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Coupling a single electron on superfluid helium to a
superconducting resonator
Gerwin Koolstra 1, Ge Yang1 & David I. Schuster1*

Electrons on helium form a unique two-dimensional system on the interface of liquid helium

and vacuum. A small number of trapped electrons on helium exhibits strong interactions in

the absence of disorder, and can be used as a qubit. Trapped electrons typically have orbital

frequencies in the microwave regime and can therefore be integrated with circuit quantum

electrodynamics (cQED), which studies light–matter interactions using microwave photons.

Here, we experimentally realize a cQED platform with the orbitals of single electrons on

helium. We deterministically trap one to four electrons in a dot integrated with a microwave

resonator, allowing us to study the electrons’ response to microwaves. Furthermore, we find a

single-electron-photon coupling strength of g=2π ¼ 4:8 ± 0:3MHz, greatly exceeding the

resonator linewidth κ=2π ¼ 0:5MHz. These results pave the way towards microwave studies

of Wigner molecules and coherent control of the orbital and spin state of a single electron on

helium.
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E lectrons are bound to liquid helium by their induced image
charge just below the surface1. The orbital state of such
electrons consists of the motion parallel to the helium

surface and becomes quantized when electrons are trapped in an
electrostatic potential. Since the electron-phonon coupling in
helium is small compared with semiconductors, this motion is
expected to have low dissipation, making the orbital state an
attractive candidate for a long-lived electron-on-helium quantum
bit2–6. In addition, by adding a magnetic field gradient from a
micro-magnet7, the orbital state offers a path toward the electron
spin state6,8–11. Since the orbital frequency of electrons on helium
is in the microwave regime, and electrons can couple strongly to
microwave photons2,12–14, cQED can play a unique role in the
detection and manipulation of the orbital state.

A small ensemble of electrons on helium behaves differently
from other confined electron systems, such as semiconductors or
atoms, where the electron wavefunctions are delocalized and
overlap. On the surface of liquid helium electron interactions
dominate15,16 and are largely unscreened17, which results in
strongly correlated electron configurations known as Wigner
molecules18,19. The symmetry of these molecules changes for each
additional electron, which has been observed in charging dia-
grams of small islands of liquid helium20,21 and only recently in
ultraclean nanotubes22,23. In addition, theory has predicted
Wigner molecule configurations and orbital frequencies in var-
ious trapping potentials24–27. Coupling these small electron
clusters to a microwave resonator could allow for spectroscopy of
Wigner molecules in the microwave regime, which would provide
insight into both the internal molecular structure and the mole-
cule’s environment.

Here we realize the coupling of a single electron and small
electron clusters on helium to a microwave cavity, which serves as
an electron detector and harbors an electron reservoir. We
transfer electrons from the reservoir to a small island where we
control the charge with single electron resolution. Furthermore,
we observe unique resonator transmission signatures which allow
us to identify different-sized electron clusters, and a large single-
electron-photon coupling. These results open the door to studies
of the Wigner molecule phase, and coherent control of the orbital
and spin state of a single electron on helium.

Results
An electron-on-helium dot integrated with cQED. At the heart
of our cQED device lies a superconducting microwave resonator
with an integrated electron-on-helium quantum dot (Fig. 1a).
Our coplanar stripline resonator consists of two niobium center
pins, which are joined at one end (Fig. 1b, c) and are situated
below the ground plane at the bottom of a micro-channel (width
w ¼ 3:5 μm, and depth d0 � 1.2 μm). The microwave mode
with resonance frequency f 0 ¼ 6:399 GHz and linewidth
κtot=2π ¼ 0:4MHz has a microwave electric field that is con-
centrated between the center pins. As liquid 4He fills the channel,
the helium–vacuum interface is stabilized due to surface tension
(see Supplementary Fig. 4), after which liquid helium can serve as
a defect-free substrate for electrons (Fig. 1d).

