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The RepID–CRL4 ubiquitin ligase complex
regulates metaphase to anaphase transition
via BUB3 degradation
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The spindle assembly checkpoint (SAC) prevents premature chromosome segregation by

inactivating the anaphase promoting complex/cyclosome (APC/C) until all chromosomes

are properly attached to mitotic spindles. Here we identify a role for Cullin–RING ubiquitin

ligase complex 4 (CRL4), known for modulating DNA replication, as a crucial mitotic reg-

ulator that triggers the termination of the SAC and enables chromosome segregation. CRL4 is

recruited to chromatin by the replication origin binding protein RepID/DCAF14/PHIP. During

mitosis, CRL4 dissociates from RepID and replaces it with RB Binding Protein 7 (RBBP7),

which ubiquitinates the SAC mediator BUB3 to enable mitotic exit. During interphase, BUB3 is

protected from CRL4-mediated degradation by associating with promyelocytic leukemia

(PML) nuclear bodies, ensuring its availability upon mitotic onset. Deficiencies in RepID,

CRL4 or RBBP7 delay mitotic exit, increase genomic instability and enhance sensitivity to

paclitaxel, a microtubule stabilizer and anti-tumor drug.
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Cell proliferation requires the continuous oscillation
between the synthesis of DNA during interphase and the
subsequent separation of chromosomes during mitosis.

Transitions between these major events are orchestrated by
posttranslational modifications to ensure the preservation of
genomic information1–4. Ubiquitin ligases regulate cell cycle
progression by mediating the timely degradation of effector
proteins5–8. Cullin–RING ubiquitin ligase complex 4 (CRL4)
associates with a diverse array of substrates through a series of
WD motif containing substrate receptors known as DDB1-
CUL4-associated factors (DCAFs)9. DCAFs mediate the
recruitment of CRL4 to chromatin in two ways. First, DCAFs
that contain a proliferating cell nuclear antigen (PCNA) inter-
action (PIP) domain, such as CDT2, recruit CRL4 to chromatin
by associating with PCNA during DNA synthesis10,11. Second,
another DCAF, replication initiation determinant protein
(RepID)/PHIP/DCAF14, which contains a bromodomain9 and a
cryptic Tudor domain12, can bind replication origins13 and
recruit CRL4 to chromatin prior to DNA replication14. During
the G1–S transition of the cell cycle, CRL4 ubiquitinates CDT1, a
licensing factor and member of the pre-replication complex
(Fig. 1a, interphase)3,9,10,15,16, to prevent excess replication ori-
gin licensing17. As DNA synthesis proceeds, CRL4 also ubiqui-
tinates many other proteins, including Cyclin E8, CDC618, and
the replication factor MCM1019. After genome duplication is
completed, another ubiquitin ligase, the anaphase-promoting
complex/cyclosome (APC/C), targets Cyclin B1 and securin to

enable a timely exit from mitosis and ensure that sister chro-
matids segregate equally to daughter cells4,20–22.

Spindle assembly checkpoint (SAC) proteins (MAD1, MAD2,
BUB1, BUBR1, and BUB3) preferentially associate with kine-
tochores and function as a surveillance network preventing pre-
mature chromosome segregation by blocking APC/C from
associating with its coactivator, CDC20 (Fig. 1a, mitosis)23,24. Key
components of the SAC include BUB1 and BUBR1, which form a
complex (Mitotic Checkpoint Complex) with CDC20, and BUB3,
which recruits BUB1/BUBR1 to the kinetochores25–27. After all
chromosomes attach to microtubules, the Mitotic Checkpoint
Complex dissociates from APC/C-CDC20, allowing CDC20 to
activate APC/C22,28–30. Genetic disruption of SAC proteins is
common in cancer, but complete inactivation of the SAC is lethal
to normal and malignant cells alike, demonstrating that SAC
function is essential for survival31–33.

The triggering event that initiates the dissociation of SAC
proteins, thereby enabling the transition from metaphase to
anaphase, remains unclear. Surprisingly, we find that CRL4,
which primarily is thought to regulate DNA replication and
repair, plays a crucial role during mitosis by facilitating the ubi-
quitination of the SAC component BUB3, leading to the inacti-
vation of the SAC and to the subsequent activation of APC/C and
exit from mitosis. CRL4 is recruited to chromatin by the repli-
cation origin binding protein and metastatic melanoma marker
RepID (DCAF14/PHIP)13,34. We find that, during mitosis,
chromatin-bound CRL4 dissociates from RepID and binds
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Fig. 1 Role of RepID in mitotic exit and G1 entry. a A model describing the current understanding of molecular interactions among components of the
CRL4 and SAC complexes. b, c RepID KO cells delay mitotic exit. b HCT116 RepID WT and KO cells were exposed to nocodazole for 16 h, released into
drug-free media, and collected every 3 h, followed by flow cytometry to monitor cell cycle progression. c Percentages of cells from b in G1, G2/M, and
subG1 fractions for the experiment shown in b. Error bars in all results represent standard deviation from three independent experiments (*p value < 0.05,
**p < 0.01, ***p < 0.001, Student’s t test). d–h RepID KO cells exhibit prolonged metaphase–anaphase transition. d Image montage of a representative
single cell expressing APC-degron (mCherry-geminin) and H2B-mTurquiose in HCT116 RepID WT and KO cells after release from CDK1 inhibitor-based
synchronization. Images were taken every 5min. NEB, nuclear envelop break. e Single-cell traces of the intensity of nuclear area in RepID WT and KO cells.
The black line illustrates the average trace (left and middle panels). The first drop indicates a reduced area due to chromosome alignment in metaphase
and the second drop indicates the segregation of chromosomes via the initiation of anaphase (right panel) (M metaphase, A anaphase). f Single-cell traces
of APC-degron in RepID WT and KO cells. Black line illustrates the average trace (left and middle panels). The first drop indicates nuclear envelope
breakdown (right panel). The constant APC-degron signal indicates a period prior to anaphase initiation. The second drop indicates anaphase initiation
(right panel). g Bar graph indicates time to anaphase from release. h Percentage of anaphase cells in the population after release from nocodazole arrest in
HCT116 RepID WT and KO cells.
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another DCAF, tubulin-associated retinoblastoma binding pro-
tein 7 (RBBP7), which acts as a substrate receptor for BUB3. The
CRL4RBBP7 complex ubiquitinates kinetochore-associated BUB3,
leading to its degradation and release of the SAC to allow mitotic
exit. During interphase, BUB3 is protected from CRL4-mediated
ubiquitination through its association with promyelocytic leuke-
mia nuclear bodies (PML-NB). A reduction in RepID or
CRL4RBBP7 levels prevented ubiquitination of BUB3 and subse-
quently led to remarkably high cellular sensitivity to the micro-
tubule stabilizer and antitumor drug paclitaxel (PTX), further
suggesting the central role of CRL4 in mitotic exit. These
observations provide insights into the role of CRL4 in mitosis,
indicating that cells coordinate DNA replication and chromo-
some segregation by using the same ubiquitin ligase in different
cell cycle phases. Our findings also illuminate the functional
dynamics of DCAF switching and suggest that RepID levels could
be investigated as possible effectors of cancer therapy.

