbbell-shaped
angular dependencies of MSD, aligned along n0 and symmetric
with respect to it. However, the mesoflower-induced n(r)
distortions further enrich this behavior (Fig. 2). For example,
the dumbbell-shaped MSD dependence of elastic monopoles
has a long axis tilted away from n0 (Fig. 2a, b), with the tilting
direction matching the unidirectionally rotated nearby n(r)
orientation and correlating with the elastic monopole sign. In
contrast, mesoflowers inducing higher order multipoles exhibit
MSD angular dependence symmetric with respect to n0 (Fig. 2c,
d and Supplementary Fig. 2). Interestingly, the diffusion
behavior can be altered by switching particle-induced structures
between different metastable states associated with reconfigura-
tion of n(r) and elastic multipoles (Fig. 2a, c). Such switching of
diffusion anisotropy and medium-mediated long-distance
correlation of diffusion anisotropy between particles of the

same type, cannot be achieved for mesoflowers or other
particles dispersed in an isotropic medium, even for anisotropic
particles38.

Elasticity-mediated colloidal interactions. Dynamics and inter-
actions of mesoflowers dispersed in the LC are probed under
polarizing optical microscopy with a 530 nm retardation plate
inserted, so that elastic multipoles can be identified by examining
the color patterns. Particles are brought to desired initial positions
using laser tweezers and then released. In addition to conven-
tional dipole-dipole (Supplementary Fig. 3) and quadrupole-
quadrupole (Fig. 3) interactions that are common in other
nematic colloids11, interactions involving elastic monopoles are
also observed (Fig. 4a, b). A monopole-like mesoflower sur-
rounded by unidirectionally rotated n(r) (consistent with the blue
color in a polarizing micrograph) attracts another mesoflower
with a dipolar n(r), surrounded by approximately equal amount
of blue and yellow colors within the polarizing micrograph, which
is an elastic dipole. The two particles eventually approach each
other by sharing blue-colored regions, thus lowering the total
energy cost of the ensuing colloidal assembly (Fig. 4a, b). The
interaction potential, calculated from the balance of elastic and
viscous drag ∝drc/dt forces, is in the range of hundreds of kBT
and its power-law distance dependence ∝−rc−2 is consistent with
that of the monopole-dipole interaction (rc is the distance
between the centers of interacting colloidal particles). As another
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Fig. 2 Anisotropic Brownian motion of mesoflowers inducing different elastic multipoles. a, b Angular-dependent mean square displacement (MSD)
of mesoflowers inducing elastic monopoles of opposite signs, as probed with respect to n0. c, d MSD angular dependence of mesoflowers inducing dipolar
(c) and quadrupolar (d) elastic distortions. Insets show the corresponding polarizing optical micrographs of the studied particles, taken under crossed
polarizers with a 530 nm retardation plate; white double arrows indicate n0. Scale bars are 3 μm.
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example, Fig. 4c, d shows how an assembly of two mesoflowers
consisting of one dipole and one monopole attracts another
dipolar mesoflower (Fig. 4c, d), with the interactions again con-
sistent with the electrostatic analogy of these nematic colloids. For
elastic multipoles of leading orders 2l and 2m, the balance of
viscous drag and elastic force / 1=rlþmþ2

c yields the anticipated
time dependence of inter-particle distance rc tð Þ ¼ rlþmþ3

0 ��
ðl þmþ 3Þαt�1=ðlþmþ3Þ, where r0 is the initial center-to-center
distance and α is a fitting parameter, consistent with experiments
for pair interactions for all studied multipoles of the same and
different orders (Figs. 3 and 4 and Supplementary Fig. 3).

Computer simulations of elastic multipoles and interactions.
Numerical minimization of Landau-de Gennes free energy pro-
vides insight into the director configurations around mesoflowers
with complex shape and different dimensions (Figs. 5 and 6).
These particles induce networks of defect lines meandering on
their surfaces, typically along the ridges of spikes, with the long-
range distortions of n(r) influenced by the spiky topography of
particles but not exactly following it (Figs. 5 and 6). For large and
strongly asymmetric particles gravitational torques and forces

compete with their elastic counterparts, giving the origin to elastic
monopoles (Fig. 5), whereas smaller particles tend to induce
higher order multipoles (Fig. 6 and Supplementary Fig. 4). For
monopole-like particles, the clockwise versus counterclockwise
unidirectional rotation of n(r) away from n0 corresponds to the
opposite signs of monopoles, as confirmed by multipole expan-
sion. The x-component of director, nx, which is an effective elastic
charge density, has the same sign when plotted on a sphere
encompassing the monopole-inducing mesoflowers, though its
amplitude is nonuniform, as shown in the Fig. 5a–c, consistent
with the leading monopole moment of the elastic charge dis-
tribution. Since the twist elastic constant of the LC is the smallest,
the bend and splay distortions can also relax through equivalent
distortions containing twist, so that the particles orientations can
deviate away from n0 not only in the plane containing g, the
gravitational acceleration, but also in the plane orthogonal to g, as
experimentally observed in planar LC cells (Figs. 1–4).