We deposit electrons over the resonator through thermal
emission from a tungsten filament situated above the chip
(Supplementary Fig. 3), while applying a positive voltage to
the resonator DC bias electrode and a negative bias voltage to the
filament. We detect the deposited electrons as a dispersive
resonance frequency shift that depends strongly on the resonator
bias voltage V res (Fig. 2a) and the number of electrons on the
resonator29. For the experiments presented hereafter, we fix V res
at 0.6 V such that electrons on the resonator can be treated as a
reservoir with constant electron density. Furthermore, our

measurements are performed at T ¼ 25 mK and low incident
microwave power (nph � 5) such that electrons respond linearly
to the resonator’s driving force.

We use the dot in Fig. 1c to isolate individual electrons from
the reservoir, which requires fine control over the electrostatic
potential. We achieve this using three sets of electrodes near the
tip of the resonator where the microwave electric field is
strongest. The size of the electrodes near the dot is much larger
than in semiconducting quantum dots, because the unscreened
electron interaction results in inter-electron distances exceeding
200 nm. With appropriate voltages applied to the electrodes, the
smooth electrostatic potential (Fig. 2d,e) allows for trapping of
electrons. Furthermore, due to the dot’s oblong shape, the lateral
motion of trapped electrons is primarily in the y-direction (see
Fig. 1d), such that it couples to the transverse microwave field of
the resonator.

To load the dot we use the trap electrode (Fig. 1c, green) to
attract reservoir electrons towards the dot, and the resonator
guard (blue) to create a barrier between the dot and reservoir.
Only if the trap voltage is sufficiently positive, and the resonator
guard is sufficiently negative can electrons be loaded and
contained in the dot, respectively. When monitoring the
resonance frequency shift Δf 0 in response to these two voltages,
we only see significant signal in an area that is marked by two
converging dashed lines in Fig. 2b. The dashed lines are obtained
from simulation of the electrostatic potential near the dot (see
Methods), and indicate the presence of a barrier between
reservoir electrons and electrons in the dot. Well within the
predicted trapping region, we observe resonance frequency shifts
that depend sensitively on V trap and V rg, indicating that trapped
electrons in the dot interact with the resonator. The observed shift
depends on the number of trapped electrons, which increases for
a larger trap voltage, as well as the shape of the electrostatic
potential.

Preparation of small electron clusters. To deterministically
populate the dot with N electrons, we partially unload the dot
using the trap guard electrode (orange in Fig. 1c). A partial
unload consists of briefly sweeping the trap guard voltage to
Vunload < 0, which decreases the trap depth (see Fig. 3a), followed
by a measurement of the resonator transmission at
ðV trap;V tgÞ ¼ ð0:175; 0:0ÞV. The plateaus in resonator trans-
mission shown in Fig. 3b are reproduced after reloading the dot,
but are absent when the dot is initially empty. Therefore, each
plateau is associated with a constant number of trapped electrons,
and the final change in transmission at Vunload ¼ �0:305 V leaves
the dot empty.

The sudden changes in transmission are consistent with single
electrons leaving the dot. We show this by modeling the trap as
an axially symmetric harmonic well in which the electron
configurations can be calculated analytically25,26. From the
voltage at which the last electron escapes, we estimate unloading
voltages for two, three and four electrons, using the effective trap
curvature as the only free parameter (see Methods). Red arrows in
Fig. 3b indicate these estimates, and agree within 3 mV with the
plateau edges. This unloading method therefore allows us to
deterministically populate the dot with one to four electrons.

The increasing length of transmission plateaus ΔVN with
decreasing N is a sign of strong electron interactions30,31, which
originate from an unscreened interaction potential on liquid
helium21. The ratio of interaction energy U to kinetic energy kBT ,
as well as confinement strength �n quantify electron interaction
strength and wavefunction overlap, and predict the formation
of Wigner molecules for Γ> Γc ¼ U=kBTc � 137 and
n < �nc � 1=

ffiffiffiffiffi
37

p
21,32,33. Since our experiment operates in the
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low-temperature (Γ=Γc � 9), low-confinement regime (�n=�nc� 0:1), one would expect electrons in our dot to form Wigner
molecules. However, additional measurements, such as a
measurement of the melting transition32,33, are necessary to
exclude an electron-fluid-like state.