Results
Role of RepID in mitotic exit and G1 entry. To determine the
chromatin-association dynamics of RepID during the cell cycle,
we have arrested HCT116 cells in early mitosis by nocodazole,
then released the cells into nocodazole-free medium and analyzed
cell cycle progression. Surprisingly, we noticed that RepID-
deficient (RepID knockout (KO)) cells13 were significantly
delayed in exiting mitosis and entering G1 phase as compared to
RepID-expressing (RepID wild type (WT)) cells (Fig. 1b, c and
Supplementary Fig. 1a). RepID-deficient cells also exhibited a
significant increase in the prevalence of cleaved PARP1 (Sup-
plementary Fig. 1b), concomitant with an increased subG1
(apoptotic) fraction (Fig. 1c), suggesting that a subpopulation of
those cells undergoes apoptosis. In concordance, mitotic phos-
phorylation of histone H3 (pSer28) was not detected 3 h after
release from nocodazole in RepID WT cells, whereas it was still
detected up to 9 h after release from nocodazole in RepID-
deficient cells (Supplementary Fig. 1b). These data indicate that
RepID may play an unexpected role regulating mitotic exit.

To determine which mitotic phases were prolonged in RepID
KO cells, we performed live-cell time-lapse microscopy and used
the automated analysis software to track hundreds of single cells
as they progressed through mitosis. We used cells (HCT116;
RepID WT or KO) stably expressing histone H2B-mTurquoise, a
chromatin marker, and an mCherry-conjugated APC/C degron
motif of geminin, which detects APC/C activity35,36. Cells were
arrested in the G2/M boundary using the cyclin-dependent kinase
1 (CDK1) inhibitor RO-3306, and upon removal of the inhibitor,
the mitotic progression in single live cells was quantified by
measuring the timing of nuclear envelope breakdown (NEB), the
size of nuclear area, and the fluorescence intensity of the APC/C-
degron reporter. In RepID WT cells, NEB was observed within 5
min after the removal of RO-3306. Geminin levels, an indicator of
APC/C activation, disappeared about 40 min after release from
RO-3306 arrest (Fig. 1d, upper panel). In RepID KO cells, the
timing of NEB was identical, but geminin signals persisted (over
60 min—Fig. 1d, bottom panel and Supplementary Fig. 1c, d).
Notably, CDK1-treated cells exhibited a shorter mitotic delay
than nocodazole-treated cells, most likely because nocodazole can
trigger a mid-prophase delay by inducing microtubule disas-
sembly37 and DNA damage38. The results from tracking
hundreds of single live cells confirmed that the timing of NEB
was similar in RepID WT and KO cells (Fig. 1e), whereas
degradation of geminin was delayed in RepID KO cells,
suggesting that APC/C activation was delayed in those cells
(Fig. 1f). These observations indicated that RepID levels did not
affect the progression between prometaphase and metaphase but

that RepID was required to advance the metaphase–anaphase
transition (Fig. 1e–h and Supplementary Fig. 1c, d). In addition,
the degradation of known APC/C substrates Cyclin B1 and
Securin was also compromised in RepID KO cells (Supplemen-
tary Fig. 1e).

The metaphase–anaphase transition requires the dissociation of
APC/C components from BUBR1, an SAC mediator (Fig. 1a)28,29.
We thus examined the effect of RepID on the interaction between
BUBR1 and members of the APC/C. We found that 30min after
release from nocodazole arrest, the interaction between BUBR1
and APC/C component APC4 was markedly decreased in RepID
WT cells, whereas in RepID KO cells, the interaction between
BUBR1 and APC/C members was prolonged (Supplementary
Fig. 1f). The disappearance of the BUBR1–APC/C interaction was
accompanied by the appearance of SUMOylated APC4 in RepID
WT cells20,21,39 but not in RepID KO cells (Supplementary
Fig. 1f). These results suggest that the presence of RepID is
required for the metaphase–anaphase transition.

RepID-recruited CRL4 ubiquitinates BUB3 during mitosis. To
determine whether the RepID–CRL4 complex could interact with
and modulate ubiquitination of substrates that are critical for
mitotic progression, soluble nuclear and chromatin-bound frac-
tions from U2OS cells stably expressing FLAG-RepID were
immunoprecipitated with anti-FLAG-specific antibodies and
analyzed by mass spectrometry (MS). One of the proteins iden-
tified by immunoprecipitation–MS (Fig. 2a) was BUB3, a subunit
of the mitotic checkpoint complex and an APC/C E3 ligase
inhibitor (Fig. 1a). Co-immunoprecipitation (co-IP) assays
demonstrated that the WD40 domains of RepID were required
for BUB3 binding (Fig. 2b). BUB3 interacted with CUL4 but not
the other cullins (Fig. 2c, d), with the exception of a very weak
interaction with CUL2. These observations suggested that CRL4
was the major Cullin–RING ubiquitin ligase able to bind BUB3.
The interaction between BUB3 and RepID-CRL4 was restricted to
G2/M phase (Fig. 2d).

Next we investigated whether RepID was required for the
association of CRL4 with mitotic chromosomes. As previously
reported14, RepID forms a complex with CRL4 and recruits it to
chromatin. Consistent with that notion (Fig. 3a), RepID-CRL4
localized to mitotic chromosomes in cells with intact RepID but
not in cells deficient in RepID. Similarly, CUL4A/B and DDB1
were detected by immunoblotting in the chromatin fraction of
cells with intact RepID but not in cells deficient in RepID
(Fig. 3b). Notably, BUB3 localization to kinetochores during
mitosis was not affected by RepID depletion (Fig. 3a). However,
BUB3 protein levels markedly differed during cell cycle progres-
sion in RepID WT and KO cells. When we released RepID-
proficient HCT116 cells from a nocodazole cell cycle block, which
stalls cells in prometaphase, BUB3 levels decreased after mitosis,
remained low during the G1 phase, and increased during the late
S and G2 phases (Fig. 3c). In contrast, those levels remained high
and constant in RepID-deficient cells subject to the same
treatment and release from nocodazole block. Consistent with a
role for RepID in BUB3 degradation during mitosis, the
proteasome inhibitor MG132 prevented the decrease in BUB3
levels after mitotic release in RepID-proficient cells (Fig. 3d).
These results suggested that RepID was essential for the
recruitment of CRL4 to mitotic chromosomes and subsequently
for the degradation of BUB3 by chromatin-bound CRL4.