Details of the elastic-gravitational torque balance are revealed
by simulating an asymmetric particle (similar to low-symmetry
particles that tend to induce elastic monopoles in experiments)
placed above a wall in xz plane with tangential boundary
conditions (Fig. 5). The x-components (see inset in the lower left
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Fig. 3 Quadrupole-quadrupole colloidal interaction between mesoflowers. a Separation distance versus time for attraction between two mesoflowers
inducing elastic quadrupoles with opposite signs. Micrographs in the insets show frames from movies depicting particles repelling diagonally (left) and
attracting along n0 (right), which is expected for quadrupoles with opposite quadrupole moment signs and completely opposite from what is known for
particles with the same quadrupole moment signs17. The direction of interaction is shown with a pair of white arrows. Schematics in the insets are
visualization of the x-component of n(r) on the spherical surface enclosing two quadrupoles of opposite sign. Blue, yellow and magenta color indicates
positive, negative, and near-zero nx, as shown by the color scale bar in the top right corner. b Interaction potential versus distance corresponding to (a),
with the inset showing the distance dependence of force plotted using the log-log scale. c Separation distance versus time of attraction between two
mesoflowers inducing quadrupoles with the same signs. Polarizing micrograph in the inset shows the initial state of particles. d interaction potential vs
distance corresponding to (c), with inset showing the distance dependence of force plotted using a log-log scale. The red curves in a, c are the best fits of
the experimental data with the function rc(t)= (r0n− nαt)1/n, where n= 7 for quadrupole-quadrupole interaction; the fitting coefficients are r0= 6.0 μm,
α= 1.1 × 103 μm7 s−1 in (a) and r0= 5.0 μm, α= 2.7 × 102 μm7 s−1 in (c). The blue curves are the best fits of a power-law function ∝−rc−5 corresponding to
quadrupole-quadrupole interaction potential, from which the force is calculated. Gray bands with dashes in the insets represent the estimated error of the
force measurement. Scale bars are 3 μm.
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corner of Fig. 5d for the definition of the reference system) of the
elastic Tel

x and gravity Tg
x torques vary with the angle θ between

the particle axis (the line connecting the center of the particle core
and the tip of one of the spikes) and n0. The torques are
calculated about the center (see Supplementary Fig. 5), and
exhibit different signs within the intervals θ∈ [−180°, −127°]
and θ∈ [−90°, 0°]. The orientations θ= 0°(−180°) and θ≃
−127° correspond to the minima of the elastic and gravity
energies, respectively. For particles with masses M � �K=g, the
elastic energy dominates and the particle adopts one of the two
equilibrium orientations either θeq≲ 0°, or θeq≳−180°, as shown
in Fig. 5f for the case θeq≲ 0°. As the particle size increases, the
gravity tilts the particle’s axis further away from the purely elastic
equilibrium θ= 0° towards negative values of θeq, the equilibrium
orientation behaves according to the upper branch of the curve in
Fig. 5f. When starting from the second elastic energy minimum at
θ=−180°, the gravity tilts the axis towards less negative θ upon
increasing the particle size, towards the minimum of the
gravitational energy (lower branch of θeq curve in Fig. 5f). For
sizes larger than Rt, the particle would adopt its equilibrium
orientation in the vicinity of the purely gravitational equilibrium
θ≃−127°. The equilibrium orientation θeq in Fig. 5f was obtained
for h= 3.5R0, where R0 is the radius of the spherical core of the

mesoflower and h is the distance from the particle center to the
wall (Supplementary Fig. 6). As the weight of the particle
increases the equilibrium particle-wall separation heq decreases, as
shown in the inset of Fig. 5e (the gravity acts in the directions
towards the wall) and depends on balancing of gravitational and
the repulsive elastic forces. The latter also depends on the
strength of surface anchoring boundary conditions and is
calculated here from the free energy profile versus h for the
regime of strong boundary conditions corresponding to the
experiments. The corresponding free energy results (Fig. 5e)
demonstrate particle-wall repulsion, which have similar scaling
when using one elastic constant approximation or not, though
the elastic torque is almost insensitive to the variation of h for
3.5 ≤ h/R0 ≤ 20, justifying the approximations used for calculat-
ing θeq (Fig. 5f). The size-dependent levitation of mesoflowers
at different h (inset of Fig. 5e) shows how suspensions of
mesoflowers in LCs could be potentially used for separating
particles of different dimensions, though the range of particle
dimensions that can be effectively separated will depend on the
density of particles relative to that of the LC host medium.
Therefore, this separation method may be limited to high-
density particles, like the ones made from gold that we use in
this study.
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dependence of force plotted using a log-log scale. The red curves in a, c are the best fits of the experimental data with the function rc(t)= (r0n− nαt)1/n

