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HCMV-encoded US7 and US8 act as antagonists
of innate immunity by distinctively targeting
TLR-signaling pathways
Areum Park1, Eun A. Ra1, Taeyun A. Lee1, Hyun jin Choi1, Eunhye Lee1, Sujin Kang1, Jun-Young Seo2,

Sungwook Lee3 & Boyoun Park1*

The mechanisms by which many human cytomegalovirus (HCMV)-encoded proteins help

the virus to evade immune surveillance remain poorly understood. In particular, it is unknown

whether HCMV proteins arrest Toll-like receptor (TLR) signaling pathways required for

antiviral defense. Here, we report that US7 and US8 as key suppressors that bind both TLR3

and TLR4, facilitating their destabilization by distinct mechanisms. US7 exploits the ER-

associated degradation components Derlin-1 and Sec61, promoting ubiquitination of TLR3 and

TLR4. US8 not only disrupts the TLR3-UNC93B1 association but also targets TLR4 to

the lysosome, resulting in rapid degradation of the TLR. Accordingly, a mutant HCMV lacking

the US7-US16 region has an impaired ability to hinder TLR3 and TLR4 activation, and the

impairment is reversed by the introduction of US7 or US8. Our findings reveal an inhibitory

effect of HCMV on TLR signaling, which contributes to persistent avoidance of the host

antiviral response to achieve viral latency.
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Human cytomegalovirus (HCMV), a member of the beta
herpesvirus family, can establish lifelong latency after
primary infection. HCMV has developed a variety of

strategies to evade innate and adaptive immune responses
through co-evolution with its host1,2. Although HCMV expresses
a large number of membrane glycoproteins with unknown
functions, the 9 kb US2-US11 region of the unique short (US)
part of the HCMV genome encodes two miRNAs (US4 and US5)
and a five of eight type I glycoproteins (US2, US3, US6, US10, and
US11), which are known to inhibit the activation of innate or
adaptive immune responses3–7. Recently, it was demonstrated
that HCMV US9 blocks natural killer (NK) cell activation and
interferon (IFN)-β production by targeting signaling mediated by
major histocompatibility complex (MHC) class I-related chain A
(MICA)*008 and by mitochondrial antiviral signaling protein
(MAVS) and stimulator of interferon genes (STING),
respectively5,8. However, the cellular targets and functions of US7
and US8 are yet unknown.

Type I IFN and pro-inflammatory cytokines induced by
HCMV infection play important roles in activating innate
immune responses that interfere with viral replication and
intercellular transmission. HCMV has therefore developed
mechanisms to block the innate antiviral response. Specifically,
HCMV inhibits cytokine production by targeting signaling
molecules or by accelerating the turnover of cytokine-encoding
mRNAs9–14. In addition, HCMV blocks IFN production by
disrupting multiple levels of the IFN signal-transduction path-
way15–19. It is largely unclear, however, whether HCMV targets
Toll-like receptors (TLRs), which are major cellular sensors for
triggering type I IFNs and pro-inflammatory cytokines.

TLRs are pattern recognition receptors and part of the first line
of defense against infective pathogens. Thus, the TLR family
members specifically recognize microbial or viral products on the
surface of cells or in endolysosomes and strongly trigger
inflammatory responses to eliminate infections20–22. In parti-
cular, TLR3 detects double-stranded RNA (dsRNA), which is
generated by both RNA and DNA viruses23–25, and TLR4
recognizes Gram-negative bacterial lipopolysaccharide (LPS) as
well as viral components such as envelope glycoproteins26–29.
Upon binding its ligand, TLR3 induces the activation of IFN-
regulatory factor 3 (IRF-3) and nuclear factor-kappa B (NF-κB)
via the adapter molecule TIR-domain-containing adapter-
inducing interferon-β (TRIF), which drives the production of
type I IFNs and pro-inflammatory cytokines30. TLR4 signal
transduction can occur via a myeloid differentiation factor 88
(MyD88)-dependent and a TRIF-dependent pathways.

Several viruses have evolved specific proteins that target TLRs
to limit the release of IFN or pro-inflammatory cytokines, thus
exploiting an attractive mechanism for disturbing the innate
immune response. Hepatitis C virus protease NS3/4 A cleaves
TRIF to block TLR3-mediated signaling31. Vaccinia virus-
encoded A46R associates with TLR adaptors and thereby dis-
rupts the activation of NF-κB and IRF332. Kaposi’s sarcoma-
associated herpesvirus (KSHV) and hepatitis B virus also inhibit
TLR2, TLR4, and TLR9 expression, leading to a reduction of pro-
inflammatory cytokines33–35. Herpes simplex virus immediate-
early ICP0 has an E3 ligase activity that promotes the degradation
of the TLR2 adaptor protein and the inhibition of the NF-κB
signaling36. The microRNA (miRNA) UL112-3p produced by
HCMV represses the expression of TLR2;37 however, it is yet
unknown whether any HCMV-encoded proteins directly target
the TLRs.

