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Tumor diversity and the trade-off between
universal cancer tasks
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Recent advances have enabled powerful methods to sort tumors into prognosis and treat-

ment groups. We are still missing, however, a general theoretical framework to understand

the vast diversity of tumor gene expression and mutations. Here we present a framework

based on multi-task evolution theory, using the fact that tumors need to perform multiple

tasks that contribute to their fitness. We find that trade-offs between tasks constrain tumor

gene-expression to a continuum bounded by a polyhedron whose vertices are gene-

expression profiles, each specializing in one task. We find five universal cancer tasks across

tissue-types: cell-division, biomass and energy, lipogenesis, immune-interaction and invasion

and tissue-remodeling. Tumors that specialize in a task are sensitive to drugs that interfere

with this task. Driver, but not passenger, mutations tune gene-expression towards speciali-

zation in specific tasks. This approach can integrate additional types of molecular data into a

framework of tumor diversity grounded in evolutionary theory.
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Tumors show diversity in genetic alterations, gene expres-
sion and drug sensitivities, presenting a major medical
challenge. Tumors continually evolve1–4 with driver

mutations (single nucleotide variants (SNVs), copy number
alterations (CNAs), and translocations) conferring a selective
advantage. Yet tumors differ in which driver mutations they
carry5,6. Understanding tumor diversity, comprehending the
function of driver mutations in different contexts, and under-
standing why drugs affect some tumors and not others, are all
pressing fundamental questions7.

The growth in molecular data on tumors has driven the
development of powerful algorithms to sort tumors into classes
and clusters8–10. These algorithms attempt to maximally separate
tumors and cluster them according to molecular criteria. Cluster
membership can be correlated with drug response and prog-
nostics to help guide and design treatment for individual patients
based on their molecular profile6,11–14.

While the ability to sort tumors is powerful and useful, there
remains an open question of understanding, from a theoretical
basis, why tumors vary in the way that they do. To address this,
we apply a theory of multitask evolution to the case of cancer. We
reasoned that multitask evolution may apply to cancer because
cancer is a case of intense evolution inside the body that can play
out over years, with generation times of cells that can be on the
order of days15–18. Furthermore, cancer cell growth and survival
is conditioned on fulfilling multiple tasks, including growth, stress
resistance, interaction with the immune system and so forth19.
Each task requires a different profile of gene expression—ribo-
somes for growth and stress proteins for survival. Presumably no
tumor can be optimal at all tasks at once, because cells can only
make a limited amount of protein per unit biomass, and proteins
for different functions can interfere with each other. Thus, cell
communities that optimally manage the trade-off relevant for
their particular niche in the body will outgrow and out-survive
cells that are suboptimal.

Trade-offs are often found when resources (nutrients, time,
and space) are limited and have been well-studied in evolutionary
ecology20. A well-known example of trade-offs is found in bac-
teria: cells that grow faster are more sensitive to stress and anti-
biotics21. There is selection on cells that grow in a challenging
environment to express survival genes, which comes at the
expense of growth genes22,23. A similar trade-off is found in
cancer cells24. For example, cancer cells exposed to hypoxia can
survive by invading the tissue surrounding the tumor25,26 which
can come at the cost of a reduced proliferative activity27,28.

But growth and survival are only two of the possible tasks that
affect tumor cell fitness. How can we detect and understand
trade-offs between three and more tasks? How can we identify the
tasks without assuming what the tasks are a priori? Going beyond
a trade-off between two tasks requires special approaches that can
detect the impact of multiple simultaneous tasks.

To address the question of trade-offs in tumors between
multiple tasks, we apply multitask evolutionary theory, known
as Pareto task inference (ParTI), to cancer. We use ParTI to (i)
identify trade-offs between five universal tasks shared across
cancer types, (ii) show that tumors that specialize in a task are
differentially sensitive to drugs that disrupt that task, and (iii)
demonstrate that each driver mutation moves gene expression
towards specialization in specific tasks. This suggests a picture
of tumor diversity based on multitask evolution. Thus, our goal
is not to separate tumors, as is already done well by existing
algorithms, but to add to our understanding of which evolu-
tionary trade-offs lead to the observed variation between
tumors, and to explain drug sensitivity and driver mutations in
terms of the concept of specialist/generalist tumors at
different tasks.

Results
Tumor gene expression profiles fall on polyhedra. The starting
point for ParTI is that a tumor needs to perform multiple tasks in
order to thrive19, but that these tasks are not known a priori.
ParTI further assumes that no tumor can be optimal at all tasks at
once, leading to a fundamental trade-off. Due to the intense
competition and high turnover of cells in a tumor, natural
selection is expected to be strong15–18. Cells with suboptimal gene
expression will lose the competition to cells with gene expression
that is more optimal given the trade-offs. It thus makes sense to
apply Pareto optimality theory to the tumor situation. The theory
predicts that such trade-offs lead to a characteristic pattern: gene
expression, averaged over all of the cell types in the tumor, is
arranged within a polyhedron in gene expression space, a geo-
metric structure with flat sides and sharp vertices23. For example,
a polyhedron with two vertices is a line (Fig. 1a). A polyhedron
with three vertices is a triangle (Fig. 1b). Four vertices describe a
tetrahedron (Fig. 1c). The vertices of the polyhedron, called
archetypes, are profiles optimal for one of the tasks (Fig. 1a).
Specialist tumors at a task lie close to a vertex, and generalists lie
in the middle of the polyhedron (Fig. 1b). The fundamental
reason for the polyhedron is that it is the shape that encloses all
points closest to the archetypes. Tumors outside the polyhedron
are suboptimal, and will not be selected.

Thus, finding polyhedral structure in data allows one to infer
the number and nature of the tasks. Such polyhedral structures,
tasks and trade-offs were found in several contexts including
bacterial and eukaryotic cell gene expression, animal morphology
(Fig. 1a–c)23,29–32 and in a preliminary analysis of breast
cancer33 and Wilms' tumours34.

To test whether human tumor transcriptomes fall on low-
dimensional polyhedra, we analyzed the transcriptomes of
primary tumor samples from TCGA35 and Metabric5,36 (normal
samples were removed). We used the ParTI software package33

which fits lines, triangles, tetrahedra and so on to data, finds the
best fit polyhedron. The statistical significance of fitting a
polyhedron to the data is assessed by the t-ratio test23,33 that
compares how well the data fills the polyhedron compared with
the randomized datasets (inset of Fig. 1d). ParTI thus infers the
number of archetypes and their position in gene expression space.
We tested the 15 cancer types that have at least 250 primary
tumor samples. We find that polyhedra with 3–5 archetypes
describe gene expression of six cancer types, including breast,
colon, thyroid, bladder, low-grade glioma, and liver (Fig. 1d,
Supplementary Fig. 1A, False discovery rates (FDR) < 10%, p <
0.001 to p= 0.009 at t-ratio test), with two more showing
borderline significance (lung, p= 0.01 and head and neck, p=
0.02, t-ratio test).

The seven other cancer types (including kidney renal clear cell
carcinoma and ovarian cancer) appear as clouds in gene
expression space without detectable vertices; possible reasons
include having primarily one task and hence no strong trade-offs,
having too many tasks and thus too many vertices to resolve, or
data heterogeneity not currently understood.

We find that the archetypes (vertices) of the polyhedra for
different cancer types are similar to each other in terms of gene
expression (Supplementary Fig. 1I–J). We therefore hypothesized
that tumors from different cancer types face similar trade-offs. To
test this, we pooled the 3180 primary tumors from the six cancer
types, after correcting gene expression profiles for tissue identity
(normalizing each sample by the mean expression profile of its
cancer type, see “Methods” section). We find that transcriptomes
of the tumors vary in a continuum inside a polyhedron bounded
by five archetypes (p= 0.002 at t-ratio test, Fig. 2a). Tumors from
different cancer types are spread widely within the polyhedron
(Fig. 2a, Supplementary Fig. 2A, B), and are found close to 3–5 of
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the archetypes depending on the cancer type (Table 1, Supple-
mentary Fig. 2A-D). Tumors are not found in the immediate
vicinity of archetypes for statistical reasons (Supplementary
Note 1, Supplementary Fig. 2E).