where n= 4 for monopole-dipole interaction; the fitting coefficients are r0= 6.4 μm, α= 24 μm4 s−1 in a and r0= 5.2 μm, α= 7.3 μm4 s−1 in c. The blue
curves are the best fits of a power-law function ∝−rc−2 corresponding to the monopole-dipole interaction potential, from which the force is calculated.
Gray bands with dashes in the inset represent estimated error of the force measurement. Scale bars are 3 μm.
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Fig. 5 Orientation, effective repulsion from a wall and pairwise interactions of monopoles. a, b Director structures around a mesoflower with a dominant
elastic monopole. n(r) is shown by black rods and defect lines are depicted as red tubes. As a comparison, n(r) induced by a pure idealized monopole is
shown as the top-right inset of a whereas the bottom-right insets in a, b show color-coded diagrams of nx on the interpolation sphere surrounding the
mesoflower when viewed from different directions. The coordinate system is set so that n0||z. c, The xy perspective view of the nx and the color-coded scale
of nx. d Elastic (red circles) and gravity (blue line) torques about the center of the particle core (Supplementary Figs. 5 and 6) versus θ. The gravity acts in
the negative y-direction; g is the gravitational acceleration. The mesoflower is placed above a wall with fixed planar boundary conditions along z and
distance from the wall h= 3.5 R0. Balance of the two torques occurs at an equilibrium orientation θeq, which is plotted in f versus ΔρR03g. e, Reduced
Landau-de-Gennes free energy FLdG versus h at θ=−40°. Black solid circles correspond to K11= K33= 2K22= 7.8 pN and red solid squares to the one-
constant approximation K11 ¼ K33 ¼ K22 ¼ �K; we use T= 298 K and R0= 0.2 μm in the minimization. The inset in e shows the probability distribution
/ expð�ðFLdG þ EgÞ=kBTÞ of the particle-wall separation h for several values of R0 indicated next to the curves. For the Landau-de Gennes free energy we
use FLdG ¼ 5:659 h�1�KR20 (parameters extracted from the black fitting curve in e), and Eg is the particle gravitational energy ∝h; average elastic constant
�K ¼ 6:5 pN, and T= 298 K. g FLdG versus separation distance rc between a pair of like (black solid circles) and opposite (blue solid triangles) monopoles at
h= 20R0 θ1= θ2= 40° for like monopoles and θ1= 40°, θ2=−40° for opposite monopoles. Lines in e, g are fitting curves with the function f(x)∝ 1/x.
Director structures around pairs of like-charged h, i and oppositely-charged j, k monopole particles at rc= 5R0 in h, j and rc= 10R0 in i, k.
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The wall-monopole particle repulsive potential∝ 1/h revealed
in Fig. 5e agrees with the predictions of nematostatics5,6,14

according to which elastic monopoles with opposite signs repel.
Indeed, employing the electrostatic analogy, the interaction with
the wall can be modeled using an image elastic monopole,
yielding the∝ 1/h potential. The potentials of mean force between
two monopole particles with the same as well as opposite signs of
monopole moments (Fig. 5g) also agree with nematostatics:9 like
(unlike) elastic monopoles attract (repel) each other with an
effective potential ∝ 1/rc. Numerical modeling provides insights
that formation of elastic monopoles by mesoflowers of gold is
facilitated not only by their relatively large size >Rt, but also by
symmetry breaking often caused by asymmetric distribution and
dimensions of individual spikes (Supplementary Fig. 5) within the
mesoflower particle (both effects enabled by the competition of
gravitational forces and torques with their elastic counterparts,
which stabilize elastic monopole configurations).

For particles smaller than Rt, varying the number and positions
of spikes within mesoflowers generates different multipole series
of the director distortions (Fig. 6 and Supplementary Fig. 4). The
multipole expansion analysis21 for the numerically simulated n(r)
shows that certain particles induce stable or metastable structures
with strongly pronounced multipole moments of different orders,
including octupoles (Fig. 6a–c), hexadecapoles (Fig. 6d, e and
Supplementary Fig. 4a–c) and even 64-poles (Fig. 6f, g and
Supplementary Fig. 4d–f), with the other multipole moments
orders of magnitude smaller. The numerically simulated nx-
distributions on spheres encompassing these multipolar meso-
flowers are consistent with the corresponding charge distributions
of high leading order electrostatic multipoles (Fig. 6), though they
also contain fine features dictated by detailed geometry of the
mesoflowers (compare Fig. 6a, c).

Colloidal crystals and de-mixing of elastic multipoles. A mul-
tipolar approximation for an effective interaction between two
colloidal particles distance rc apart and with the center-to-center
vector forming an angle θc with the far-field director n0 reads:17

Uel rc; θcð Þ ¼ 4π�KΣl;mQlQm �1ð Þm l þmð Þ!Plþm cos θcð Þð ÞR
lþmþ2
eff

rlþmþ2
c

;

ð1Þ

where Pl(x) is the Legendre polynomial of degree l, Ql char-
acterize the strength of elastic multipole moments, and Reff is the
characteristic length scale of the multipole (set in our case by the
size of the colloidal particle). The analysis of Eq. (1) shows that a
large variety of pair interaction patterns arises for multipoles of
different orders (Fig. 7), which can lead to the formation of
colloidal crystals and other structures arising from the competi-
tion between multipolar elastic and screened electrostatic repul-
sive interactions19. Because our mesoflower colloids allow for the
realization of a large variety of multipoles of different orders, one
can systematically explore how such colloidal interaction lead to
self-organization depending on the order of the leading-order
multipole.