In this study, we demonstrate that the HCMV-encoded US7
and US8 glycoproteins function as suppressors of the innate
immune response by targeting TLR3 and TLR4. US7 promotes
ubiquitin-dependent and proteasome-dependent degradation of

TLR3 and TLR4, while US8 facilitates the disruption of the TLR3-
UNC93B1 interaction and the endolysosomal translocation of
TLR4, leading to TLR3 and TLR4 instability and subsequent
blockade of antiviral responses. Consistent with those observa-
tions, HCMV infection suppresses TLR3 and TLR4 gene
expression and IFN production in vivo. Our findings propose a
crucial mechanism by which HCMV glycoproteins US7 and US8
directly target TLR signaling and thus contribute to the evasion of
the host antiviral immune response.

Results
US7 and US8 target TLR signaling pathways. The double-
stranded (ds)DNA genome of HCMV is composed of unique
long (UL) and unique short (US) regions, which are flanked on
one end by terminal repeat sequences (TRL/TRS) and on the other
end by internal repeats (IRL/IRS) (Fig. 1a). The genes in the
US2–US11 region target essential stages of antigen presentation
to CD8+ T cells (US2, US3, US4, US6, and US11), MAVS-
mediated or STING-mediated IFN-β production (US9), NK cell
activation (US9 and US10), and NF-κB-mediated cytokine pro-
duction (US5); however, the targets of US7 and US8 have not yet
been identified (Fig. 1a). To identify cellular targets of US7 and
US8, we stimulated HCMV-permissive human foreskin fibroblast
(HFF) cells expressing hemagglutinin (HA)-tagged US7 (HA-
US7) or US8 (HA-US8) with dsDNA and the changes in gene
expression were monitored using microarrays. As expected, the
dsDNA-stimulated HFF cells showed a robust increase in the
expression of various immune-related genes, such as IFN-related
genes, pro-inflammatory cytokines, and chemokines. Notably, the
dsDNA-induced expression of immune-related genes in HFF cells
expressing US7 or US8 was significantly reduced compared with
that in control cells (Fig. 1b). Among the genes with the greatest
decrease in expression mediated by US7 or US8 were ifnb, tnfsf10,
ccl8, cxcl10, cxcl11, ifit3, and isg15 (Fig. 1c). To confirm those
results obtained using microarrays, we performed quantitative
real-time PCR (qPCR) analysis using dsDNA-stimulated HFF
cells that stably expressed empty vector, HA-US7, or HA-US8.
US7 or US8 expression consistently resulted in significantly lower
expression of ifnb, tnfsf10, ccl8, cxcl10, cxcl11, ifit3, and isg15
(Fig. 1d). These results suggest that HCMV glycoproteins US7
and US8 target the innate immune response.

US7 and US8 each possess a putative signal sequence at the end
of their N-terminal region, we thus further examined their
subcellular localization by immuno-fluorescence assay (IFA). US7
predominantly localized in the endoplasmic reticulum (ER), while
US8 appeared in the Golgi or lysosome, and it clearly
accumulated in lysosomes in the presence of chloroquine, an
inhibitor of lysosomal acidification (Supplementary Fig. 1a-c).
Because IFN production is highly linked to the ER, ER-
mitochondria junctions, and lysosomes, where STING/MAVS
and TLRs are located38, we hypothesized that US7 or US8 may
target immune sensors in the ER or lysosome to prevent host
antiviral responses. To test that, we first examined the effects of
US7 and US8 on ifnb expression in cells stimulated by STING or
MAVS overexpression, which activates the STING or MAVS
signaling cascade; however, there was no difference in ifnb
expression among cells expressing empty vector, US7-GFP, and
US8-GFP (Supplementary Fig. 2a). To further assess whether US7
or US8 affect TLR-mediated signaling, we examined their effects
on cytokine production in cells stimulated with Pam3CSK4,
synthetic dsRNA (poly(I:C)), LPS, Imiquimod, or CpG-DNA,
which robustly activate the TLR2, TLR3, TLR4, TLR7, and
TLR9 signaling cascades, respectively. HFF cells expressing US7
or US8 showed impaired TLR-mediated IL-6 production after
stimulation with the TLR-activating agents compared with cells
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expressing empty vector (Supplementary Fig. 2b). Particularly,
since TLR3 and TLR4 play an important role in the stimulation of
IFN-β production and subsequent activation of protective innate
immunity against viral infection20–22, we focused on determining
whether TLR3 or TLR4 is responsible for activating IFN
production through the TRIF pathway. To assess whether US7
or US8 affects TLR3-mediated or TLR4-mediated signaling, we
examined the effects of US7 and US8 on type I IFN and cytokine
production in cells stimulated with synthetic dsRNA (poly(I:C))