While electrons are trapped in the dot, we vary the curvature of
the electrostatic potential to gain insight in the electron
configurations and electron orbital frequencies. For this measure-
ment, electrons can be trapped and studied for hours, since the
trap depth (~10meV) is large compared with the zero-point
energy and thermal energy (�1 meV). Figure 3c shows five
different spectroscopy traces, each corresponding to the different-
sized electron clusters from Fig. 3b. To retrieve electron
configurations and orbital frequencies, we numerically minimize
the total energy of the ensemble and solve the coupled equations
of motion29. The electron configurations (Fig. 3d) change
significantly as electrons are added or removed from the dot,
and show correlated electron motion, originating from strong
electron interactions. The largest signal in Fig. 3c occurs for a
single electron at V trap ¼ 0:175 V when its orbital frequency is
resonant with the resonator. In our model, the orbital frequency

of larger clusters remains detuned for all V trap (Supplementary
Note 3), which is due to a strong anharmonic component in the
electrostatic potential. From the quartic term in this potential, we
estimate a single-electron anharmonicity of 85MHz, which holds
promise for creating an electron-on-helium orbital state qubit.

Single electron properties. We now focus on a single trapped
electron and investigate its properties by tuning the orbital fre-
quency into resonance with the resonator. Figure 4a shows a
crossing of the orbital frequency with the resonator around
V trap ¼ 0:184 V, which is accompanied by a rapid change in Δf 0
(Fig. 4c). By fitting the measured frequency shift to a model, which
takes into account one orbital mode coupled to a single resonator
mode34, we obtain a single-electron-photon coupling strength
g ¼ 2π ´ ð4:8 ± 0:3ÞMHz and electron linewidth
γ ¼ γ1=2þ γφ ¼ 2π ´ ð77± 19ÞMHz. The coupling strength is
large compared with the resonator linewidth (κ=2π � 0:5MHz),
indicating that each photon measures the presence of the electron,
and the coupling is similar to that measured in semiconducting
quantum dot cQED architectures13. In addition, our estimate of the
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Fig. 1 An electron-on-helium dot a Optical micrograph and b schematic of the device. The resonator (red) can be probed with microwaves via coplanar
waveguides (yellow) that couple (decay rates κ1;2) to the microwave resonator. The white arrows show the electric field of the λ=4 microwave mode at the
center of the channel. The transmission is amplified with a low-noise amplifier (LNA). The electrostatic potential for electrons is controlled with additional
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in liquid helium. Electrons are trapped on the interface of liquid 4He and vacuum by the electrostatic potential (solid black line) generated by electrodes
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anharmonicity (Supplementary Fig. 7) is similar to that in super-
conducting qubits, indicating that with a reduced linewidth the
orbital state of a single electron on helium can be used as a qubit.

The total linewidth γ is three orders of magnitude larger than
expected from the electron-phonon coupling in 4He and charge
noise from the bias electrodes, respectively (γ=2π < 0:1MHz)2. We
identify the dominant source of excess noise as classical helium
fluctuations in the dot, caused by the pulse tube refrigerator
(Supplementary Note 6). This is corroborated by a measurement of
the crossing voltage as function of time, which shows spectral
features of the pulse tube refrigerator (see Supplementary Fig. 12).
To estimate the dephasing rate due to helium fluctuations, we
estimate an electron’s sensitivity to helium fluctuations from
electrostatic simulations (∂f e=∂tHe � 80MHz nm−1) and inde-
pendently measure helium fluctuations (ΔtHe � 1:4 nm), yielding
γφ=2π � 110MHz. Therefore, we expect the single electron
linewidth to be limited by dephasing due to helium level
fluctuations.

Discussion
Reducing the linewidth and increasing the coupling strength
offers a path toward the strong coupling regime, which has
recently been achieved for the cyclotron motion of large electron
ensembles on liquid helium35. In the strong coupling regime,
direct measurement of the electron orbital frequencies using two-
tone spectroscopy36 may bring to light new microwave features of
strongly correlated electron states37. Since the orbital frequencies
span tens of GHz (see Supplementary Fig. 6) this measurement
would benefit from a frequency tunable microwave resonator14, a
feature that can be embedded in a future device.