First, we consider a half-half binary mixture of distinct elastic
monopoles confined at a plane coplanar to the far-field director.
Contrary to electric charges, similar elastic monopoles attract and
dissimilar repel9,11, as discussed above for pair interactions. To
assess how this behavior impacts collective behavior of many such
particles, we assume pairwise additive interaction potential and
augment the monopole-monopole elastic interaction with a
truncated repulsive Yukawa potential corresponding to the
screened electrostatic interactions, which can be tuned by adding
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Fig. 6 High-order elastic mesoflower multipoles. a, d, f Pure elastic octupole, hexadecapole and 64-pole with corresponding n(r) in the cross-sectional
planes, respectively, depicted on spheres using color-coded diagrams of nx. b, e, g Director structures around a mesoflower with dominant elastic octupole
(b), hexadecapole (e), and 64-pole (g) contributions depicted with a perspective views on xz and yz planes. Coordinate system is defined so that n0 || z. n
(r) is shown using rods and defect lines are depicted as red tubes. c Color-coded diagram of nx in the xy, xz, and yz cross sections as well as at the
interpolation spheres around the mesoflower with the dominant octupole contribution (b).
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counterions through doping LCs with salt and other additives:39

UY rcð Þ ¼ A e�κrc 1
rc
; rc � rCO

0; rc > rCO

�
; ð2Þ

where rCO is the cutoff distance, A and κ are positive constants,
with the latter characterizing electrostatic screening effects due to
counterions within the LC39. We emphasize that rather strong
electro-static repulsion at short particle separations is needed in
order to avoid short-range steric, elastic and van der Waals
interactions leading to aggregation due to the complex surface
geometries of particles. Assuming such screened electro-static
repulsions, we perform molecular dynamics simulations using
open source Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS)40. In this simulation as well as in all the
subsequent simulations of self-organizations of higher order
elastic multipoles, we neglect possible changes in multipole
moments, or generation of additional multipoles, as the inter-
particle distances and orientations vary. We also neglect the
short-range effects that may arise at small inter-particle distances
and that possibly cannot be fully described within the multipole
expansion approach that we consider. Figure 8 shows a series of
snapshots along the system trajectory, where a perfect NaCl-like
crystal order (see Fig. 8a) is assumed as the initial condition. In
the course of time, the system of oppositely charged elastic
monopoles undergo a spatial segregation, Fig. 8f, which is the
direct consequence of the fact that like (opposite) monopoles
attract (repel) (see also the Supplementary Movie 1).

Self-assembly of two-dimensional nematic colloids with the
dominant dipolar or quadrupolar elastic interactions has been
previously reported22,41,42 and is consistent with the behavior of
colloidal dipoles and quadrupoles formed by gold mesoflowers.
Driven by the symmetries of the underlying multipole potentials,
the dipole colloids tend to assemble head-to-tail in chains aligned
along the far-field director. The chains then assemble in a two-
dimensional crystalline structure with an anti-ferromagnetic-like
alignment of the neighboring chains22,41. Quadrupolar colloids
reveal two-dimensional crystalline assembly with a rhomboidal
unit lattice cell where the colloid-colloid bonds are aligned along
the attractive directions of the underlying quadrupole potential42.
The sectors of attraction and repulsion are oriented with respect

to n0, which defines the long-range orientations for the crystal-
lographic axes of the ensuing colloidal crystals formed by elastic
dipoles and quadrupoles, thus precluding the formation of grain
boundaries between them. To the best of our knowledge,
crystallization of nematic colloids driven by higher order
multipole potentials have not been investigated.

Experimental results20–22,41,42 suggest that the symmetry of
the eventual nematic colloids crystals are mainly determined by
the distribution of the attractive directions of the corresponding
multipole potential. The elastic octupole potential has six
directions of attraction forming roughly 60° between each other
(Fig. 7a). It is therefore expected that octupole nematic colloids
crystalize in two dimensions into a hexagonal lattice, indeed
consistent with our LAMMPS-based simulations. The unique
alignment of the hexagonal lattice of these elastic-octupole-
based crystals with respect to n0 in this nematic colloidal system
precludes the formation of grain boundaries and, because of
this, could potentially be used for the formation of large crystal
lattices. The case of hexadecapole colloids is fundamentally
more interesting, as in this case the potential has eight
directions of attractions (Fig. 7b), which permits two types of
quadratic lattice arrangements of hexadecapole colloidal
particles, with the corresponding unit lattice cells shown in
Fig. 9a, b. In order to verify this hypothesis, we performed
molecular dynamic simulations (using LAMMPS) of two-
dimensional hexadecapole colloids, regularized with repulsive
Yukawa potential as defined by Eq. (2). We used constant
temperature and constant pressure (NPT) ensemble. Initially,
the system was subject to a strong isotropic pressure (Fig. 9c, f).
In this initial state the colloids formed a glassy structure, with
enhanced local hexagonal ordering revealed by the absolute
value |q6| of the local hexatic bond order parameter (Fig. 9c)
and suppressed |q4| of the quartic bond order parameter
(Fig. 9f). In the course of the simulations, the external isotropic
pressure was gradually decreased, which resulted in the
spontaneous formation of two types of quadratic colloidal
lattices and associated grain boundaries between them (Fig. 9d,
e, g, h, and Supplementary Movie 2).