To infer the tasks performed by these five universal archetypes,
we analyzed which pathways and functional gene groups are
expressed highest in the tumors closest to a given archetype, using
MSigDB37 (Supplementary Data 1, FDR < 10% at Mann–Whitney
test, using leave-one-out controls). We also determined which
clinical properties are frequent among the tumors closest to a
given archetype compared with other tumors in the dataset
(Supplementary Data 2–3, FDR < 10% at Mann–Whitney test).

We find clear tasks for each of the five archetypes (Table 2,
Supplementary Fig. 2F). The five tasks are: cell division, biomass
and energy production, lipogenesis, immune interaction, and
invasion and tissue remodeling. The tasks match the hallmarks of
cancer defined by Hanahan and Weinberg19 (Fig. 2b). A given
hallmark can contribute to one or more tasks.

Tumors from patients with higher number of invaded
lymphnodes are found near the invasion and tissue remodeling
archetype (p < 10−3, Mann–Whitney test, Supplementary Data 3).
Tumors with highest histological grade (which corresponds to
poor tissue differentiation) are found near the immune interac-
tion archetype (p= 10−6, hypergeometric test, Supplementary
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Fig. 1 Trade-offs between tasks leads to phenotypes arranged in a polyhedron, whose vertices are archetypes that specialize in one task, in situations
ranging from bacterial gene expression to animal morphology to cancer. a 90% of the variation in E. coli gene expression falls on a line due to a trade-off
between tasks of growth and survival. Axes are percent of total promoter activity. b Morphology of Darwin’s ground-finch species falls on a triangle.
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space. The four archetypal gene expression profiles correspond to fundamental progenitor cell tasks. Adapted from Korem et al.29. d Tumor gene
expression profiles of eight cancer types fall on polyhedra. Individual tumors (dots) plotted in the space spanned by the first three gene expression PCs
(TCGA, breast cancer from Metabric). Archetype (colored dots) number and position were inferred using ParTI. Inset: shuffled data has a convex hull (CH,
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Data 2). Tumors at a relatively early stage (Stage II) are found
near the cell division, biomass and energy and lipogenesis
archetypes (p < 0.003, hypergeometric test) whereas late-stage
tumors (Stage III) are found near the immune interaction and
invasion and tissue remodeling archetypes (p < 10−5, hypergeo-
metric test, Supplementary Data 2).

The tasks for each tissue type are indicated in Table 1, and
color coded on the archetypes of Fig. 1d. Each tissue type seems
to show a trade-off between 3–5 universal tasks (Table 1,
Supplementary Fig. 2D). Breast cancer shows three universal
archetypes (division, invasion, biomass and energy) and a
fourth one enriched with HER2-positive tumors (p < 10−8,
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hypergeometric test, Supplementary Data 2), which seems to be
tissue specific (Supplementary Fig. 2D).

Polyhedra do not result from averaging different cell types. In
interpreting the task of the archetypes, one concern is that we use
data averaged over all cells in the tumor. The different archetypes
could represent pure cell types (immune cells, stromal cells,
malignant cells,…) rather than tasks. Such a situation would also
result in polyhedra: if tumors are weighted average of cell types,
they fall on a polyhedron with pure cell-type profiles at the
vertices.

However, the data is inconsistent with the hypothesis that
archetypes represent individual cell types. If archetypes repre-
sented pure cell types, tumors should fall on polyhedra in linear
gene expression space. We find no significant polyhedra in linear
gene expression space, only in log gene expression space
(Supplementary Fig. 1A, B). Furthermore, if archetypes repre-
sented pure cell types, tumor purity should be lowest close to all
the archetypes that represent non-cancer cell types and highest
close to the one archetype that represents cancer cells. We find
that purity is significantly elevated at multiple archetypes in
glioma (p < 10−10, Mann–Whitney test, Supplementary Fig. 1C),
thyroid cancer (p < 10−10), hepatocarcinoma (p < 10−8), and
colon cancer (p < 10−8) (Supplementary Data 3). These observa-
tions suggest that archetypes do not represent pure cell types.

The identified archetypes are robust to variations in tumor
purity and clonal heterogeneity (Supplementary Fig. 1D–H,
Supplementary Note 2).

The sensitivity of tumors to drugs depends on tasks. To further
test the hypothesis that tumors face trade-offs between conflicting
tasks, we sought a way to test whether tumors near an archetype
depend on its task more than other tumors. For this purpose, we
employ the drug sensitivity of different tumors, reasoning that
tumors near an archetype will be most sensitive to drugs which
specifically disrupt that task.

We used data from Heiser et al. who assessed the sensitivity of
49 human breast cancer cell lines to a panel of 77 drugs14. This
dataset includes growth rate, overcoming a limitation of larger

datasets in which apparent drug sensitivities cannot be corrected
for growth rate effects38. We determine the position of these cell
lines relative to the breast cancer archetypes by projecting the
transcriptome of the cell lines onto the gene expression space
defined by breast tumors (Fig. 2c, d, see “Methods” section).

We find that cell lines closest to the invasion and tissue
remodeling archetype are sensitive to trametinib, an inhibitor of
the Ras pathway which is upregulated in tumors close to the
invasion and tissue remodeling archetype (Fig. 2e, Table 2).
Similarly, cell lines closest to the cell division archetype are
sensitive to ixabepilone which stabilizes microtubules, and thus
targets mitosis (Fig. 2f). Cell lines near the biomass and energy
archetype are most sensitive to drugs which inhibit mTOR
(Fig. 2g), a controller of cell growth39. Finally, cell lines close to
the breast cancer-specific HER2 archetype (tumors that over-
expresses the erbB-2 receptor) are sensitive to herceptin, an erbB-
2 inhibitor (Fig. 2h). This differential sensitivity to drugs supports
the hypothesis that tumors close to archetypes are task specialists.

Driver mutations specialize tumors in specific tasks. We next
asked how genetic alterations in tumors fit into the trade-off
picture. We computed the mean effect of each genetic alteration, a
vector that describes how this alteration shifts gene expression
(the difference in gene expression between tumors with and
without the alteration, schematically shown in Fig. 3a). We
compared this effect vector with the polyhedron for each cancer
type. There are two possible situations: the effect vector can align
with the polyhedron, or instead can point away from the poly-
hedron. To visualize this, if the front were a triangle, the effect
vector could lie on the same plane as the triangle (have a small
angle with the plane), or could point away from the plane (have a
large angle) (Fig. 3a). Importantly, shuffled controls, in which the
mutation data is shuffled between cancers, typically have effect
vectors that point away, (angle= 60−80°) because the poly-
hedron explains only a fraction (20–40%) of the variation in the
data.

Strikingly, for five cancer types, the effect vectors of driver single
nucleotide variants (SNVs) align with the polyhedron much more
closely than expected from shuffled data: glioma (p= 10−4,
shuffling test, Fig. 3b), thyroid cancer (p= 10−3), breast cancer
(p < 10−8, Fig. 3c), bladder cancer (p= 0.02), and colon cancer
(p= 5 × 10−3, Supplementary Fig. 3A). Drivers are also much more
aligned than non-driver cancer genes and passenger SNVs collected
from6,36,40–42. The latter are as aligned as shuffled data (Supple-
mentary Fig. 3A).