We next tested whether RepID-CRL4 was directly involved in
endogenous BUB3 ubiquitination by using a HIS-ubiquitin
transfection assay. In RepID WT cells, BUB3 was ubiquitinated
an hour after release from nocodazole, and this ubiquitination
was observed in parallel with reduced BUB3 protein levels
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(Fig. 3e, lane 3). In contrast, ubiquitinated BUB3 was not detected
in RepID KO cells even 3 h after release from nocodazole (Fig. 3e,
lane 8). Similar results were obtained with two additional RepID-
depleted cell lines (H1299, non-small cell lung cancer; DMS114,
small cell lung cancer), which also exhibited low recruitment of
CRL4 on chromatin following RepID depletion (Supplementary
Fig. 2b–f). Notably, the fraction of cells with re-replicated DNA
(>G2/M DNA content) was remarkably high in RepID-depleted
DMS114 cells (Supplementary Fig. 2d). In all the cell lines tested,
the re-introduction of the full-length (FL) RepID into RepID KO
cells restored both the progression to G1 phase and BUB3
ubiquitination (Supplementary Fig. 2d–f).

To test whether CRL4 was involved directly in mediating
RepID-facilitated BUB3 ubiquitination, we performed a HIS-
ubiquitin assay in RepID WT cells transfected with small
interfering RNAs (siRNAs) directed against CUL4A+4B. Deple-
tion of both CUL4A and CUL4B prevented BUB3 from
ubiquitination (Fig. 3f). Together, these results show that BUB3
is a substrate of CRL4, specifically during mitotic progression.

RBBP7 is incorporated into CRL4 after dissociation of RepID.
We next asked whether RepID could act directly as a substrate
receptor to ubiquitinate BUB3. Co-IP experiments showed that
the association between RepID and CRL4 was reduced after
mitotic release, suggesting that a large fraction of the RepID
population dissociated from CRL4 after mitotic release (Fig. 4a).
Dissociation of RepID from CRL4 preceded BUB3 degradation
(Fig. 4a, input), suggesting that the degradation of BUB3 was
mediated by another substrate receptor. To test this hypothesis,
we immunoprecipitated CRL4 complexes using an antibody
directed against the CRL4 component DDB1 in protein lysates
from cells released from mitotic block and analyzed these extracts
for the presence of known DCAFs40,41. The WD40-containing
DCAF RBBP7, but not VprBP and RBBP4, was immunopreci-
pitated with FLAG-DDB1 concomitant with and immediately
after the dissociation of RepID (Fig. 4b). Incorporation of RBBP7
into CRL4 after mitotic release was accompanied by an increased
fraction of chromatin-bound RBBP7 (Fig. 4b, right panel). RBBP7
did not directly bind to RepID (Supplementary Fig. 3a). The
interaction between BUB3 or CRL4 complexes and RBBP7 after
mitotic release increased after RepID dissociation from CRL4,
whereas RBBP7 binding to CRL4 was reduced in the absence of

RepID (Supplementary Fig. 3b). These observations support a
model suggesting that RepID helps the handover of RBBP7 to
CRL4. In vitro binding analyses demonstrated that both
CRL4RepID and CRL4RBBP7 can interact with BUB3 (Supple-
mentary Fig. 3c).

Confocal microscopic analysis revealed that RBBP7 associated
with the mitotic spindle during mitosis, whereas other DCAFs
known to interact with CRL4 (CDT2, VprBP, and RBBP4) did
not localize to the mitotic spindle and were absent from mitotic
chromosomes (Fig. 4c and Supplementary Fig. 3d, e). Super-
resolution microscopy showed that RBBP7 could associate with
BUB3-containing kinetochores, but BUB3-RBBP7 colocalization
events were more evident when cells were treated with a p97/VCP
inhibitor (Fig. 4d). These observations suggest that the association
between BUB3 and RBBP7 at kinetochores occurred in a transient
fashion during normal mitosis progression, immediately preced-
ing the degradation of BUB3. Consistent with the above,
colocalization between RBBP7 and CUL4A in RepID WT cells
also increased in metaphase (Supplementary Fig. 3f).

To test whether the effects of RepID on mitotic exit were
mediated by CRL4RBBP7, we asked whether the mitotic exit
phenotype in RepID depletion could be mimicked in RepID-
proficient cells by depleting CRL4 subunits. Depletion of CUL4,
DDB1, or RBBP7, or overexpression of BUB3 (BUB3 O/E), in
RepID-proficient cells did not affect mitotic synchronization by
nocodazole but did increase the mitotic fractions after release,
suggesting that these conditions did not affect the entry to
mitosis but delayed mitotic exit (Fig. 4e and Supplementary
Fig. 3g). Depletion of CUL4, DDB1, and RBBP7 also facilitated
apoptosis in a fraction of the cell population (Fig. 4e, subG1
fraction). In contrast, depletion of SKP2, a CRL1/SCF subunit,
VprBP, or RBBP4 did not affect the cell cycle distribution in a
similar manner (Fig. 4e and Supplementary Fig. 3g). Co-
depletion of RBBP7/CUL4 or RBBP7/RepID did not exhibit
synergistic or additive effects when compared to the phenotype
of RBBP7- or RepID-depleted cells, suggesting that RepID,
CRL4, and RBBP7 act in the same pathway and that RBBP7 acts
downstream of CRL4 and RepID (Supplementary Fig. 3h). In
agreement, depletion of RBBP7 (but not RBBP4) prevented the
ubiquitination of BUB3 in RepID-proficient cells (Fig. 4f). In
vitro ubiquitination assays performed with reconstituted
purified components directly confirmed that BUB3 ubiquitina-
tion required the inclusion of both RBBP7 and CRL4 in the
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reaction (Supplementary Fig. 3i). These observations suggest
that RepID, a DCAF that recruits CRL4 to chromatin,
dissociates from CRL4 and frees it to associate with RBBP7, a
catalytic DCAF that ubiquitinates BUB3 during mitosis
(Fig. 4g). These results imply that proper and timely mitotic
progression entails the dissociation of RepID from chromatin-
bound CRL4 and its replacement by RBBP7, which facilitates
BUB3 degradation.