Although the hexadecapole elastic interactions tend to form
two-fold degenerate ground state whose lattice units are
depicted in Fig. 9a, b, this tendency can be inconsistent with
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Fig. 7 Angular dependencies of elastic multipole pair interactions. Colored solid lines represent the interaction potential Uel∝ Pl+m(cos(θc)) between
two multipoles of the same order, e.g. for l=m. a Interaction potentials between two dipoles, octupoles, and 32-poles (l= 1, 3, and 5, respectively).
b Interaction potentials between two quadrupoles, hexadecapoles, and 64-poles (l= 2, 4, and 6, respectively). The double arrow indicates the far-field
director n0 with respect to which θc is measured. Dashed circles intersecting the potential plots represent equipotential lines of U(θc)= 0 for each plot.
Multipole pairs mutually repel in the regions where the lines extend beyond the dashed circle, e.g. Uel > 0, and attract where the lines lie within the dashed
circles, e.g., Uel < 0. Such radial directions of interaction are marked by the black arrows. The plots are not presented to scale.
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the efficiency of two-dimensional packing at high colloidal
concentrations. Colloidal particles are electrostatically charged
and mutually repel with screened Coulomb electrostatic
potential, where the range and the strength of this potential
can be tuned39, which provides additional knobs to control the
self-assembly of nematic colloids. We have performed illus-
trative molecular dynamic simulations of self-assembly beha-
vior of hexadecapole colloids with strong, weakly screened
repulsive Yukawa potential. The ensuing self-assembled
colloidal configurations are presented on Fig. 10 and Supple-
mentary Fig. 7 (see also Supplementary Movies 3–6). At high
concentrations the system reveals glassy (Fig. 10a, d) config-
urations, while at low concentrations particles assemble into
repulsion-induced sparse hexagonal lattices (not shown).
Surprisingly, at intermediate values of particle concentrations
and depending on the strength of the hexadecapole elastic
moment, the system can crystalize into a range of rhomboidal
lattices, with some examples shown in Fig. 10c, k and
Supplementary Fig. 7c, k, and the corresponding unit lattices
in Fig. 10q. Importantly, the symmetry of these lattices differs
from the ones of hexadecapolar ground states shown in Fig. 9a,
b. Additionally, at some number densities we observe coexist-
ing rhomboidal and hexagonal lattices, see Fig. 10c, k and
Supplementary Fig. 7c, k. Many interesting energetically
comparable colloidal organizations emerge as a result of dense
packing and elastic hexadecapolar interactions favoring differ-
ent lattices. This unusual crystallization behavior is revealed by
analyzing bond orientational order parameters within self-
assembled crystallites separated by grain boundaries. These
examples illustrate the ability of hexadecapolar nematic
colloids to self-assemble into a range of two-dimensional
low-symmetry crystal structures, with properties that can be
designed through controlling the particle shape, concentration
as well as internal properties of the nematic host.

Discussion
In this work, we have developed a nematic colloidal system of
mesoflowers where complex and diverse shapes of mesostructures

induce elastic multipoles of different order, from monopoles to
high-order multipoles like 64-poles. By varying the basic building
parts of these particles, their colloidal behavior can be effectively
controlled. As the shape and size of particles vary, they behave
like elastic monopoles that (differently from their electrostatic
counterparts) tend to de-mix into the domains of like-charged
elastic monopoles, or as high-order elastic multipoles (e.g., hex-
adecapoles) forming unusual crystals that can be tuned by
packing density and strength of electrostatic repulsions. While
here we focused only on the analysis of two-dimensional crystal
lattices for illustrative purposes, even more complex behavior is
expected in three dimensions, where even elastic quadrupoles can
form triclinic crystal lattices39. As the symmetries of elastic
potentials of high-order multipoles, which form the basis of
crystals, become intrinsically incompatible with crystalline lat-
tices, various forms of frustration can arise and lead to complex
crystallization behavior that can be potentially tuned through
changing concentration of counterions and surface charging. In
addition to crystals, quasi-crystals and various plastic crystals
(with positional order but lacking orientational ordering) could
possibly also arise due to diverse multipolar nature of our
mesoflower colloids, whereas polydisperse systems are expected
to form disordered glassy states. Our findings suggest that these
mesostructures may serve as a designer toolkit for engineering
pre-defined colloidal interaction and self-assembly. Access to
these structures in large quantities through chemical synthesis
may facilitate developments of new composite materials fabri-
cated using colloidal self-assembly. On the other hand, the sharp
geometric features of the gold mesoflowers within these colloidal
particle assemblies may be of interest for plasmonic enhancement
and related applications.