To reach the strong coupling regime with future electron-on-
helium dots, one can passively or actively reduce the vibrations
that excite the helium surface38,39 and engineer a dot geometry
that has a reduced sensitivity to classical helium vibrations. Pre-
liminary simulations of a dot with a less sensitive electrode geo-
metry show a hundredfold reduction in linewidth. In addition, a
microwave resonator made of a high kinetic inductance super-
conductor can enhance the coupling strength by more than three
times via an increased characteristic impedance10,40. The com-
bination of reduced sensitivity and increased coupling strength
would put a single electron on helium in the strong coupling
regime.

In conclusion, we have integrated an electron-on-helium dot
with a superconducting microwave resonator and observed dis-
tinct resonator signatures of small electron clusters consisting of
up to four electrons. The large anharmonicity and coupling
strength of a single electron on helium hold promise for creating
an electron-on-helium qubit, which can be readily integrated with
superconducting qubits while leveraging established protocols.
Finally, when combined with a magnetic field gradient, the orbital
state offers a clear path towards control of a single electron spin.

Methods
Fabrication. First an 80 nm thick Nb ground plane was evaporated onto a high-
resistivity (>10 kΩ cm) Si h100i wafer, followed by deposition of a 100 nm thick
silicon oxide sacrificial layer, which was used to protect the Nb ground plane
during the following etch steps. The micro-channels were defined using a Raith
EBPG-5000+ electron beam lithography system and etched using a CHF3/SF6
chemistry, immediately followed by an HBr/O2 etch. In the second step the
resonator center pins were defined using e-beam lithography. After development,
evaporation of a 150 nm thick Nb layer and lift-off, the center pins remained on the
bottom of the micro-channel. To improve robustness of the device and avoid
electrical breakdown at low temperatures, we etched away an additional �400 nm
of Si substrate in between the resonator center pins. To this end, another layer of
80 nm thick silicon oxide was deposited, after which the additional Si was etched
with the previously described etch chemistry. The silicon oxide layer was removed
using buffered HF and a deionized water rinse.

Measurements. All measurements were performed in an Oxford Triton 200
dilution refrigerator with a base temperature of 25 mK. The chip was mounted in a
custom-designed hermetic sample cell and sealed with indium to prevent super-
fluid helium leaks. Helium was supplied to the sample cell from a high purity 4He
gas cylinder and, using a control volume (V � 25 cm3) in a gas handling system,
we were able to introduce a controlled amount of helium to the sample cell. The
experiment was performed in a regime where the channel was almost full and the
liquid helium film was stabilized due to surface tension41.

Electrons were captured on the helium surface by thermal emission from a
tungsten filament situated above the chip, while applying a positive voltage to the
resonator DC bias electrode (V res ¼ 3:0 V) and a negative bias voltage to the
filament. We assume electrons in the reservoir were distributed uniformly across
the resonator and estimate the electron density from the resonator voltage at which
electrons can no longer be contained on the resonator, as depicted by the sudden
increase in Δf 0 in Fig. 2a. At V th

res ¼ 0:18 V, electrons flow onto the Nb ground
plane and we estimate the electron density

n � ε0εHe

etHe
V th

res ¼ 9 ´ 1012 m�2; ð1Þ

where tHe is the helium thickness, εHe ¼ 1:056 is the dielectric constant of helium
and e is the elementary charge. This density corresponds to ~105 reservoir
electrons, whose orbital frequency stayed far detuned from f 0 during experiments
with electrons in the dot.
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The pulse tube refrigerator is a continuous source of mechanical vibrations
which excites the liquid helium surface. These vibrations were detected by the
microwave resonator as a slowly varying resonance frequency jitter, with a
standard deviation of ~6:8 kHz in the absence of reservoir electrons
(Supplementary Fig. 5). This jitter complicated the measurement of small
resonance frequency shifts due to trapped electrons, which were typically of the
same order as the jitter. However, since the dominant frequency components in the
mechanical noise spectrum were below 10 Hz, we circumvented this issue by
sweeping electrode voltages faster than 1/10 Hz−1, such that signatures of trapped
electrons became visible after averaging.