RepID deficiency increases sensitivity to PTX. PTX, a micro-
tubule stabilizer, is a member of the taxane class of anticancer
drugs used to treat many forms of cancer42. Because reduced
expression of SAC proteins such as BUBR1 or MAD2 is asso-
ciated with acquired PTX resistance43, we examined the sensi-
tivity of RepID WT and RepID KO cells to PTX. Cells with intact
RepID were resistant to 5 nM PTX, whereas RepID-deficient cells
exposed to the same dose of PTX for 24 h exhibited an increased
mitotic fraction, marked re-replication of genomic DNA (5-

ethynyl-2′-deoxyuridine (EdU)-positive cells with DNA content
of >4N) and higher levels of phosphorylated histone H3 (Fig. 5a,
b). RepID-depleted cells exposed for 24 h to PTX showed a
modestly higher fraction of subG1 (apoptotic) cell populations
than RepID-expressing cells (5 nM: 8.25% vs. 5.16% in KO and
WT, respectively; 10 nM: 23.4% vs. 16.9% in KO and WT; Fig. 5a,
b). Cells expressing intact RepID were also refractory to 1 nM
PTX, whereas RepID-deficient cells showed fewer surviving
colonies after exposure to 1 nM PTX (Fig. 5c). In contrast, cell
growth assays showed that RepID WT and KO cells exhibit
similar sensitivities to the microtubule polymerization inhibitor
nocodazole (Fig. 5d). The acute apoptosis we have observed in
RepID-deficient cells in short-term assays (Fig. 1c and Supple-
mentary Fig. 1a) did not translate to a significant loss of viability
in long-term assays, most likely due to the lower dose used in
colony-formation studies.

Exposure of RepID WT cells with either CRL4RBBP7 depletion
(si-CUL4, si-DDB1, si-RBBP7) or BUB3 O/E to 5 nM PTX
increased the subG1 and mitotic fractions as well as the fraction
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Fig. 3 RepID-CRL4 ubiquitinates BUB3 during mitosis. a RepID-CRL4 localizes with BUB3 at the kinetochore in prometaphase cells. Immunofluorescence
analysis of HCT116 RepID WT and KO cells was carried out in methanol-fixed cells using antibodies directed against CRL4 components (RepID, CUL4A,
CUL4B, or DDB1; red signals) and BUB3 (green signal). CRL4 components do not associate with chromatin in the RepID KO cells because RepID, which
recruits CRL4 to chromatin, is absent. Scale bar: 10 μm. b RepID-dependent CRL4 recruitment to chromatin throughout the cell cycle. Mitotic HCT116
RepIDWT or KO cells were collected after a nocodazole block, reseeded in drug-free medium, harvested at the indicated time points, and chromatin-bound
proteins were analyzed by immunoblotting and densitometry. Histone H3 and α-Tubulin were used as a loading control. c, d BUB3 is degraded in mitosis in
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beads followed by immunoblot analysis. f Knockdown of CUL4 prevented the ubiquitination of BUB3 in RepID-expressing cells. HIS-ubiquitin plasmid and
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isolated with Ni-NTA beads, and analyzed for the presence of ubiquitinated BUB3 by immunoblotting as in e.
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of >4N, while also causing a decrease in the G1 fraction (Fig. 5e,
f). In contrast, depletion of SKP2 or RBBP4 did not result in a
significantly different cell cycle distribution (Fig. 5e, f). RepID KO
cells, CRL4RBBP7-depleted cells, and cells with overexpressed
BUB3 showed elevated multinucleation and micronuclei

following PTX treatment (Fig. 5g, h). Depletion of SKP2 or
RBBP4 seemed to exhibit a similar level of resistance to PTX as
WT cells (Fig. 5g, h). Together, these results suggest that failure of
RepID-CRL4RBBP7-dependent BUB3 degradation contributes to
increased sensitivity to PTX.
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BUB3 colocalizes with PML-NB during interphase. The above
observations suggest that BUB3 is a substrate of CRL4 and that its
interaction with CRL4 facilitates its ubiquitination and degrada-
tion during mitosis. Since we observed that BUB3 levels were
stable, and even increased, during interphase, we sought to
identify a mechanism that would prevent BUB3 degradation
during interphase despite the presence of active, chromatin-
bound CRL45,14. As shown in Fig. 6a and Supplementary Fig. 4a,
chromatin-bound BUB3 was detected in intense foci that colo-
calized with PML-NB. The presence of BUB3 in PML-NB was
confirmed by three-dimensional analyses of Z-stacks imaged by
super-resolution microscopy (Fig. 6b, c and Supplementary
Fig. 4b). BUB3 was not detected in RepID-expressing, PML-
depleted cells, whereas in cells depleted of both RepID and PML,
BUB3 was detected in diffuse patterns (Fig. 6d, e, Supplementary
Fig. 4c–e). Exposure to MG132 prevented BUB3 degradation in
PML-depleted, RepID-proficient cells (Fig. 6e, f, Supplementary
Fig. 4c, bottom panel, and Supplementary Fig. 4f), and BUB3
degradation was not observed in PML-depleted, RepID-depleted
cells regardless of whether these cells were exposed to MG132

(Fig. 6e, f). These observations suggested that BUB3 was pro-
tected from degradation in RepID WT cells through its seques-
tration in PML-NB during interphase.

The effects of MG132 on BUB3 levels and distribution in PML-
depleted RepID WT cells suggest that BUB3 might be a potential
substrate for CRL4-mediated ubiquitination during interphase,
unless it is protected by PML-NB. Consistent with this
suggestion, the colocalization between BUB3 and CUL4A
partially increased with exposure to MG132 (Supplementary
Fig. 4g, RepID WT panel). CUL4A and BUB3 did not show
colocalization in RepID KO cells, regardless of PML levels or
MG132 treatment (Supplementary Fig. 4g, RepID KO panel).
BUB3 proteins contain a PIP-like motif that is highly conserved
across species, suggesting that, in PML-depleted cells, BUB3
might be ubiquitinated by PCNA-based CRL4CDT2 (Supplemen-
tary Fig. 4h). As shown in Supplementary Fig. 4i, co-IP
experiments indeed confirmed that CRL4CDT2 interacts with
BUB3 on chromatin during S phase in PML-depleted cells. Direct
ubiquitination assays verified that BUB3 was not ubiquitinated in
the presence of PML-NB (Fig. 6g, lanes 1–4) but was
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Fig. 5 RepID-deficient cells are more sensitive to paclitaxel. a Paclitaxel (PTX) treatment increases the prevalence of subG1, G2/M, and >4N populations
in RepID-deficient HCT116 cells. HCT116 RepID WT and KO cells treated with PTX for 24 h were labeled with EdU for 30min prior to collection and
analyzed by FACS. Percentage of each cell cycle phase was indicated in EdU-positive histogram plots (insets). b Bar graph depicting the cell cycle
distribution of cells collected in a from three biologically independent experiments (left panel). Immunoblot analysis showing elevated accumulation of
phosphorylated histone H3 in RepID-deficient cells in response to PTX treatment as in a (right panel). c Colony-formation assay with HCT116 RepID WT
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sensitivity is not changed by RepID deficiency. e–h Failure of RepID-CRL4RBBP7-based BUB3 degradation leads to increased sensitivity to PTX treatment.
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PTX-treated cells (bottom panel). f Percentage of cells in subG1, G1, G2/M, and >4N phase in e. g Nuclear staining after PTX treatment in depleted/
overexpressed HCT116 cells as indicated. Red arrows indicate multinucleated cells. Scale bar: 10 μm. h Percentage of multinucleated cells and micronuclei
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ubiquitinated in PML-depleted cells (Fig. 6g, lane 5). Ubiquitina-
tion of BUB3 was prevented by depletion of either CUL4 or
CDT2 but not by silencing of SKP2 (Fig. 6g, lanes 6–8). These
results demonstrate that CRL4CDT2 can target BUB3 during
interphase, and this ubiquitination is prevented by association
with PML-NB.