Methods
Sample preparation. Gold mesoflowers are synthesized following an aqueous
seed-mediated growth procedure34. First, 25 mg of citric acid and 1 mL of 25 mM
HAuCl4 solution were combined in 35 mL deionized water at 80 °C. Immediately
after the color of the solution changed from pale yellow to pink, 100 μL of aniline
and 0.5 mL of 25 mM HAuCl4 solution were injected with temperature maintained
for 5 more minutes. After 5 h, the resultant solution was centrifugated at 4000 rpm

a b c

d e f

Fig. 8 Segregation of a binary mixture of dissimilar elastic monopoles. a The initial condition for molecular dynamics simulations where the colloidal
particles are arranged in a NaCl-like two-dimensional square lattice. Colors of the spheres encode the monopole type: red corresponds to particles with
positive elastic colloidal monopole moment, and blue to particles with negative moment. b–f Snapshots sequential in time (increasing from a to f) showing
spatial segregation of distinct colloidal particle.
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to obtain the supernatant as the seed solution for the following steps. The growth
solution was prepared by mixing 20 mL of 0.1 M CTAB solution, 335 μL of 25 mM
HAuCl4 solution, 125 μL of 10 mM AgNO3 solution and 135 μL of 0.1 M ascorbic
acid solution at 80 °C. 2 mL of the seed solution was added to this growth solution,
accompanied with gentle mixing. The mixture was kept at 80 °C for 1 h and cooled
down naturally before taking it out for centrifugation at 4000 rpm for 5 min. The
residue was collected and washed in deionized water 3 times and then dried in an
oven. Liquid crystal suspension of mesoflowers was obtained by sonicating these
dried residues within the LC host, after which the suspension was infiltrated
between glass substrates with gap defined by monodisperse glass spacers of 10–20
μm in diameter. Prior to being used in cell preparation, the glass substrates were
spin-coated with polyimide (PI2555, from HD Microsystem) and rubbed uni-
directionally to define the bulk LC alignment. The cell edges were sealed using fast-
setting epoxy glue.

Optical video microscopy and laser trapping. An inverted optical microscope
(IX81, Olympus) with a charge-coupled device (CCD) camera (Flea, PointGrey)
and a holographic laser trapping system operating at 1064 nm was used to take
polarizing optical micrographs and videos of mesoflowers in the LC, to probe the
stable and metastable director configurations around the particles, as well as to set
the initial conditions for studying their pair interactions. The laser was turned off
during particle diffusion and interaction when videos were being recorded. To
assure good optical imaging resolution and robust laser manipulations, we used an
oil-immersion objective lens (UPlanSApo 100×, Olympus) with high numerical
aperture NA= 1.40 for both imaging and laser trapping. In order to analyze col-
loidal interactions and diffusion in directions along and perpendicular to n0 in the
plane of the LC cell, optical videos were analyzed using an image-processing

software (ImageJ, freeware from the National Institute of Health) to extract posi-
tions of the mesoflowers on a frame-by-frame basis. MSDs that characterize single
particle’s Brownian motion were calculated by analyzing particle displacements
along directions perpendicular and parallel to n0 (denoted Δrx and Δrz, respec-
tively) based on the particle’s positions in each frame of the video. To probe the
angular dependence of particle diffusion, a rotation operation was applied

Δr0x
Δr0z

� �
¼ cos β sin β

� sin β cos β

� �
Δrx
Δrz

� �
; ð3Þ

where β is the angle of rotation with respect to n0 and
Δr0x
Δr0z

� �
is the displacements

in the rotated coordinate frames. MSD was then calculated as <Δrx>2 for β varying
from 0° to 360°. Diffusion constants D were extracted from MSDs using the
relation <Δrx>2= 2Dτ where τ= 1/f and f= 15 Hz is the frame rate of the
experimental videos. From Stokes-Einstein relation, the drag coefficients of dif-
fusing particles were calculated as cμ= kBT/Dμ (μ= x, z) and the corresponding
drag forces as Fd= cv, where kB is the Boltzmann constant, T= 300 K is the room
temperature and v is the linear speed of the particle. Because of the highly over-
damped nature of our colloidal system, the elastic interaction forces could be then
found from their balance with Fd. The elastic interaction potential was then cal-
culated by integrating the elastic force over distance.