We further find that driver SNVs move gene expression
towards specific archetypes. For example, IDH1, a strong driver in
glioma, shifts gene expression towards the cell division archetype
(Fig. 3d). In breast cancer, the common TP53 mutation is the
most aligned with the front. It points directly towards one
archetype, cell division (angle to archetype= 18°, mutation
enriched 2.6-fold in the 5% of tumor closest to archetype, p <
10−16, hypergeometric test, Fig. 3e). Mutations in TP53 in breast
cancer and IDH1 in glioma thus coordinate gene expression
towards specializing in the cell-division task. Another breast

Fig. 2 Tumors face trade-offs between five universal cancer tasks. a Gene expression profiles of tumors from six cancer types fall in a continuum bounded by
five archetypes, with indicated tasks. Tumors are shown projected on polyhedron faces (light orange—breast, dark orange-glioma, red—liver, gray—other
tissue). Archetype number and position (colored dots) were inferred using ParTI. b The five cancer tasks represent hallmarks of cancer19. For each cancer
hallmark, one to three representative MSigDB gene groups were chosen. P-value are for enrichment in the 5% of the tumors closest to each cancer
archetype (Mann–Whitney test, n= 159 tumors). For visualization, gene groups that are not significant at FDR < 0.1 or are not maximally enriched at a given
archetype are set to 1. c–d Breast cancer (BC) cell-line gene expression14, projected on the BC tumor tetrahedron. Color: sensitivity of cell lines to indicated
drug. Grey dots: breast tumors. e–h Sensitivity to indicated drug, defined as area under curve (AOC) of growth rate (GR) dose response, as function of
Euclidean distance of cell-line gene expression to indicated archetype14,38. Error bars represent SE. P-values from the Mann–Whitney test (n= 14 cell lines).

Table 1 Universal cancer tasks found in each cancer type.

X indicates the significant overlap between cancer archetype and universal archetype in the set
of genes whose expression is enriched in tumors closest to archetype (see “Methods” section)
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cancer driver, GATA3, shifts gene expression towards the face
defined by the lipogenic, HER2 and invasion and tissue
remodeling tasks and away from the cell division archetype
(p= 0.003, hypergeometric test, Fig. 3f). The same conclusion is

found for all 21 drivers with significant alignment to the
polyhedra (Supplementary Data 4 lists the driver SNVs and the
archetypes they point to, FDR < 10% at mutation shuffling test).
Thus, aligned driver mutations can be interpreted as knobs that

Table 2 Each cancer task is characterized by specific gene expression programs and clinical properties.
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tune gene expression towards some tasks and away from others.
Although the tasks are universal, the drivers that shift gene
expression toward each task are often tissue specific.

We also analyzed copy number alterations (CNAs). CNAs show
the same features found for SNVs above: driver CNAs have effect
vectors that are aligned with the polyhedron (Supplementary
Fig. 3B, C, Supplementary Note 3) and push gene expression to
specialize in specific tasks (Supplementary Fig. 3D). For example,
PTEN deletion in lower grade glioma points to the immune
archetype; MYC amplification in breast cancer points to the cell
division archetype (inferred tasks for 229 CNAs are listed in
Supplementary Data 5, FDR < 10%).

Single-cancer cells can be task specialists or generalists. So far
we considered intertumor diversity in gene expression. Our
results bear the question of how intertumor diversity is supported
by intratumor heterogeneity, the variation between single-cancer
cells inside a tumor43,44. One possibility is that single cells spe-
cialize in different cancer tasks, so that the tumor composition in
single-cell specialists sets the position of tumors relative to
archetypes. This possibility is inconsistent with the data: if tumors
are made of specialist cells, specialist tumors should be most
homogeneous in specialist cells, whereas generalist tumors should
be heterogeneous. But we find that specialist breast tumors can be
both homogeneous and heterogeneous (Supplementary Fig. 4A),
and that tumors that specialize in cell division are more hetero-
geneous than generalist tumors (p= 1.6 × 10−5, Mann–Whitney
test, Supplementary Fig. 4A). Projecting single-cancer cells from
different breast tumors on the space defined by breast cancer
tasks confirms that single cells from individual tumors can be
specialist or generalists at the different tasks (Fig. 4a).

In connecting intratumor heterogeneity with intertumor
diversity, one prediction based on concepts from ecology45,46 is
called “evolution along lines of least genetic resistance”—the
finding that the main axes of variations between individuals in a
given species is aligned with variation between species in the same
taxon. In the case of cancer, single cells and tumors may play the
role of individuals and species so that variation between single
cells in a tumor will align with variation between different tumors
because of the shared tasks23. Single-cell transcriptomics data
from breast tumors47 verify this prediction: intertumor diversity
explains 25.4% of intratumor heterogeneity in gene expression
(Fig. 4b–d, Supplementary Fig. 4B, C). This alignment between
intertumor diversity and intratumor heterogeneity is not expected

by chance because the space of gene expression has thousands of
dimensions along which tumors and cells can vary. Accordingly,
random directions in gene expression only explains 1.5% of
intratumor variation (p < 0.001 at Student’s t test, Fig. 4d,
Supplementary Fig. 4B, C). The remaining 74.6% could be
explained by factors such as stochasticity in single-cell gene
expression, measurement error and neutral variation.

Discussion
The goal of this study is to provide a framework to understand
the diversity of tumors in terms of multitask evolution. We used
ParTI to discover the number of tasks and their biological nature.
The present work suggests trade-offs between five tasks. While
the proliferation versus survival trade-off was already docu-
mented in cancer, our results suggest that there are other trade-
offs that could be of comparable importance in shaping tumor
gene expression. We suggest trade-offs between organizing
metabolism to grow on glucose versus using lipids for growth,
and between rapid cell division, immune evasion, and tissue
remodeling. Testing these trade-offs could be the object of follow-
up experiments aimed at measuring performance at the five tasks
by quantifying DNA replication rate, lipid metabolism, protein
synthesis rate, immuno-resistance, and invasion rate in different
tumors. If trade-offs are at play one should find negative corre-
lation between the different measures of performance.

This framework predicts that tumors that specialize in a task
should be more sensitive to drugs that impair that task. We find
evidence for this prediction (Fig. 2c–h). Future studies on specific
tumors with more samples and accuracy can probably uncover
additional archetypes. These can offer hypotheses for which drugs
to use on which tumor, and which combinations might work for
generalists that trade-off between multiple tasks.

Furthermore, we find that most driver mutations tune gene
expression not in arbitrary directions in gene expression space,
but instead towards specialization in specific tasks. Non-driver
mutations have more arbitrary effects on gene expression, and do
not point towards specific archetypes. This could provide an
approach to detect driver mutations and differentiate them from
non-driver mutations.

Note that our goal is not to discover new cancer subtypes:
existing approaches to sort tumors are better for this purpose8–10.
Such sorting approaches are typically not based on a theoretical
evolutionary basis, but instead aim to maximize the difference
between tumors according to molecular features. The point of the
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present study is not to offer an improved way to sort tumors, but
to provide a unifying explanatory framework to rationalize why
tumors vary in the way that they do based on multitask evolution.
From this point of view, it is gratifying that most of the tasks we
find are well-known, and the sensitivity to drugs is easily
understandable in terms of known mechanisms.

The five tasks match the ten hallmarks described by Hanahan
and Weinberg19. Each task combines several hallmarks. For
example, gene groups correspondng to the hallmarks of evasion
of growth suppressors and enabling replicative immortality both
support the cell division archetype. The archetype of immune
interaction combines gene groups for the hallmarks of resisting
cell death, avoiding immune destruction, and tumor-promoting
inflammation (Fig. 2b).

One question raised by our findings is why tumors vary in their
degree of specialization in the different tasks. Some of this var-
iation is associated to tumor stage: early-stage tumors are found
closer to the cell division, biomass and energy and lipogenesis
archetypes while late tumors are more often found close to the
immune interaction and invasion and tissue remodeling arche-
types. This suggests that variations in the degree of specialization
of tumors in different archetypes could stem from changes in the
trade-offs during tumor progression, with proliferation being
more important during early stages and survival during later
stages. Other variables such as patient age, driving genetic
alterations, and type of alteration (CNAs vs single nucleotide
variations) are also associated with different archetypes (Table 2).
Interestingly, different combinations of trade-offs are identified in
different cancer types (Table 1). This suggests that factors such as
the cell of origin or differences in the microenvironment of dif-
ferent host tissues could explain why different tumors specialize
in different tasks. Untangling the causalities that underlie these
variations could be the aim of future research.