or LPS, which robustly activate the TLR3 and TLR4 signaling
cascades, respectively. HFF cells expressing US7 or US8 showed
impaired TLR3-mediated or TLR4-mediated transcription of ifnb,
cxcl10, and cxcl11 genes compared with cells expressing empty
vector (Fig. 1e) To confirm the qPCR results, we measured the
effects of US7 and US8 on TLR3-mediated and TLR4-mediated
nfkb and ifnb promoter activity in HEK293T cells, which have a
higher transfection efficiency than HFF cells. Consistently,
luciferase reporter assays showed that the nfkb and ifnb promoter
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activity evoked by dsRNA or LPS in HEK293T cells expressing
US7 or US8 was significantly lower than that in control cells
(Fig. 1f). We observed a significant difference in the mRNA
expression of cxcl10 in cells expressing US7 or US8, but not in
cells expressing other US proteins including US14, and US15
(Supplementary Fig. 2c). To determine if the abilities of US7 and
US8 to block TLR3 and TLR4 signaling are cell-type specific, we
observed IFN-β protein secretion in US7-expressing or US8-
expressing immune cells of the monocyte-macrophage lineage,
THP-1. We found that TLR3-mediated and TLR4-mediated IFN-
β secretion levels were reduced in cells that stably expressed US7
or US8 (Fig. 1g). Those results suggest that both US7 and US8 are
suppressors of IFN production induced by TLR3 or TLR4.

US7 and US8 facilitate the degradation of both TLR3 and
TLR4. To explore how US7 and US8 inhibit signaling mediated
by TLR3 and TLR4, we examined the mRNA and protein levels of
Myc-tagged TLR3 and TLR4 in cells expressing HA-US7 or HA-
US8. Notably, both US7 and US8 decreased TLR3 and TLR4
protein levels, but not mRNA levels (Supplementary Fig. 3a and
b). To confirm those results, we examined whether US7 or US8
downregulates endogenous TLR3 and TLR4 protein levels. To test
that, we assessed the endogenous expression levels of TLR3 and
TLR4 in HeLa cells expressing empty vector, US7, or US8 by
immunoblot assay with anti-TLR3 and anti-TLR4 antibodies.
Consistent with the results of the overexpression system, the
endogenous TLR3 and TLR4 protein levels were reduced by US7
or US8 expression (Fig. 2a). Because newly synthesized TLR4 is
present at the plasma membrane, where it recognizes molecular
components on the surface of pathogens, we next examined the
cell-surface levels of endogenous TLR4 by flow cytometry. Cells
expressing HA-US7 or HA-US8 had reduced surface expression
of TLR4 compared with control cells expressing other US protein,
US3 (Fig. 2b and Supplementary Fig. 3c). We further confirmed
our results by biochemical analysis of cells labeled with [35S]-
methionine and cysteine. In cells expressing HA-US7 or HA-US8,
despite similar rates of TLR4 synthesis during the 1 h pulse, US7
and US8 degraded 57.7% and 65.6% of the labeled TLR4,
respectively, after the 4 h chase (Fig. 2c). Moreover, an endogly-
cosidase H (Endo H)-resistant form of TLR4 was observed in
control cells but was barely detectable in cells expressing US7 or
US8 (Fig. 2c, asterisk). Those results suggest that HCMV US7 and
US8 reduce the stability of TLR3 and TLR4, and particularly the
surface expression of TLR4.

To investigate whether the proteasome or lysosome is involved
in US7-mediated or US8-mediated degradation of TLR3 or TLR4,
we monitored those TLR levels in HeLa cells that stably expressed
US7 or US8 and Myc-tagged TLR3 (TLR3-Myc) or TLR4-Myc in

the presence of the MG132, a proteasome inhibitor, or
chloroquine. In US7-expressing cells, MG132, but not chlor-
oquine, restored the levels of TLR3 and TLR4, whereas TLR3 and
TLR4 degradation was drastically attenuated by both MG132 and
chloroquine in US8-expressing cells (Fig. 2d, e). Collectively,
these results suggest that US7 destabilizes TLR3 and TLR4
through a proteasome-dependent pathway, whereas US8-
mediated degradation of TLR3 and TLR4 proteins involves both
the proteasome and lysosome.