Simulation of director structures and elastic interactions. The generation of
elastic monopole and higher-order multipoles in the n(r) field by mesoflowers is
also approached computationally, via numerical minimization of the Landau-de
Gennes free energy26. The Landau-de Gennes free energy functional depends on
the tensor order parameter field Q(r) and its spatial derivatives. The functional
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Fig. 9 Spontaneous crystallization of elastic hexadecapoles with grain boundaries. a, b Unit cells formed by the spontaneous crystallization of colloidal
particles with dominant hexadecapole elastic moments. Red lines indicate the attractive directions from the underlying hexadecapole interaction potential
(Fig. 7b). Black lines represent the Cartesian axes with n0 parallel to the vertical axis. c–h Snapshots of the process of grain boundary formation. Spheres in
the top (bottom) rows are colored according to the absolute value of the local quartic order parameter q4(j) (hexatic order parameter q6(j)); color scale
decoding the value for both of these order parameters within 0 to 1 is shown as an inset on the right side of (b). Panels in the same column are taken at the
same time. Parameters used are Q4 ¼ 7 ´ 10�5; rCO

Reff
¼ 1:5; κReff ¼ 2; A

�KR2eff
¼ 1: The system size Lx × Ly is 26 ´ 26 R2eff in (c), (f); 29 ´ 29 R2eff in (d), (g);

31 ´ 31 R2eff in (e), (h). The size of the spheres in all panels is shown not to scale.
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combines terms which account for variable degree of nematic order, nematic
elasticity and biaxiality (at the cores of topological defects), as well as surface
anchoring. As such, the Landau-de Gennes approach yields theoretical character-
ization of n(r) and local changes in the degree of nematic ordering that correspond
to global or local minima of the free energy functional26. Spiky particles are con-
structed as a union of a spherical core and a given number of spikes distributed

over the surface of the core at predefined locations and orientations (Supple-
mentary Fig. 6). Minimization of the free energy is performed numerically for finite
homeotropic surface anchoring at the particle surfaces, and by using variable three-
dimensional tetrahedral grids43. This minimization yields stable or metastable n(r)
structures around the particles, which are then compared to the experimentally
reconstructed counterparts16,21.
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Fig. 10 Self-assembly of hexadecapole colloids with longer-stronger Yukawa repulsion. a–h Snapshots of the temporal evolution of self-assembled
structures. Panels in the same column are taken at the same time during the simulation; time elapses from (a) to (d). Spheres in the top (bottom) row are
colored according to the absolute value of the local quartic order parameter q4(j) (hexatic order parameter q6(j)) as marked on the right with the color

scale as an inset. Parameters used are Q4 ¼ 9 ´ 10�5; rc
Reff

¼ 5; κReff ¼ 0:3; A
�KR2eff

¼ 1: The system size Lx ´ Ly ¼ 32 ´ 32 R2eff in (a), (e); Lx ´ Ly ¼ 35 ´ 35 R2eff in

(b), (f); Lx ´ Ly ¼ 36 ´ 36 R2eff in (c), (g); and Lx ´ Ly ¼ 37 ´ 37 R2eff in (d), (h). i–p, Evolution of a system with stronger Yukawa repulsion. Panels are arranged

and colored in the same way as (a)–(h). Parameters used are Q4 ¼ 9 ´ 10�5; rc
Reff

¼ 5; κReff ¼ 0:3; A
�KR2eff

¼ 10: The system size Lx ´ Ly ¼ 34 ´ 34 R2eff in (i),

(m); Lx ´ Ly ¼ 35 ´ 35 R2eff in (j), (n); Lx ´ Ly ¼ 36 ´ 36 R2eff in (k), (o); and Lx ´ Ly ¼ 37´ 37 R2eff in (l), (p). q, rhombic lattices formed by such colloids. The

numbers correspond to those circled in (c) and (k), and Supplementary Fig. 7(c), and (k). The size of the spheres in all panels is shown not to scale.
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Nematic configurations around mesoflowers are obtained via numerical
minimization of the phenomenological Landau-de Gennes free energy functional26

FLdG ¼
Z
V

aQ2
ij � bQijQjkQki þ c Q2

ij

� �2
þ L1

2
∂kQij∂kQij þ

L2
2
∂jQij∂kQik

� �
dV

þW
Z
∂V

fs Qij

� �
dS

ð4Þ
where Qij=Qji (i, j= 1,..,3) is a traceless tensor order parameter and summation
over repeated indices is assumed. In Eq. (4), the parameter a (unlike the constants b
and c) is assumed to depend linearly on temperature T: a(T)= a0(T− T*), where
a0 is a material dependent constant, and T* is the supercooling temperature of the
isotropic phase. Phenomenological parameters L1 and L2 are related (via an
uniaxial Ansatz for Qij) to the Frank-Oseen elastic constants. We describe finite
homeotropic anchoring, with the strength coefficient W, at the surface of the

particles by using fsðQijÞ ¼ ðQij � Qs
ijÞ2, with Qs

ij ¼ 3Qb
2 νkνj � δkj

3

� �
, where δij is the

Kronecker delta symbol, and ν is the unit outward normal vector to the particle
surface44; Qb ¼ b=8c aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 64 ac= 3b2ð Þp	 

is the value of the scalar order

parameter in the nematic phase, which is thermodynamically favored for 24ac/b2 <
1. Minimization of the free energy Eq. (4) is then performed numerically by
employing adaptive mesh finite elements method as described in more details in
ref. 43. This minimization yields theoretical characterization of n(r) and local
changes in the degree of order that correspond to global or local minima of the free
energy26.