Discussion
The cell cycle is driven by the combinatorial function of ubiquitin
E3 ligases, which modulate the expression of effector proteins via
ubiquitination-based proteasomal degradation. Previous studies
have identified APC/C as the ubiquitin ligase driver of the
metaphase–anaphase transition. The data presented here
demonstrate that a second ubiquitin ligase, CRL4, is crucial for

proper mitotic exit. CRL4 facilitates APC/C activation via ubi-
quitination of BUB3, a subunit of the SAC that inhibits APC/C to
prevent chromosome mis-segregation. These observations iden-
tify BUB3 as a substrate for CRL4.

Our findings suggest that BUB3 is protected from degradation
by CRL4 during interphase by its association with PML-NB.
Other instances in which the sequestration of proteins in PML-
NB protects them from ubiquitination are known. For example,
PML association plays a role in the inhibition of CRL3KLHL20-
mediated ubiquitination of death-associated protein kinase44, and
PML-NB facilitate the sequestration of the p53 ubiquitin E3 ligase
MDM2 in nucleoli45, which orchestrate protein trafficking to
regulate protein availability during cellular stress46,47. The
protection of BUB3 from degradation through association with
PML-NB can provide a mechanistic basis for the observed role of
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Fig. 6 PML-NB protects BUB3 from CRL4CDT2 during interphase. a–c BUB3 colocalizes with PML-NB during interphase. U2OS RepID WT and KO cells
were exposed to Triton X-100 to remove excess non-chromatin-bound proteins, and immunofluorescence analysis was performed using anti-PML and
anti-BUB3 antibodies. Representative images using confocal microscopy (a) and super-resolution microscopy (b) are shown. c Colocalization between
BUB3 and PML-NB was analyzed by intensity profiling as indicated in b. d–f BUB3 is degraded in RepID WT cells in which PML has been knocked down.
siRNA-PML was transfected into U2OS RepID WT and KO cells, and immunofluorescence analysis was performed using anti-BUB3 and anti-PML
antibodies. Representative images are shown without MG132 (d) or with MG132 (e). f Intensities of BUB3 in cells as in d, e. g BUB3 is ubiquitinated by
CRL4CDT2 in PML-deficient RepID WT cells. HIS-ubiquitin plasmid was transfected along with the indicated siRNAs into HCT116 RepID WT cells, and
lysates were isolated on Ni-NTA beads, followed by immunoblot analysis. Error bars in all results represent standard deviation from three independent
experiments (***p value < 0.001, n.s.; not significant, Student’s t test).
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PML-NB in telomere stability48, because BUB1–BUB3 complexes
facilitate telomere DNA replication by directly phosphorylating
telomere-associated TRF149.

CRL4 combines with numerous substrate receptors (DCAFs)
to mediate ubiquitination. While associated with replicating
chromatin, the activity of CRL4 on various substrates, including
CDT1, p21CIP1/WAF1, and SET89–11,50–52, requires an interaction
of the substrates and the substrate receptor CDT2, a DCAF, with
PCNA5,11,18,53–55. RepID is larger than other DCAFs and con-
tains chromatin recognition domains (a Bromodomain and a
Tudor domain) that can facilitate the direct recognition of
chromatin9,12. We have recently reported that RepID recruits
CRL4 to chromatin prior to DNA replication14. Combined with
our current results, we propose that RepID is an example of a
group of DCAFs, structural DCAFs. These structural DCAFs can
actively recruit CRL4 to chromatin, in contrast to the other,
catalytic DCAFs, which act as CRL4 substrate receptors once it is
recruited to chromatin by other molecules (e.g., PCNA, which
recruits CRL4 to chromatin during S phase). Specifically, RepID
can recruit CRL4 to chromatin in G1 phase or in mitosis inde-
pendent of PCNA.

We observed that, although RepID facilitated the recruitment
of CRL4 to chromatin, it did not recruit BUB3 to kinetochores or
RBBP7 to mitotic spindles. RBBP7 did not associate directly with
RepID, and RepID dissociated from chromatin-bound CRL4
prior to BUB3 degradation. These observations suggest that
RepID, the structural DCAF, recruits CRL4 and then is replaced
within the CRL4 complex with RBBP7, the catalytic DCAF. The
CRL4RBBP7 complex is an active chromatin-bound ubiquitin
ligase that recognizes the BUB3 as a substrate and facilitates its
ubiquitination. CRL4RBBP7-dependent ubiquitination of BUB3,
associated with the mitotic checkpoint complex on mitotic
chromosomes, releases the checkpoint by allowing CDC20 to
bind to the APC/C and facilitates it activation (Fig. 7). This role of
CRL4RBBP7 is in a line with previous reports showing that
CRL4RBBP7-dependent ubiquitination affects CENP-A deposition
at centromeres after mitotic exit40. Another study has shown that
Aurora B kinase localization is controlled by ubiquitination
mediated by CUL3/KLHL9/KLHL13, suggesting that progression
of mitosis is governed by at least two types of ubiquitin E3
ligase56: CRLs and APC/C. The exact mechanism for DCAF
switching during mitosis remains to be explored, and future

studies are also required to address the question of how CRL4 is
maintained on chromatin after transient dissociation of RepID.