There could be alternative interpretations to the observed
associations between cancer tasks and driver mutations. For
example, different cell types of origin may have different pro-
pensity to specialize in different tasks and acquire different
mutations. At the moment, this specific explanation has limited
support, at least in breast cancer: most breast cancers are thought
to originate from luminal progenitors, so that most intertumor
diversity cannot be explained by the cell of origin, except in rare
tumors (claudin low). Nevertheless, clarifying the origin of the
observed association between driver mutations and cancer tasks
could be the object of future research, perhaps by comparing gene
expression in genetically engineered mouse models with different
driver mutations.

Given the genetic diversity of cancer, it is interesting to ask
how multitask evolution handles the possibility that multiple gene
expression profiles may maximize performance at a task. If dif-
ferent gene expression profiles optimize performance at the same
task, there will be multiple archetypes for this task, each with its
own gene expression profile. We do not observe this: the arche-
types we find clearly differ in their tasks. However, comparing
genes for a given task in different tumor types reveals that tasks
have a tissue-specific flavor (Supplementary Data 6).

In summary, we suggest a framework for understanding tumor
variation based on evolution under trade-offs between tasks.
Tumor gene expression lies in a continuum in a polyhedron
whose five vertices are archetypal expression programs for five
tasks that recur in different cancer types. Tumors can be spe-
cialists at a task or generalists: specialists have gene expression
close to a vertex and generalists lie in the middle of the poly-
hedron. We find support for the hypothesis that specialists in a
task are more sensitive to drugs that disrupt that task. Driver
mutations are often like knobs that tune gene expression towards
specialization in specific tasks. This framework, if validated by

further research, offers a way to understand tumor variation in
terms of task specialization.

Methods
TCGA data. Gene expression data: we downloaded the RSEM-normalized
HiSeqV2 gene expression data (log2 RPKMs) from the TCGA data portal. The
TCGA data portal is now retired but the data can be retrieved from the Genomics
Data Commons portal of the National Cancer Institute [https://gdc.cancer.gov/].
The starting point of our analyses was the ‘genomicMatrix’ files which contain
expression levels for 20,530 human genes in 15 cancer types. We considered all
cancer types with at least 250 primary tumor samples: bladder (TCGA disease code:
BLCA)48; breast (TCGA disease code: BRCA)49; cervical (TCGA disease code:
CESC)50, colon (TCGA disease code: COAD)51; head and neck (TCGA disease
code: HNSC)52; kidney (TCGA disease code: KIRC)53; lower grade glioma (TCGA
disease code: LGG)54; liver (TCGA disease code: LIHC)55; lung adenocarcinoma
(TCGA disease code: LUAD)56; lung squamous cell carcinoma (TCGA disease
code: LUSC)57; ovarian cancer (TCGA disease code: OV)58; prostate (TCGA dis-
ease code: PRAD)59; stomach (TCGA disease code: STAD)60; thyroid (TCGA
disease code: THCA)61; uterus (TCGA disease code: UCEC)62.

SNVs and CNAs: from the TCGA data portal, we downloaded SNV calls, and
CNA calls (gistic2 thresholded), as reported in ‘genomicMatrix’ files. For SNVs, we
focused on genes mutated in at least 1% of the samples, to reduce the
computational time and the memory requirements of our analyses. We also
analyzed the CNAs which are prevalent. Since unlike mutations which can be
present or absent, CNAs have 5 different values, we used an entropy measure, and
analyzed the 1% of genes with highest entropy in their CNAs. For each gene, we
determine the fraction of samples with (1) strong deletions f1, (2) weak deletion f2,
(3) no detectable CNA f3, (4) weak amplifications f4, and (5) strong amplification
f5. We then computed the entropy of the corresponding distribution, -Σi fi log fi. A
gene whose copy number is never altered has entropy 0. Genes with highest
entropy show the most frequent CNAs.

Clinical data: From the TCGA data portal, we also downloaded the clinical data
reported in files named ‘clinical_data’. Discrete and continuous clinical features
require different statistical treatment in order to determine which clinical features
are overrepresented among tumors close to individual archetypes. We thus
separated clinical features into discrete and continuous features by manual
examination.

Metabric data. For gene expression and CNAs, we downloaded the normalized
microarray gene expression data (data_expression.txt), CNAs data (data_CNA.txt),
and clinical data (data_clinical.txt) for the 1970 tumors of the Metabric cohort5

from the cBio portal [http://www.cbioportal.org/] (brca_metabric.tar.gz). We
manually separated clinical features into discrete and continuous features, as we
did for the TCGA data. To reduce computational time and memory requirements,
we focused our analysis of CNAs on the 1000 genes whose CNAs were most
significantly associated to changes in the mRNA abundance of that gene—taken
from Table S30 of5—supplemented with 124 known breast cancer driver
genes36,41,42. We supplemented these genes with 1000 random genes not previously
reported as drivers, which we used as controls. We downloaded SNVs in 173 genes
from Pereira et al.36 (somaticMutations.txt) together with the ‘tumorIdMap.txt’ file
which maps the tumor IDs used in Pereira et al. to those used in Metabric. We used
this mapping to convert the tumor IDs of Pereira et al. to Metabric IDs.

Gene expression analysis. For each cancer type, we focused our analyses on
primary tumors (field ‘sample_type’ set to ‘Primary Tumor’ in the TCGA clinical
annotation), thus removing normal control samples as well as local and distant
metastases. Doing so excludes the possibility that archetypes correspond to dif-
ferences in metastatic host tissues or in disease state (healthy vs cancer).

We started from a matrix of samples times genes (samples × genes). Entries of
the matrix represent log2 normalized RPKMs (see sections “TCGA data” and
“Metabric data”). The goal of the analysis was not to contrast highly expressed
genes to low expressed genes in a given tumor but to identify the main changes in
gene expression across tumors. To identify these changes in gene expression, we
subtracted the average expression (averaging over samples) from each gene. As a
result of this transformation, entries in the samples × genes matrix represented log2
fold change in expression of a given gene in a given sample compared with the
average expression of that gene in that cancer type. We performed principal
component analysis (PCA) on the transformed samples × genes matrix. We did not
scale log2 fold changes by the standard deviation prior to PCA. As a result, large
and correlated changes in gene regulation affected principal components more than
small uncorrelated changes which are prone to measurement error.

Fitting polyhedra to tumor gene expression data with ParTI. To find polyhedra
in the gene expression data from each tumor, we used the ParTI matlab software
package33. Briefly, the input to ParTI is a large-scale dataset such as a matrix of
sample × gene expression. ParTI determines the position of archetypes (vertices) in
gene expression space. These archetypes define a polyhedron. How well a poly-
hedron fits the data is quantified by the ratio of the volume of the best-fitting
polyhedron to the volume of the convex hull of the data (t-ratio)23. The t-ratio is
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always larger than 1 and approaches 1 when the data fills a polyhedron (see
Fig. 1d, glioma panel). ParTI then computes a one-sided p-value for the statistical
significance of the polyhedron by re-computing the t-ratio on 1000 shuffles that
conserve the distribution of loadings on each PC but not the correlation between
the PCs33.

To choose the number of archetypes, we attempted to fit three, four, or five
archetypes to each cancer type. We chose the smallest number of archetypes that
produced a statistically significant polyhedron (p < 0.01). We did not attempt to
find six or more archetypes because of the limited number of tumor samples.

An R implementation of ParTI is also available at GitHub [https://github.com/
vitkl/ParetoTI].

Clustering archetypes from different cancer types. We performed clustering
analysis on the gene expression profiles of archetypes from the six cancer types
with significant polyhedra (glioma, thyroid, breast, bladder, liver, and colon) to
determine if different cancer types share similar tasks. We first determined the gene
expression profile of each archetype as the average gene expression profile of
tumors closest to the archetype (i.e., tumors in the first distance bin, see “Gene and
clinical enrichment analysis” section).

Since different tissues can express different genes, we compared archetypes by
collapsing the expression of 20,530 genes onto MSigDB pathways37. We defined the
regulation of a given MSigDB pathway as the average regulation of the genes in that
pathway. Averaging gene expression from individual genes into MSigDB pathways
transforms the archetypes × genes matrix into a matrix of archetypes × pathways.