In our calculations, we use a0= 0.044 × 106 J m−3, b= 0.816 × 106 J m−3, c=
0.45 × 106 J m−3, L1= 6 × 1012 J m−1, and L2= 12 × 1012 J m−1, which are typical
values for 5CB45 at T*= 307 K. For these values of the model parameters, the bulk
correlation length ξ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cð3L1 þ 2L2Þ

p
=b � 15 nm at the isotropic-nematic

coexistence46, 24ac/b2= 1. We use W= 5 × 10−4 J m−2, or 10−4 J m−2,
corresponding to the surface anchoring strengths of interactions for substrates
coated with CTAB47–49.

Computational geometry of colloidal mesoflowers. We exploit the Open Source
Gnu Triangulated Surface (GTS) library50 to create triangulated surfaces of the
mesoflowers. A spiky mesoflower particle is constructed as a union of a spherical
core with the radius R0 and a given number of spike particles (Supplementary
Fig. 6) decorating the spherical core at predifined locations and orientations. Each
spike is chosen as a generalized cylinder with a 5-fold symmetry axis, consistent
with the experimental electron microscopy images. The lateral surface of each spike
whose symmetry axis coincides with the z-axis of a Carthesian coordinates system
(xi, yi, zi), i= 1, ..., 5, is parametrized as follows:

xi s; uð Þ ¼ A uð Þ 1þ 0:3 cos 5sð Þ½ � cos sð Þ;
yi s; uð Þ ¼ A uð Þ 1þ 0:3 cos 5sð Þ½ � sin sð Þ;

zi s; uð Þ ¼ Hu;

8><
>: ð5Þ

where 0 ≤ s < 2π, and 0 ≤ u≤ 1 are parameters; A(u)= A0+ (A0− A1)u accounts
for the variation of the spike “radius” along the spike symmetry axis with A0 > A1,
and H is the height of the spike along its symmetry axis.

The triangulated surface of the spike can be manipulated using the functions
implemented in the GTS library, including surface translation, rotation, or
rescaling. By using these functions together with the GTS function which merges
any two surfaces, we generated the spiky mesoflower particles with arbitrary
number of spikes placed at predefind relative positions and with predefined
orientations. The triangulation of the nematic domain was then performed by
using a quality tetrahedral mesh generator51, which supports adaptive mesh
refinement. Finally, the discretized functional (5) is minimized numerically using
INRIA’s M1QN3 optimization routine52, which implements a limited-memory
quasi-Newton method53.

Molecular dynamics simulations. The self-assembly and formation of colloidal
crystals are computer-simulated using an open source Large-scale Atomic/Mole-
cular Massively Parallel Simulator (LAMMPS)40. In the simulations, we use �KReff
as the unit energy, and Reff as the unit length. The total number of particles
simulated is N ~ 1000, with the system size Lx × Ly ranging from 26 × 26 to 37 × 37
R2eff. The potential energy of the system is assumed to be pair-wise addative,
combining both the elastic energy and Yukawa potential: U=Uel+UY. For the
computer simulations on the segregation of monopoles (Fig. 8), the system size is
34 × 34 R2eff and total number of particles N= 1024 with half of them having
positive elastic charges and the other half having negative elastic charges. The
interaction potential between particles is taken as

U1 rcð Þ ¼ 4π �KQa
1Q

b
1
R2
eff

rc
þþUYðrcÞ ð6Þ

where the elastic monopole charges Qa
1, Q

b
1 = ±0.1, and we set

rCO
Reff

¼ 1:5; κReff ¼ 2; A
�KR2

eff
¼ 0:1. The simulation is performed using NVT ensemble.

Temperature T is fixed by applying a Langevin thermostat with kBT
�KReff

¼ 10�3: For

the computer simulations involving hexadecapoles (Figs. 9 and 10, and Supple-
mentary Fig. 7), N= 855 and the effective pair interaction potential is

U4 rc; θcð Þ ¼ 4 ´ 8! π �KQ2
4P8 cos θcð Þð ÞR

10
eff

r9c
þ UYðrcÞ ð7Þ

The elastic hexadecapolar moment Q4, and the relative Yukawa potential strength
A

�KR2
eff
are varied to obtain different colloidal assembly structures. The simulations are

performed in NPT ensemble, using a Nose/Hoover temperature thermostat with
kBT
�KReff

¼ 10�3; and Nose/Hoover pressure barostat. In order to achieve a sponta-

neous crystallization an isotropic external pressure is gradually released in the
course of the simulations leading to the expansion of the system. The local quartic
(hexatic) orientational order parameter q4(j) (q6(j)), where j is the index of the
particle under consideration, is defined as qn jð Þ ¼ 1

nΣ
n
k¼1 expðinθjkÞ; θjk is the angle

between the particles center-to-center vector rjk and x axis, and the sum runs over
n nearest neighbors of particle j.

Data availability
The data that support the findings of this study are available from the corresponding
author on request.

Code availability
All codes used in this work are freely available from the authors upon a request.
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