Our model proposes that, during interphase, BUB3 is localized
in PML-NB, which protects it from degradation (Fig. 7, inter-
phase). Although RepID can recruit CRL4 to chromatin during
interphase, and CRL4 can degrade substrates in association with
the catalytic DCAF CDT2, BUB3’s association with PML-NB
protects it from CRL4CDT2-mediated degradation. Hence, in
RepID-proficient cells, the association of BUB3 with PML-NB
maintains a pool of active BUB3 molecules, which further
increases in the absence of CDT2 activity during the G2 phase of
the cell cycle. This pool of protected BUB3 molecules is released
from PML-NB at the correct time during mitosis, ready to
interact with kinetochores and activate the SAC.

In RepID-deficient cells, CRL4 loading to mitotic chromosome
is compromised, degradation of BUB3 is prevented because CRL4
is not associated with chromatin, and APC/C activation is delayed
(Fig. 7, mitosis). Mitosis proceeds after a long delay in RepID-
deficient cells, most likely through activation of the other cullin-
anchored ubiquitin ligases, including CRL7 and CRL957,58. The
prolonged metaphase–anaphase transition we observe in RepID-
depleted cells correlates with the increased sensitivity to PTX of
cells depleted in RepID/CRL4RBBP7 or overexpressing BUB3. This
finding is in line with the observed PTX resistance of BUB1-
depleted ovarian cancer cells59 and in mice depleted of MAD2
and BUBR160. The increased population of cells in subG1 phase
observed after BUB3-overespressing cells were released from
nocodazole also implies that prolonged delays in mitotic exit
might lead to cell death. These results are consistent with the
failure of chromosome segregation and embryonic lethality in
mice with homozygous depletions of MAD2, BUBR1 and BUB3,
and with the mitotic problems and genomic instability observed
following misregulation of BUB3 at either the protein or mRNA
levels61–65, analogous to overactivation and suppression of post-
translational modifications in APC/C components66,67.

PTX is used to treat many forms of cancer, and resistance to PTX
is a significant health problem68–70. RepID is a marker and med-
iator of melanoma metastasis34,71, and overexpression of RepID
promotes the progression of a subset of melanoma, breast, and non-
small cell lung cancers71. Our study provides a mechanistic basis for
a role of RepID in cell proliferation and possibly in resistance to
common therapies that modulate cell cycle progression.
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Fig. 7 Schematic model. RepID (structural DCAF) brings CRL4 on chromatin during interphase. BUB3 is localized to PML-NB, which protects BUB3 from
degradation by CRL4CDT2. In RepID-deficient cells, BUB3 degradation is compromised even when PML-NB levels are decreased because chromatin-bound
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dissociation of SAC, resulting in CDC20–APC/C interaction and anaphase initiation. RepID-deficient cells exhibit no changes in function, expression, or
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Methods
Cell culture, chemicals, and synchronization. Human U2OS, HCT116, and K562
cells with and without RepID were cultured in Dulbecco’s modified Eagle’s med-
ium (Invitrogen, 10569-010) supplemented with 10% heat-inactivated fetal bovine
serum and human H1299 and DMS114 cells with and without RepID were cul-
tured in RPMI-1640 medium (Invitrogen, 11875–093) supplemented with 10%
heat-inactivated fetal bovine serum in a 37 °C/5% CO2 humidified incubator. All
original cancer cell lines were obtained from ATCC (www.atcc.org), and all cell
lines were tested as negative for mycoplasmas (Lonza, LT07–418). PTX (Sigma,
T7191) was added to the media at the indicated concentrations. HCT116, H1299,
and DMS114 cells were synchronized in prometaphase by a shake-off after 16 h of
incubation in 100 nM nocodazole. Mitotic cells were washed three times in
phosphate-buffered saline (PBS) and either collected immediately (0 h) or released
in drug-free medium at various time periods. HCT116 cells were synchronized at
the G1/S boundary using double thymidine block and released into fresh medium.
The cell cycle distribution of the cells was confirmed by flow cytometry using an
LSR Fortessa cell analyzer (BD Biosciences) after staining the DNA with 4′,6-
diamidino-2-phenylindole (DAPI).

RepID-depleted cell lines and transfection. RepID was depleted in U2OS,
HCT116, H1299, and DMS114 cells using CRISPR-CAS9. A 20-base pair guide
sequence targeting the fifth exon of RepID (5′-CTGCAAATATGTCATCGACTA
GG-3′) and the eighth exon of RepID (5′-GTGATAAAATGATCCGAGTCTGG-
3′) in U2OS, HCT116, H1299, and DMS114 cells was selected from a published
database of predicted high-specificity protospacer-PAM target sites in the human
exome. Cells were cultured in 6-well dishes to 70–80% confluency for co-
transfection with 2 μg of the RepID single guide RNA plasmid, 2 μg of linearized
pCR2.1 vector harboring a puromycin-resistance gene expression cassette, and 10
μl of Lipofectamine 2000 (Life Technologies) per well. Cloning, selection, and
verification were performed using PCR. Human FLAG-tagged expression plasmids
for CUL4A (RC214798), CUL4B (RC206935), DDB1 (RC208372), BUB3
(RC200376), and RBBP7 (RC231256) were purchased from ORIGENE. The human
siRNA oligo Duplex for DDB1 was purchased from ORIGENE (SR301160). All
SMARTpool ON-TARGETplus siRNA was purchased from Dharmacon: CUL4A
(L-012610), CUL4B (L-017965), PML (L-006547), CDT2 (L-020543), SKP2 (L-
003324), VprBP (L-062261), RBBP4 (L-012137), RBBP7 (L-011375), and negative
control siRNA (D-001810). siRNA transfection was performed using Lipofecta-
mine RNAiMax (Invitrogen, 13778030).

Constructs. CSII-pEF-H2B-mTurquoise72 and CSII-pEF-Geminin(aa1–110)-
mCherry35 were described previously and were used to make lentivirus. Stable
HCT116 WT and HCT116 RepID KO cell lines expressing fluorescent reporters
were generated using lentivirus. Transduced cells were sorted using a BD FACS
Aria Fusion to obtain populations expressing the desired reporters.

Flow cytometry analysis. Cells were pulse-labeled with 10 μM EdU for 30 min
prior to harvesting as well as with EdU staining using the Click-iT EdU Kit
(Invitrogen, C10424). Staining was performed according to the manufacturer’s
protocol. DAPI was used for DNA counterstaining. An LSR Fortessa cell analyzer
(BD Biosciences) with the FlowJo 10.5.2 software was used for cell cycle analyses.
All experiments report representative results of at least three independent
repetitions.

Clonogenic survival assay. Cells were plated in 6-well plates (500 cells/well) in
triplicate and treated with PTX or nocodazole for 7 days. Colonies were fixed and
stained with crystal violet, and well intensity or colony number was measured using
the ImageJ software. All experiments report representative results of at least three
independent repetitions.