We focused our comparison of archetypes on the MSigDB pathways that
are significantly upregulated in tumors close to at least one archetype in all 6 cancer
types (FDR < 10%, see “Gene and clinical enrichment analysis”).

One difficulty with visualizing which pathways are upregulated at different
archetypes is that the expression of certain pathways varied strongly across
tumors (e.g., immune pathways) whereas variations in the expression of other
pathways were more moderate (e.g., peroxisome lipid metabolism). To visualize
which pathways are upregulated at each archetype on a common color-scale, we
scaled the expression of each pathway by its standard deviation across archetypes.
To overcome the challenge of visualizing and interpreting hundreds of pathways on
the same figure, we selected 38 pathways enriched in all tissue types and
representative of each of the ten hallmarks of cancer19 (see rows of Supplementary
Fig. 1I).

We clustered the archetypes from the different cancer types by Gaussian
mixture modeling (mclust R package). The Bayesian Information Criteria
suggested five mixtures. Archetypes clustered by tasks, not by cancer type:
archetypes from a given cancer types are assigned to different Gaussian mixtures,
each of which groups together archetypes from different cancer types. This
observation suggests that the same tasks are relevant for different cancer types.

Finding universal cancer archetypes. To determine the cancer tasks shared by
tumors from different cancer types, we performed ParTI on the gene expression
profiles of all 3180 primary tumors from the six cancer types with significant
polyhedra. Grouping gene expression profiles of primary tumors from the six
cancer types combines two sources of variation: (1) differences in genes expression
between tissues, (2) differences in gene expression between individual tumors of
the same tissue.

In finding universal cancer types, differences in gene expression between tissues
are of little interest. For example, it is not surprising for tumors from a fatty tissue
like breast to show higher expression of lipid metabolism genes while brain tumors
show higher expression of neuronal genes. Instead, we are interested in which
genes individual tumors upregulate or repress compared with other tumors of the
same tissue. To identify these changes, we subtract the mean expression (averaged
over samples) from each gene prior to assembling the matrix of all samples × genes.
As a result, the average expression of each gene is 0 within each tumor type, and
thus across all tumors. Therefore, entries in the samples × genes matrix represent
log2 fold change in the expression of a given gene in a given sample relative to the
average expression of that gene in tumors from the corresponding cancer type.

TCGA tumors were collected using a different technology (RNAseq) and
analysis pipeline than the metabric tumors (microarray). To ensure homogeneity in
the gene expression data, we thus used the TCGA 1095 breast tumors instead of the
1970 metabric breast tumors.

We applied ParTI as described in the section “Fitting polyhedra to tumor gene
expression data with ParTI”. ParTI identified five archetypes, which define a
polyhedron in four dimensions.

To visualize the position of the tumors in this 4D space, we projected tumors on
the 2D faces of the polyhedron. Each face is defined by three archetypes. To project
tumors on faces, we computed the two vectors connecting the first archetype to the
two other archetypes. These two vectors define a linear basis for the face, which we
orthogonalized using the Gram-Schmidt algorithm and normalized so each basis
vector had norm 1. Multiplying the orthonormal matrix by a matrix of the 4D
coordinates of all tumors and of the three archetypes defining the face yielded their
projections on the face.

Finally, to exclude the possibility that tasks correspond to specific cancer types
and confirm that tumors from individual cancer types are instead found close to
multiple archetypes, we computed the fraction of tumors from individual cancer

types found among the 10% tumors closest to each archetype (Supplementary
Fig. 2C). If tumors from all cancer types were evenly represented close to all
archetypes, we would expect these fractions to be 10%. We observe indeed that
tumors from all six cancer types make up ~10% of multiple archetypes. This
observation confirms that individual tasks are relevant to multiple cancer types.

Matching tissue archetypes to universal cancer archetypes. To determine
whether tasks found in individual cancer types matched the five universal cancer
tasks, we compared MSigDB pathways upregulated at each tissue-specific archetype
with MSigDB pathways upregulated at each universal archetype.

We focused the comparison on MSigDB pathways significantly upregulated at
the archetype (FDR < 10%) and with log2 fold change larger than 0.1 to discard
pathways with minor regulation. For each pair of tissue-specific and universal
archetype, we asked how many pathways are upregulated in both. We then tested if
the number of pathways common to both archetypes was significantly higher than
expected under the null hypothesis of random sampling from the union of
pathways found at any archetype of that cancer type (hypergeometric test). We
concluded that two archetypes were statistically similar when the p-value of the
hypergeometric test was below 1% after Bonferroni correction. Results of this
comparison are shown on Supplementary Fig. 2D. For visualization, the p-value of
non-significant comparisons was set to 1.

The task of cancer-specific archetypes was assigned to that of the most similar
universal archetype (gray dots on Supplementary Fig. 2D), provided that the
similarity between the two archetypes was statistically significant.

Using this procedure, we found that each universal cancer task was assigned to
at most one archetype within each cancer type. This is expected if tumors from
different cancer types share the same tasks. One exception was found in thyroid
cancer (THCA): both archetypes 1 and 3 matched the task of biomass and
energy best.

Finally, archetype 4 of the metabric breast tumors (BRCA 4, which is associated
to the HER2 subtype) matched none of the universal archetypes. One possible
interpretation is that this archetype performs a breast cancer-specific task enabled
by overactivation of HER2 signaling.

Enrichment analysis of clinical features and genes. Having inferred the number
of archetypes and their position in gene expression space using ParTI, we char-
acterized the task of each archetype. We did so using the methodology previously
described33.

Briefly, we considered the 50 tumors closest to each archetype. Since there were
at least 250 primary tumors in each cancer type, 50 tumors correspond to at most
20% of tumors. In cases where 50 tumors represented less than 5% of all tumors,
we selected the 5% tumors closest to the archetype. In these tumors, we then
searched for overrepresented clinical features (Supplementary Data 2,
Supplementary Data 3) and upregulated MSigDB pathways (Supplementary
Data 1). We performed enrichment analysis in each cancer type (using cancer-
specific archetypes, Fig. 1d) as well as by grouping tumors from all six cancer types
in one analysis (using the universal cancer archetypes, Fig. 2a). When analyzing
tumors from all six cancer types together, we also looked for upregulation of
individual genes (Supplementary Data 1).

For each continuous feature (e.g., expression of MSigDB pathways and
individual genes, quantitative clinical features such as age, recurrence-free survival,
or tumor weight), we tested if the feature took significantly higher values in tumors
closest to the archetype compared with other tumors (Mann–Whitney U test, two-
sided). For discrete features (e.g., the presence of an SNV or of a CNA, and
qualitative clinical features such as the gender of the patient, the pathological stage,
and the molecular subtype of the tumor), we tested whether the feature was
overrepresented in tumors closest to individual archetypes using the one-sided
hypergeometric test.

We controlled for the false discovery rates (FDR) using the Benjamini-
Hochberg procedure. For each archetype, we report all features with FDR < 10%
and whose prevalence peaks in among tumors of the first distance bin of that
archetype.

When analyzing tumors from all six cancer types, some clinical features are
specific to a single-cancer type. For example, PAM50Calls are only defined for
breast cancer since PAM50 is a molecular classification of breast tumors. Others
features are relevant to multiple cancer types, such as the percentage of stromal
cells in a tumor (% of stromal cells in a tumor). To distinguish features relevant to
multiple cancer types from tissue-specific features (defined as features only defined
in tumors of a single cancer type), tissue-specific features were tagged with the
TCGA code of the cancer type in Supplementary Data 2 and 3. For example, we
renamed PAM50Call to BRCA.PAM50Call.