Electrostatic simulations of the dot. The electrostatic potential near the dot was
obtained by solving Poisson’s equation using the finite element method with
ANSYS MAXWELL. We separately solve the potential for each electrode that
contributes to the dot potential by applying 1 V on a single electrode while keeping
all other electrodes grounded. We minimize numerical noise in the potential by
increasing the vertex density in the center of the dot and imposing strong con-
vergence criteria. For post-processing the potential values are cast to a regular
Cartesian grid using interpolation.

The two converging dashed line segments in Fig. 2b are obtained by considering
both the potential along the channel and the reservoir density. The reservoir density n
sets the chemical potential of the reservoir via ~e2ntHe=ε0εHe, and for larger n, V rg

must be more negative to maintain a barrier between reservoir and dot (Fig. 2d). For
our device, this non-zero barrier condition is captured by a line segment with slope
1.15. The reservoir density n determines the offset of this line segment, and was
measured by increasing V trap until electron transport occurred onto the trap electrode.
From an equation similar to Eq. (1) we find n � 4 ´ 1012 m�2. The horizontal line
segment was found by finding the minimum V trap for which the reservoir extends left
of x ¼ 1:5 µm at V rg ¼ 0. Figure 2c shows a situation above this threshold, for which
the loading operation should result in trapped electrons.

Unloading the dot. The dot was unloaded by sweeping the trap guard to V tg ¼
Vunload < 0 while keeping all other electrodes constant at
ðV res;V trap;V rgÞ ¼ ð0:6; 0:15;�0:4ÞV. The electrodes were then ramped back to
ðV trap;V tgÞ ¼ ð0:175; 0ÞV in order to probe the resonator transmission. A single
unloading procedure took about 10 ms, which is limited by the corner frequency of
the trap guard electrode RC-filter. The ramp speed did not change the charging
diagram of Fig. 3b.

To confirm that changes between transmission plateaus in Fig. 3b are associated
with single electron transport, we simulated unloading using a combination of
electrostatic simulations and analytical calculations. Even though the electrode
geometry in the dot produced a complex and anharmonic trapping potential on the
scale of the dot (8 × 4 µm), the small extent of the electron ensemble (0.5 × 0.5 µm)
allowed us to simulate the unloading with an axially symmetric harmonic well. The
unloading voltage Vunload decreased the trap depth and resulted in unloading of the
dot. We modeled this process as a linear decrease in barrier height:
Vb ¼ Vbar þ βVunload, where Vbar ¼ 22 meV was obtained from electrostatic
simulations and β was determined from the final jump ðA=A0Þ2 in Fig. 3b. The
energies of the clusters were calculated analytically27, which resulted in the

unloading voltages V ðNÞ
unload:

V ð1Þ
unload ¼ �Vbar

β
¼ �0:305 V ð2Þ

V ð2Þ
unload ¼ V ð1Þ

unload þ
3
4
E0

βe
ð3Þ

V ð3Þ
unload ¼ V ð1Þ

unload þ 1:31037
E0

βe
ð4Þ

V ð4Þ
unload ¼ V ð1Þ

unload þ 1:83545
E0

βe
ð5Þ

where

E0 ¼
meω

2
ee

4

2 4πð Þ2ε20ε2He

 !1
3

ð6Þ

and depends only on the trap curvature at the unloading point (ωe), electron mass
(me) and other physical constants. Best agreement between model and experiment
was found with an effective trap curvature ωe=2π ¼ 26 GHz, which produces the
red arrows in Fig. 3b.

If the dot had initially contained five electrons, our model would have predicted

an additional plateau starting at V ð5Þ
unload = −0.127 V. Since we did not observe this

plateau we concluded the trap was initially loaded with N ¼ 4 electrons.

Modeling of resonator transmission spectra. To accurately model the resonator
transmission spectra with electrons in the dot, we needed a more sophisticated
model of the electrostatic potential than an axially symmetric harmonic well.