Immunofluorescence analysis. U2OS and HCT116 cells were incubated in PBS-T
buffer (0.2% Triton X-100 in 1 × PBS, phenylmethylsulphonylfluoride [PMSF],
protease inhibitor cocktail [Sigma, P8340], and phosphatase inhibitor cocktail
[Roche, P4906845001]) for 5 min on ice, followed by fixation with 2% paraf-
ormaldehyde. For kinetochore-localized BUB3 detection, cells were fixed with ice-
cold 100% methanol for 15 min on ice. Primary antibody staining was performed
as follows: anti-BUB3 (Abcam, ab133699, 1:500; Millipore, MABE1023, 1:200),
anti-CUL4A (Abcam, ab92554, 1:100, Sigma, SAB1406671, 1:100), anti-CUL4B
(Sigma, C9995, 1:100), anti-DDB1 (Cell Signaling, 5428, 1:100), anti-PML (Santa
Cruz, sc-966, 1:500), anti-RepID (Bethyl Laboratories, A302-055A, 1:500), anti-
CDT2 (Abcam, ab72264, 1:200), anti-VprBP (Abcam, ab202587, 1:80), anti-RBBP4
(Abcam, ab1765, 1:50), anti-RBBP7 (Abcam, ab3535, 1:50), anti-α-tubulin (Sigma,
T9026, 1:500), and anti-CREST (ImmunoVision, HCT-0100, 1:1000) for 3 h at
room temperature. Secondary antibody staining was performed as follows: Alexa
488- or 568-conjugated anti-mouse immunoglobulin G (IgG), IgG2b, Alexa 488- or
555-conjugated anti-rabbit IgG, and Alexa 647-conjugated anti-human IgG (1:500,
Thermo Fisher Scientific, A11029, A21124, A21141, A11008, A21428, and A21445)
for 1 h at room temperature.

A Zeiss LSM710 confocal microscope was used for imaging, and Pearson’s
correlation coefficient (R or Rcoloc)—which represents the covariance of the two

variables divided by the product of their standard deviations—was calculated using
the colocalization Plugin of the FIJI-ImageJ software (https://imagej.nih.gov/ij/
index.html) to carry out the colocalization analysis. For super-resolution
microscopy, immunofluorescence slides were imaged with a VisiTech (Sunderland,
UK) VT-iSIM super-resolution microscope, using a ×100 NA 1.45 Nikon PSF-
optimized objective. Fluorophores were excited using the appropriate lasers, Diode
405 nm, Diode 488 nm, OPSL 561 nm, or Diode 642 nm, and super-resolution
emission was collected with a 16-bit C-MOS camera (Hamamatsu, Japan). Z-
sections were obtained at 100 nm intervals and deconvolved with the VisiTech
proprietary software (Microvolution). Post-acquisition images were auto-adjusted
for brightness and contrast using Image J (FIJI). Detailed results of the
colocalization analyses are presented in Supplementary Dataset. For the time-lapse
microscopic analysis, HCT116 WT and RepID KO cells stably expressing H2B-
mTurquoise and geminin-mCherry were plated approximately 12 h prior to
imaging. They were plated in full growth media on a collagen-coated glass-bottom
96-well dish (CellVis #P96-1.5H-N) so that the density would remain sub-
confluent until the end of the imaging period. On the day of imaging, cells were
treated with 1 µM CDK1 inhibitor (RO-3306) for 6 h to synchronize cells at the
G2/M transition. Immediately prior to imaging, cells were washed with full growth
media and placed on the microscope. Images were taken in CFP and RFP channels
every 1 min on a Nikon Eclipse Ti2 microscope with a ×20 0.8 NA objective. Total
light exposure time was kept to 200 ms for each time point. Cells were imaged in a
humidified, 37 °C chamber in 5% CO2. Image processing, cell tracking, and
determination of geminin levels were carried out using custom Matlab scripts
described previously35. The nuclear area was measured by determining the number
of pixels in a nuclear mask generated from the H2B-mTurquoise signal. APC
activity was determined as previously described35.

Chromatin fractionation, co-IP and immunoblotting. Cells were harvested and
incubated in cytosol extraction buffer containing NP-40 (20 mM Tris-HCl pH 7.4,
10 mM NaCl, 3 mM MgCl2, 0.5% NP-40, PMSF, protease inhibitor cocktail, and
phosphatase inhibitor cocktail). Cells were harvested by centrifugation at 2700 × g
for 5 min at 4 °C, washed, and resuspended in nuclear extraction buffer (10 mM
Tris-HCl pH 7.4, 100 mM NaCl, 1% Triton X-100, 1 mM EDTA pH 8, 1 mM
EGTA, 0.1% sodium dodecyl sulfate (SDS), 10% glycerol, 0.5% sodium deox-
ycholate, protease inhibitor cocktail, and phosphatase inhibitor cocktail). The
suspension was vortexed, incubated on ice, and then centrifuged at 5200 × g for
5 min at 4 °C. The pellet was resuspended with nuclear extraction buffer containing
5 mM CaCl2 and micrococcal nuclease (New England Biolabs, Cat. M0247S),
vortexed, and incubated at 37 °C for 5 min. Chromatin-bound fractions were
collected after centrifugation at 18,000 × g for 5 min at 4 °C. Total cell lysates and
chromatin-bound proteins were immunodetected following SDS-polyacrylamide
gel electrophoresis (PAGE). Unless otherwise reported, all experiments exhibit
representative results of at least three independent repetitions.

Soluble nuclear and/or chromatin-bound fractions were immunoprecipitated
using an anti-FLAG (Sigma, F1804), anti-BUB3 (Abcam, ab133699), or anti-APC4
(Abcam, ab72149) at 4 μg of antibody per sample. After rotation overnight at 4 °C,
70 μl of Sepharose beads were added and samples were incubated for an additional
1 h at 4 °C with rotation. The protein–bead complexes were collected by
centrifugation at 1700 × g for 3 min and washed three times with PBS. Seventy μl
2 × SDS sample loading dye were added, and the complexes were boiled for 10 min.
Protein binding was immunodetected following SDS-PAGE. Unprocessed original
scans of blots are shown in Supplementary Figs. 5 and 6.