Testing for the upregulation of MSigDB pathways close to an archetype has the
caveat of circular inference, as genes from a given pathway are used both to infer
the position of the archetype and determine its task through MSigDB enrichment
analysis. To address this caveat, we use a leave-one-out strategy. For each enriched
MSigDB pathway, we remove genes belonging to this pathway and infer the
position of archetypes again using the remaining genes. We then test if this
pathway is still upregulated in tumors close to the archetype. If not, we discard the
pathway from the enrichment analysis.
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In our analysis of 3180 tumors from all six cancer types, we applied this leave-
out-one strategy to all MSigDB pathways with more than 100 genes. These
pathways are more likely to influence the PCA and the position of the archetypes
compared with pathways with less genes. We found that all MSigDB pathways
identified in the original enrichment analysis were also enriched in the leave-one-
out analysis. This observation suggests that archetypes are supported by large
groups of genes belonging to diverse pathways, and that circular inferrence is not a
concern in the present results.

Inferring tasks. To infer the task of each archetype, we used the same approach as
in previous studies29,33: we examined what MSigDB pathways were maximally
upregulated and what clinical features were maximally overrepresented in the 5%
tumors closest to each archetype. We then used these MSigDB pathways and
clinical features as clues to the task performed by the archetype. This section
describes how upregulated MSigDB pathways and overrepresented clinical features
support the tasks we inferred.

Cell division (archetype 3 in Supplementary Data 1–3): Tumors close to this
archetype upregulate genes involved in the cell cycle (KEGG cell cycle, p < 1e-60).
Upregulated genes are involved in different phases of the cell cycle, such as the M
phase (regulation of mitotic cell cycle, p < 1e−20) and the S phase (reactome DNA
replication, p < 1e−55). This suggests that cells from these tumors are not arrested
at some point in the cell cycle but are instead dividing more than cells from other
tumors. Increased cell division is consistent with the observed high cellularity in
breast tumors close to this archetype (p < 1e−6).

Genes involved in extending telomeres are upregulated in tumors close to this
archetype (reactome extension of telomeres, p < 1e−40). Telomeres are repeated
hexanucleotides that protect the extremities of chromosomes. In somatic cells,
telomeres are shortened at each division, thereby acting as a division counter which
limits how many times a cell can divide before it becomes senescent or dies63.
Cancer cells are thought to achieve replicative immortality by acquiring the
capacity to extend their telomeres, which normal cells typically cannot.
Upregulation of genes involved in telomere extension is thus consistent with the
task of cell division.

Tumors close to this archetype upregulate genes involved in maintaining
chromosome integrity (reactome activation of ATR in response to replication
stress, p= 1e−55; KEGG mismatch repair, p= 1e−35), perhaps as a strategy to
remain viable despite DNA damage that accumulate over cell divisions. This
strategy appears only partially successful: the median tumor close to this archetype
harbors 750 more CNAs than the rest of tumors (p < 1e−40).

Clinically, early tumors are overrepresented close to this archetype (pathologic
stage: Stage IIA, p < 1e−16). Among breast tumors, triple negative tumors are
overrepresented (BRCA, breast carcinoma estrogen receptor status: Negative, p < 1e
−16; BRCA, breast carcinoma progesterone receptor status: Negative, p < 1e−16;
BRCA.HER2 Final Status nature2012: Negative, p < 1e−16). Patients carrying these
tumors show a 334 days longer recurrence-free survival than patients with other
tumors on average (X_RFS, p < 1e−5).

Biomass and energy (archetype 2 in Supplementary Data 1–3): Tumors close to
this archetype upregulate ribosomal proteins (KEGG ribosome, p < 1e−70;
mitochondrial ribosome, p= 1e−90) and genes needed in translation (reactome
peptide chain elongation, p= 1e−77; reactome translation, p < 1−e73). This
suggests increased protein synthesis and biomass production.

Genes involved in the proteasome (KEGG proteasome, p < 1e−65) are also
upregulated. Increasing proteasome activity is thought to be a strategy used by
cancer cells to cope with the increased translation of low-quality proteins due to
misfolding-causing mutations and aberrant splicing64. Aberrantly spliced mRNAs
can contain premature stop codons. Such premature stop codons are detected as
aberrantly spliced mRNAs, and degraded through the mechanism of non-sense
mediated decay (NMD)65. NMD is upregulated in tumors close to archetype 2
(reactome NMD enhanced by the exon junction complex, p= 1e−75). These
observations are consistent with the view that upregulation of the proteasome helps
tumors cope with a proteotoxic crisis.

In addition, tumors close to archetype 2 upregulate genes needed in respiration
(reactome formation of ATP by chemiosmotic coupling, p < 1e−80; reactome TCA
cycle and respiratory electron transport, p < 1e−76) and in glycolysis (biocarta
glycolysis pathway, p < 1e−25). This increase in energy producing pathways may
serve to support protein synthesis and biomass production which accounts for the
majority of ATP consumed in growing cells66,67.

Clinically, tumors close to this archetype are found in patients at an early cancer
stage (pathologic T: T2, p < 0.001).

Lipogenesis (archetype 1 in Supplementary Data 1–3): Genes upregulated at this
archetype support the task of lipid metabolism reprogramming, an area of cancer
research that is currently undergoing significant developments68.

The main enzymes catalyzing de novo lipogenesis are upregulated in
tumors close to this archetype: ACLY (p < 1e−11), ACACA (p < 1e−16) and
FASN (p < 1e−7)69. Enzymes needed to synthesize glycosylphosphatidylinositols
(GPIs), a type of phospholipid, are also upregulated in these tumors (KEGG
glycosylphosphatidylinositol GPI anchor biosynthesis, p < 1e−33). De novo
lipogenesis has been proposed to promote growth and survival of cancer cells in
several ways. First, de novo lipogenesis can support the need of cancer cells for
membranes in cell proliferation69. Second, in the hypoxic environment of tumors

cells, lack of oxygen blocks respiration which leads to an excess of reducing power
(too much NADPH). De novo lipogenesis consumes NADPH and could thus help
rebalance the redox balance69. Third, de novo lipogenesis produces lipids that are
less sensitive to reactive oxidative species (ROS). ROS, which are produced by the
mitochondrial activity that supports cell proliferation, can damage lipid
membranes and thus endanger cell survival70,71. De novo synthesized lipids come
saturated72. These saturated lipids are less sensitive to ROS than unsaturated
lipids71. Subsequent desaturation requires oxygen, which is typically lacking in the
tumor environment72. As a result, the increased levels of saturated lipids promoted
by de novo lipogenesis may support cell survival.

Peroxisomes are organelles most known for clearing ROS. But they also carry
out other functions, such as synthesizing lipids (in particular ether lipids) and
shortening long fatty acid chains for use in mitochondrial metabolism73,74. Tumors
close to archetype 1 upregulate peroxisomal genes (peroxisomal part, p= 1e−40)
and genes involved in peroxisomal lipid metabolism (p < 1e−22). Peroxisomal
genes upregulated in tumors close to archetype 1 include ABCD3 (p= 1e−22)
which transports fatty acids to peroxisomes, as well as ACOX1 (p= 1e−9), ACOX3
(p < 1e−5), and AMACR (1e−17) which carry out beta-oxidation of long fatty
acids in peroxisomes74. Although the exact function of peroxisomes in cancer is not
clearly understood yet, beta-oxidation of long fatty acid chains in peroxisomes
could represent an alternative energy source to glucose75.

Clinically, tumors close to this archetype tend to be early stage (pathologic
stage: Stage IIA, p < 0.001) and well differentiated (neoplasm histologic grade: Low
Grade, p < 0.001). The median patient carrying these tumors was 8.5 years older
than the median patient carrying other tumors (p < 1e−4). Breast cancer tumors
close to this archetype are enriched with hormonal cancer (BRCA.ER Status
nature2012: Positive, p < 1e−9, BRCA.PR Status nature2012: Positive, p < 1e−8).

Immune interaction (archetype 4 in Supplementary Data 1–3): Tumors close to
this archetype upregulate genes expressed in immune cells (KEGG allograft
rejection, biocarta tcytotoxic pathway) and related to inflammation (biocarta
inflam pathway, reactome interferon gamma signaling). There is also upregulation
of the PD-1 and CTLA-4 pathways which inhibit immune response (reactome PD-
1 signaling, p < 1e−55; BIOCARTA CTLA-4 PATHWAY, p < 1e−58). This
suggests an archetype characterized by the invasion of tumors by immune cells, but
whose action is inhibited. Consistent with the invasion of the tumors by immune
cells, tumors close to this archetype show loss of tissue identity and poor
differentiation in histological examinations (neoplasm histologic grade: High
Grade, p= 0.006).