Therefore, the electrostatic potential was approximated by

E=e ¼ α0ðV trapÞx2 þ α1ðV trapÞy2 þ α2ðV trapÞy4: ð7Þ
Without a quartic term, the method described below predicts crossings for all
electron clusters at equal V trap, which is inconsistent with experiment. Eq. (7)
represents a minimal model that reproduces the observed resonator transmission
spectra. The coefficients αi were obtained by first fitting Eq. (7) to the electrostatic
potential obtained via finite element modeling, and were then slightly adjusted to
reproduce the experimental traces, using the following method.

For a particular trap voltage the electron configurations were found through
numerical minimization of the total energy, which included a small screening
correction to the interaction energy due to the metal electrodes under the
electrons. In addition, we neglected the kinetic term in the total energy, since at
T ¼ 25 mK the kinetic energy is approximately three orders of magnitude
smaller than the interaction energy. Next, using the electron positions as input,
the cavity frequency shift and orbital frequencies were determined by solving the
linearized equations of motion of the coupled cavity-electron system. We then
took the strongest-coupled orbital frequency ωe and calculated its effect on the
resonator via

A
A0

¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p
iðκ1 þ κ2 þ κintÞ=2 � χðω0Þ
����

����; ð8Þ

where κ1;2;int represents the coupling through port 1 and 2 of the resonator and
the internal loss rate, respectively. In addition, the susceptibility is given by

χðω0Þ ¼ g2

ðω0 � ωeÞ þ iγ
: ð9Þ

g=2π was fixed at 5 MHz (estimated from the resonator geometry, see
Supplementary Note 1) and γ=2π was adjusted to get good agreement for N ¼ 1.
γ was not further adjusted for N > 1, since for those electron clusters all orbital
modes stayed far detuned and the modeled traces only weakly depended on γ.
With this method we obtained the resonator responses shown as solid black
traces in Fig. 3c.

We obtained better agreement between the data and model for one and two
electrons, compared with three and four electrons. This can be attributed to the
larger size of the three and four-electron clusters, since the approximation of the
electrostatic potential in Eq. (7) only holds for small x; y. In addition, each
resonator transmission spectrum was averaged 500 times which blurs sharp
features, such as the one in the modeled three-electron trace.

The anharmonicity of a single electron was estimated by treating the y4 term in
Eq. (7) as a perturbation to the harmonic oscillator Hamiltonian. We define the
anharmonicity α as _α ¼ ðE2 � E1Þ � ðE1 � E0Þ, where En are the perturbed
eigenenergies. Near the crossing with the resonator we find α2 � 0:014 µm−4,
leading to

α

2π
¼ 1

2π
3eα2_
m2

eω
2
e
� 85 MHz: ð10Þ

Extracting single electron properties. To extract g and γ from the data in Fig. 4c,
we used the same model for the resonator transmission as in Eq. (8), which was
based on input-output theory and assumed that one orbital mode coupled to the
resonator. To fit the frequency shift vs. trap voltage, we needed to know ωe as
function of V trap. We used quadratic fits to a finite element model of the elec-
trostatic potential, which accurately predicted the single-electron crossing voltage,
to find the dependence of ωe on V trap. For the data in Fig. 4c, this method predicted
a sensitivity near the crossing of ∂f e=∂V trap ¼ 95 GHz V−1 (see Supplementary
Fig. 7) and also gives the top horizontal axis in Fig. 4c.

Since the measured frequency shift remained less than a linewidth, the phase
(Δφ) was a direct measure of the cavity frequency shift and the conversion was
made via Δφ ¼ arctan Δf 0=κtot

� � � Δf 0=κtot, where κtot ¼ κ1 þ κ2 þ κint . Using
the simulated ωe vs. V trap, we fit the measured cavity frequency shift to
Δf 0 ¼ Δφκtot, which gave the values listed in the main text. Quoted uncertainties
were fit uncertainties.

Data availability
The data and simulation files that support the findings of this study are available on
reasonable request from the authors.
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