The following primary antibodies were used: anti-RepID (NCI186, 1:1000),
anti-PARP1 (Santa Cruz, sc-8007, 1:1000), anti-phosphorylated Ser10 histone H3
(Millipore, 06–570, 1:5000), anti-phosphorylated Ser28 histone H3 (Millipore,
07–145, 1:2000), anti-CUL1 (Abcam, ab75817, 1:1000), anti-CUL2 (Abcam,
ab166917, 1:1000), anti-CUL3 (Abcam, ab75851, 1:20,000), anti-CUL4A (Abcam,
ab92554, 1:20,000), anti-CUL4B (Sigma, C9995, 1:2000), anti-CUL5 (Abcam,
ab184177, 1:5000), anti-CUL7 (Abcam, ab96861, 1:1000), anti-BUB3 (Abcam,
ab133699, 1:10,000), anti-DDB1 (Cell Signaling, 5428, 1:1000), anti-MAD2
(Abcam, ab70383, 1:1000), anti-BUBR1 (Abcam, ab54894, 1:2000), anti-APC4
(Abcam, ab72149, 1:2000), anti-Cyclin B1 (Cell Signaling, 4138, 1:4000), anti-
Securin (Abcam, ab79546, 1:10,000), anti-CDT2 (Abcam, ab72264, 1:1000), anti-
SKP2 (Abcam, ab68455, 1:1000), anti-VprBP (Abcam, ab202587, 1:1000), anti-
RBBP4 (Abcam, ab1765, 1:1000), anti-RBBP7 (Abcam, ab3535, 1:1000), anti-PML
(Santa Cruz, sc-966, 1:1000), anti-FLAG (Sigma, F1804, 1:1000), anti-α-tubulin
(Sigma, T9026, 1:2000), and anti-histone H3 (Millipore, 07–690, 1:20,000). For
secondary antibodies, horseradish peroxidase (HRP)-linked anti-mouse IgG (Cell
Signaling, 7076), HRP-linked anti-rabbit IgG (Cell Signaling, 7074) and HRP-
linked anti-goat IgG (Santa Cruz, sc-2020) were used following the manufacturer’s
suggested protocols.

In vivo ubiquitination assay. HCT116 cells were transiently co-transfected with
the indicated siRNA together with a HIS-tagged ubiquitin plasmid and incubated
48 h. Cells were treated with nocodazole first and, after 10 h, were treated with
10 μM MG132 (Calbiochem, 474790) for an additional 6 h. Cells were harvested at
the indicated release points into MG132-containing fresh medium, lysed in
denaturing buffer (6M guanidine-HCl, 0.1 M Na2HPO4/NaH2PO4, and 10 mM
imidazole), incubated with Ni-NTA agarose beads (QIAGEN, 1018244) for 3 h,
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washed, boiled with Laemmli’s buffer, and immunoblotted with anti-BUB3 anti-
body (Abcam, ab133699). All experiments report representative results of at least
three independent repetitions.

In vitro ubiquitination and binding assay. For in vitro ubiquitination assay,
FLAG-tagged plasmid of each CRL4 components (CUL4A, CUL4B, DDB1),
DCAFs (RepID FL and its mutants or RBBP7), and BUB3 was transfected to
HCT116 cells using Lipofectamine 2000 (Invitrogen) and purified using FLAG-
Sepharose beads and FLAG-peptide (Sigma, A2220, F4799). Purified proteins were
mixed with 1 μg ubiquitin (Sigma, U6253), 60 ng human recombinant E1, 300 ng
UbcH5c, Mg-ATP solution, and ubiquitination buffer provided from Enzo Life
Science (BML-UW9920-0001). After 60-min incubation at 30 °C, the reaction was
denatured by adding SDS-containing loading buffer, boiled at 100 °C for 5 min,
separated by SDS-PAGE, transferred to a PVDF membrane, and detected ubi-
quitinated BUB3 with anti-BUB3 antibody. For in vitro binding assay, purified
proteins as indicated in the figure were mixed in lysis buffer and BUB3 was
precipitated using anti-BUB3 antibody. Co-precipitated proteins were detected
with anti-FLAG antibody. All experiments report representative results of at least
three independent repetitions.

Immunoprecipitation coupled to MS. FLAG-RepID-overexpressed stable U2OS
cells were lysed, and the mixture of soluble nuclear and chromatin-bound fractions
were incubated with 4 μg of IgG as the negative control or anti-FLAG antibody
(SIGMA, F1804) overnight at 4 °C with rotation. Seventy μl of Sepharose beads
were added, and samples were incubated for an additional 1 h at 4 °C with rotation.
The protein–bead complexes were collected by centrifugation at 1700 × g for 3 min
and washed three times with PBS. Seventy μl 2 × SDS sample loading dye were
added, and the complexes were boiled for 10 min. Coomassie blue-stained gel
bands were cut into smaller pieces (10 separate bands per lane) and destained using
50% Acetonitrile with 25 mM ammonium bicarbonate, pH 8, with vortexing. Bands
were then dried in a speed vacuum and rehydrated with 0.6 µg of trypsin in 25 mM
ammonium bicarbonate, pH 8, (30 µl) on ice for 1 h. An additional 25 mM
ammonium bicarbonate was then added to completely saturate the bands, and
samples were incubated at 37 °C overnight. Peptides were extracted in 70% Acet-
onitrile and 5% formic acid using a bath sonication, and supernatant solutions were
dried in the speed vacuum. Samples were desalted utilizing Pierce C18 spin col-
umns (Thermo Fisher), dried, and resuspended in 0.1% trifluoroacetic acid prior to
MS analysis. Peptides were analyzed on a Q Exactive (Thermo Scientific). The
desalted tryptic peptide was loaded onto an Acclaim PepMap 100 C18 LC column
(Thermo Scientific, CA) utilizing a Thermo Easy nLC 1000 LC system (Thermo
Scientific, CA) connected to the Q Exactive mass spectrometer. Peptides were
eluted with a 1–35% gradient of Acetonitrile with 0.1% formic acid over 75 min
with a flow rate of 300 nl/min. The QE was operated with each MS1 scan in the
orbitrap at 70,000 resolution with a maximum injection time of 256 ms and an
AGC target of 1e6. The MS2 scans had a normalized collision energy of 25 and
were run at 17,500 resolution with a maximum injection time of 64 ms and an
AGC target of 1e5.

The raw MS data were collected and analyzed in Proteome Discoverer 2.1
(Thermo Scientific) with the Sequest HT software and was searched against the
Human Proteome database. The parent ion mass tolerance was set to 10 ppm and
the fragment ion mass was 0.6 Da. Trypsin was set as the digestion enzyme and the
minimal peptide length was six amino acids with a maximum of two missed
cleavages allowed.

Data availability
The source data underlying Figs. 1b, c, 2a, 4d, 5a–f, h, and 6f and Supplementary Figs. 1a,
b, 2a, d, e, 3h, and 4a, c, g are provided as a Source Data file. All data within the
manuscript are available from the authors upon request.
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