The median tumor close to this archetype has five more SNVs than other
tumors (number of SNVs, p= 0.0002). This association of the number of SNVs to
immune invasion is consistent with previous reports that PD-1 blockage therapy is
most effective against tumors with higher mutational burden76.

Clinically, patients with these tumors are at a more advanced disease stage
(pathologic stage: Stage III, p < 1e−5) than archetypes 1–3 (Stage II). This
difference suggests that the task of immune interaction becomes relevant to tumors
at a later stage than the tasks of cell division, biomass and energy, and lipogenesis.

Invasion and tissue remodeling (archetype 5 in Supplementary Data 1–3) :
Tumors closest to this archetype upregulate genes involved in the remodeling of
the extracellular matrix (extracellular matrix structural constituent, p < 1e−65;
extracellular structure organization and biogenesis, p < 1e−65; reactome
degradation of the extracellular matrix, p < 1e−40). Disorganization of the ECM
participates in tumor progression and metastasis77. The second most upregulated
MSigDB pathways in these tumors is collagen (p= 1e−57), which suggests the
presence of cancer associated fibroblasts (CAFs). Accordingly, the average
percentage of stromal cells in tumors close to this archetype was 11 points higher
compared with other tumors (p= 0.0006).

Tumors close to this archetype upregulate genes involved in invasion and
metastases such as cell migration (p < 1e−80), and angiogenesis (regulation of
angiogenesis, p < 1e−64). Consistent with the task of invasion, tumors close to this
archetype invaded 1.8 more lymph nodes than other tumors on average (number of
lymph nodes positive by H&E, p < 0.0005). Lymphatic and venous invasion is
overrepresented in colon tumors close to this archetype (p < 0.0004), as well as
lymphovascular invasion in bladder tumors (BLCA.lymphovascular invasion
present: YES, p= 0.003). Patients carrying tumors close to this archetype are at the
most advanced disease stage of all five archetypes (pathologic stage: Stage IIIC, p <
1e−7). Thus, both gene expression and clinical features support the task of
invasion.

In addition, tumors close to this archetype activate signaling pathways involved
in development and tissue repair/homeostasis: Hedgehog, Insulin-like growth
factor, fibroblast growth factor, Wnt, TGFβ, Ras (PID HEDGEHOG 2PATHWAY,
p < 1e−80; reactome regulation of insulin-like growth factor IGF, p < 1e−65;
reactome FGFR ligand binding and activation, p < 1e−77; PID WNT signaling
pathway, p < 1e−61; KEGG TGF beta signaling pathway, p < 1e−75; RAS GTPASE
activator activity, p= 1e−72). Tumors are thought to hijack these programs to
support cancer progression19. In the case of TGFβ signaling for example, epithelial
tumors hijack a program normally used in development and wound healing in
which epithelial cells acquire the ability to invade into a tissue and resist
apoptosis78.

These tumors also upregulate immune pathways, although at lower levels than
tumors close to the immune interaction archetype. In addition, the identity of
upregulated immune pathways differs between archetypes 4 and 5. For example,
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tumors close to the invasion and tissue remodeling archetype upregulate the lectin
pathway (biocarta lectin pathway is the fourth most upregulated MSigDB gene
group, p < 1e−59). In contrast, the lectin pathway is not upregulated among
tumors close to the immune interaction archetype.

Finally, tumors close to this archetype upregulate neural pathways (regulation
of neurogenesis, voltage-gated sodium channel activity). Voltage-gated sodium
channel genes define the single most upregulated MSigDB pathway among tumors
close to this archetype. Upregulation of these pathways could result from cancer
cells hijacking pathways normally active during neuron migration19. It could also
be due to perineural invasion, a process in which cancer cells spread along nerves79.
Alternatively, this upregulation of neural pathways could be the sign of neural
stimulation or modulation of the tumor microenvironment80.

Matching cancer tasks to cancer hallmarks. To compare the five universal
cancer tasks to the ten cancer hallmarks defined by19, we picked 1–3 MSigDB
pathways representative of each cancer hallmark (Fig. 2b). We then plotted the p-
value quantifying the statistical significance of the upregulation of each MSigDB
pathway in the 5% tumors closest to each archetype, as described in the
“Enrichment analysis” section.

Drug sensitivity analysis in breast cancer cell lines. To test if cancer cells that
specialize in a task are more sensitive to drugs that interfere with the task, we used
the gene expression and drug sensitivity data in 56 breast cancer cell lines of ref. 14.

We determined the position of the 56 cancer cell lines relative to the four breast
cancer archetypes. To do so, we only considered the 14,844 genes whose expression
was quantified in both the 1970 Metabric breast tumors5 and in the 56 breast
cancer cells lines14. We then performed quantile normalization on the joint
samples × genes matrix of log2 gene expression using Bioconductor’s normalize.
quantile function81. To focus the analysis on the diversity in gene expression within
cancer cell lines, we subtracted the mean gene expression profile out of each cell
line. As a result, each gene had an average expression of zero, so that expression of
a given gene in a certain cell line represented log2 fold changes relative to the mean
expression across all breast cancer cell lines. We then projected both cell lines and
breast cancer archetypes on the first three principal components of breast tumors,
which were determined while finding the archetypes of breast cancer (see section
“Fitting polyhedra to tumor gene expression data with ParTI”). In computing the
projection, we kept only the 14,844 dimensions corresponding to genes quantified
both in tumors and cell lines. For visual reference, the 1970 Metabric tumors were
also projected onto the same space.

GR AOC is a measure of drug sensitivity robust to cell-to-cell variations in
growth rates38. We determined how the GR AOC varied as a function of euclidean
distance to the archetype by grouping cell lines in four distance bins. For each bin i,
we computed the median GR AOC Gi and the within-bin standard error σi.
Because some drugs were assayed against only some of the 56 cell lines, we
discarded drugs with <5 cell lines per bin.

For each archetype, we looked for drugs whose potency peaked in cell lines
closest to the archetype, and then monotonically decreases away from it. To
address the concern that the small sample size (56 breast cancer cell lines vs 1970
breast tumors per cancer type) can produce false positive drug-archetype pairs, we
used a more stringent criterion to identify drugs effective against individual
archetypes than the criteria used to find overrepresented MSigDB pathway and
clinical features (see “enrichment analysis” section). We scored each drug by the
product of the decrease in GR AOC in consecutive bins plus twice the standard
error within bin, Πi (Gi—Gi+1+ 2 <σi>), with <σi> the median standard error
across all bins. Drugs which score high on this scheme see their GR AOC peak
close to the archetype and then steadily decrease away from it. If GR AOC
increased by more than twice the standard error in any consecutive bins, the score
was set to 0. This tolerates small bin-to-bin increase in GR AOC which could be
due to measurement error or cell-to-cell variability. Finally, we tested if GR AOC
was significantly higher in cell lines of the first distance bin compared with all other
bins (FDR < 10%, Mann–Whitney test, see “enrichment analysis” section). In doing
so, everolimus, rapaycin, and temsirolimus were grouped together as they share the
same mechanism (mTOR inhibition, Fig. 2g).

Of the top ten-scoring drugs, six appear on Fig. 2e–h. In addition to these six
drugs, Triciribine which inhibits the Akt kinase (an mTOR activator) is effective
against the biomass and energy archetype (p= 0.01), consistent with the sensitivity
of the biomass and energy archetype to mTOR inhibitors (Fig. 2g). Gemcitabine,
another drug in the top 10, was not statistically significant at FDR < 10% (p= 0.11).
The identity of the remaining drugs within the top 10 was kept confidential by the
authors of the dataset14, thereby preventing further interpretation.

Obtaining driver and passenger alterations. To test the hypothesis that driver
SNVs and CNAs are knobs that tune tumor gene expression towards specific tasks,
we first compiled lists of (1) drivers alterations, (2) passengers alterations, and (3)
alterations commonly found in cancer although not thought to be drivers in the
cancer type of interest. Second, we quantified whether these alterations pushed
tumor gene expression along the cancer front or away from it.

For each cancer type except breast cancer, we obtained lists of driver genes from
the IntOGen database40. We focused on known driver genes, for which there is

causal evidence of their implication in cancer according to the Cancer Gene
Census82. SNVs and CNAs in these known driver genes were labeled driver
alterations.

In breast cancer, instead of using the IntOGen database, we took advantage of
extensive efforts in classifying driver SNVs and CNAs as oncogenes and tumor
suppressors36,41,42. We defined driver alterations from: (1) genes lying within
minimal amplification regions, upregulated as a result of this amplification, and
with significant experimental evidence of their involvement in cancer development
by Santarius et al. (class I, II, and III)42. We defined these genes as oncogenes. (2)
genes with a high proportion of recurrent SNVs (for oncogenes) or a high
proportion of inactivating mutations (for tumor suppressors) in the survey of 2433
primary breast tumors of Pereira et al.36. (3) genes commonly amplified, or
carrying mis-sense or inframe mutations (for oncogenes), and genes commonly
deleted or carrying frameshifting or non-sense mutations (for tumor suppressors)
in a survey of 560 breast tumors41.

SNVs corresponding to genes identified as oncogenes or tumor suppressors in
any of these three studies were defined as driver SNVs. Amplifications (weak or
strong) corresponding to genes identified as oncogenes were defined as driver
CNAs. Deletions (weak or strong) corresponding to genes identified as tumor
suppressors were also defined as driver CNAs.

Individuals SNVs and CNAs that did not concern known driver genes were
called other cancer genes if they appeared in the list of genes frequently amplified
or mutated in cancer, listed in Table S2 of ref. 6. Finally, SNVs and CNAs in genes
not found in the two lists were called passengers.

Assessing alignment of SNVs and CNAs to front. We represented the average
effect of each alteration on gene expression as a vector, connecting the centroid of
tumors having the alteration to the centroid of tumors without the alteration
(Fig. 3a). To quantify whether an alteration pushes gene expression along the
cancer front or away from it, we computed the angle between the alteration vector
and the cancer front. The cancer front was defined as the linear subspace that
contains the archetypes. The angle between the cancer front and the alteration
vector was computed by projecting the alteration vector on the cancer front, and by
computing the scalar product between the alteration vector u and its projection v.
The scalar product <u, v> was converted to an angle α (in degrees) using the
inverse cosine, α= 180 cos−1(<u, v>/|u|.|v|)/π.

To quantify the statistical significance of the alignment of an alteration vector to
the cancer front, we randomly assigned alterations to tumors and computed the
corresponding alteration vectors. By repeating this procedure, we obtained 105

shuffled control vectors and their angles to the cancer front. We used the
distribution of angles of shuffled controls—which was independent of the
frequency of the alteration—to estimate the p-value that individual alteration
vectors are aligned to the cancer front. In principle, the (one-sided) p-value can be
estimated from the fraction of shuffled controls with a smaller angle to the cancer
front than a given alteration. An issue with this approach is that small angles are
rare among shuffle controls. Thus, the p-values of strongly aligned alterations is
imprecise. Precise estimation of the p-value of strongly aligned alterations is
important when correcting for multiple testing.

To better estimate the p-values, we first computed the empirical cumulative
distribution of the angle distribution of shuffle controls F(α). 1−F(α) is the p-value
of an alteration of angle α. Because the function log[1−F(α)] is much flatter than
F(α), we focused on approximating log[1−F(α)]. log[1−F(α)] was fitted to a fifth
order polynom. In fitting the polynom, we used only angles α supported by at least
ten shuffled controls. By extrapolating the polynom to small angles α, we computed
the p-value for each alteration vector to be aligned to the cancer front. Finally, we
controlled the FDR using the Benjamini-Hochberg procedure83.

Comparing intra-tumor heterogeneity and inter-tumor diversity. To char-
acterize associations between clonal heterogeneity and cancer tasks, we colored
metabric tumors according to their mutant allele tumor heterogeneity (MATH)
score36,84 (Supplementary Fig. 4A). MATH scores were communicated by Oscar
Rueda, Caldas lab, CR UK). We tested for enrichment of the MATH score among
tumors closest to the different archetypes and among tumors closest to center of
mass of the gene expression data using the ParTI methodology.

To compare intratumor heterogeneity and intertumor diversity, we first
analyzed the single-cell gene expression using the Seurat package85. Genes present
in <5% of cells and outlier cells with <1500 or more than 8000 detectable genes
were excluded from the analysis. Gene expression data was normalized and scaled
by the RNA count of each cell, the fraction of mitochondrial RNA, and the tumor
of origin, as was done in the original study47. Hematopoetic cells were excluded
based on the expression of the PTPRC marker. CAFs and endothelial cells also
identified based on other markers (PDGFRA, ZEB1, and ACTA2 for CAFs,
PECAM1 for endothelial cells). After this filtering, 650 single-cancer cells from six
breast tumors were left for analysis.

We projected the single-cancer cells on the first three principal components of
metabric tumors5. To do so, we focused on 1964 genes expressed in at least 50% of
single-cancer cells and profiled in the metabric tumors, so that gene expression
could be quantified in most cells, allowing projection of these cells on the space
defined by the first three principal components of the metabric tumors.
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To assess if intratumor heterogeneity and intertumor diversity are oriented in
common directions of gene expression space, we computed the fraction of variance
in gene expression explained by principal components computed on gene
expression of metabric tumors. This fraction is necessarily bounded by the fraction
of variance explained by principal components computed on gene expression from
single cells. In other words, if intratumor heterogeneity and intertumor diversity
were perfectly aligned in gene expression space, the fraction of variance explained
by metabric principal components would equal the fraction of variance explained
by single-cell principal components. We used five PCs because of an elbow in the
fraction of variance explained by single-cell PCs curve (Supplementary Fig. 4B).
The first five metabric PCs explain 25.4 ± 3% of the variance explained by the first
five single-cell PCs. This percentage is robust to using a different number of PCs
(Supplementary Fig. 4C): varying the number of PCs from 5 to 50 keeps the
percentage in the 22–27% range. To test if the fraction of variance explained by
metabric PCs can be attributed to random structures in gene expression data, we
shuffled the metabric gene expression by resampling expression of each gene.
Doing so preserved the variance in the expression of each gene but destroyed
correlations in the expression of different genes. The first five PCs of this shuffled
dataset explain 1.5 ± 0.4% of the variance explained by single-cell PCs. A t-test
supports the hypothesis that the first five metabric PCs explain significantly more
variance in single cell gene expression than shuffled metabric PCs (p= 0.0004, two-
sided). Thus, intertumor diversity explains a significant fraction of intratumor
heterogeneity.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data files to reproduce the analyses can be downloaded at: https://doi.org/
10.17632/2r9h9xzwm3.1
The TCGA data used in this study was downloaded from RSEM-normalized HiSeqV2

gene expression data (log2 RPKMs) from the TCGA data portal. The TCGA data portal
is now retired but the data can be retrieved from the Genomics Data Commons portal of
the National Cancer Institute [https://portal.gdc.cancer.gov/]. The starting point of our
analyses were the ‘genomicMatrix’ files which contain expression levels for 20,530 human
genes in 15 cancer types. We considered all cancer types with at least 250 primary tumor
samples: BLCA, BRCA, CESC, COAD, HNSC, KIRC, LGG, LIHC, LUAD, LUSC, OV,
PRAD, STAD, THCA, and UCEC. The data for the 1970 tumors of the METABRIC data
were downloaded from the cBio portal [http://www.cbioportal.org/study/summary?
id=brca_metabric]. We describe in detail how we obtained and processed the data in the
“Methods” section.

Code availability
The code to reproduce the analyses can be downloaded at https://doi.org/10.17632/
2r9h9xzwm3.1. Analyses were performed in R 3.4 and Matlab R2016b.
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