US7 degrades TLR3 and TLR4 by a ubiquitin/proteasome
system. To elucidate whether US7-induced TLR3 and TLR4
degradation involves direct interaction between US7 and both
TLRs, we transfected HA-US7 into HeLa cells and then per-
formed co-immunoprecipitation (IP) experiments with cells
treated with MG132 to prevent US7-mediated degradation to
obtain sufficient amounts of endogenous TLR3 or TLR4 proteins.
US7 clearly bound to both endogenous TLR3 and TLR4, which
was consistent with IFA data showing that US7 co-localizes with
TLR3 and TLR4 (Fig. 3a, b).

Previous studies have proposed that US2 or US11 uses Sec61 or
Derlin-1, essential ER-associated degradation components that
facilitate the translocation of substrates such as MHC class I
molecules from the ER to the cytosol, leading to ubiquitin-
dependent destruction in the proteasome39–41. We thus deter-
mined whether Sec61 or Derlin-1 is involved in US7-mediated
TLR3 and TLR4 degradation by assessing the physical interaction
between HA-US7 and endogenous Sec61 and Derlin-1. Interest-
ingly, the ability of US7 to bind both Sec61β and Derlin-1 was
similar to that of US2 or US11 (Fig. 3c). To exclude tagging
specificities, we assessed the binding of Sec61β to GFP and GFP-
US7. Consistent with the results for HA-US7, Sec61β bound to
GFP-US7, but not to GFP alone (Supplementary Fig. 3d). To
further examine the involvement of Sec61β and Derlin-1 in US7-
mediated endogenous TLR3 and TLR4 degradation, we used
small hairpin RNAs (shRNAs) to deplete Sec61β or Derlin-1 in
HeLa cells. Although the effects seemed to depend on the
knockdown efficiency of the shRNAs, we found that US7-induced
degradation of endogenous TLR3 and TLR4 was considerably
restored by the depletion of Sec61β or Derlin-1 (Fig. 3d). Because
US7-mediated TLR3 and TLR4 degradation depends on a
proteasomal pathway, we next examined whether US7 promotes
the ubiquitin-dependent breakdown of TLR3 or TLR4. US7-
expressing cells displayed considerable accumulation of ubiquitin
conjugates of TLR3 and TLR4 in the presence of MG132 (Fig. 3e).
Collectively, these results suggest that US7 degrades TLR3 and
TLR4 by a ubiquitin/proteasome system via its association with
Sec61β or Derlin-1.

Fig. 1 HCMV US7 and US8 target TLR3-mediated and TLR4-mediated antiviral responses. a Schematic representation of the HCMV genome and the US2-
US11 region capable of targeting various cellular immune molecules. b Heat map showing expression of cellular targets of US7 and US8 in HFF cells
expressing US7 or US8 after stimulation by dsDNA (Supplementary Data 1). c Change in cellular mRNA expression caused by US7 or US8 versus mRNA
expression in empty vector-expressing HFF cells stimulated by dsDNA. Scatter plots of US7- or US8-upregulated ( > 1.5-fold change, red dots) or
-downregulated genes ( < 1.5-fold change, blue dots) in dsDNA-stimulated HFF cells. d US7 and US8 inhibit DNA-induced innate antiviral response. HFF
cells expressing empty vector, HA-US7, or HA-US8 were transfected with 500 ngml−1 dsDNA for 12 h. The mRNA expression of the indicated genes was
analyzed by qPCR or RT-PCR. *P < 0.001, **P < 0.05 (Student’s t-test). e US7 and US8 inhibit antiviral gene expression mediated by TLR3 and TLR4.
TLR3-Myc- or TLR4-Myc-expressing HFF cells were transduced with empty vector, HA-US7, or HA-US8 and were then stimulated by 10 μg ml−1 poly(I:C)
or 5 μg ml−1 LPS for 12 h. The indicated gene expression was measured by qPCR. *P < 0.001, **P < 0.05 (Student’s t-test) f US7 and US8 suppress ifnb and
nfkb promoter activity. Luciferase assays of ifnb and nfkb promoter activity in TLR3- or TLR4/MD2-expressing HEK293T cells transfected with empty
vector, HA-US7, or HA-US8 and incubated with 5 μg ml−1 LPS or 10 μg ml−1 poly(I:C) for 12 h. The protein over-expression of HA-US7 or HA-US8 was
analyzed by immunoblot analysis with anti-HA antibody. *P < 0.001, **P < 0.05 (Student’s t-test). g US7 and US8 block IFN-β production mediated by TLR3
and TLR4. THP-1 cells expressing empty vector, US7, or US8 were stimulated by 100 μg ml−1 poly(I:C) or 1 μg ml−1 LPS for 24 h. IFN-β secretion levels or
HA-US7/US8 overexpression levels were analyzed by ELISA or immunoblot analysis, respectively. *P < 0.001, **P < 0.05 (Student’s t-test). Data are
representative of three independent experiments and are presented as the mean ± s.d. in d–g. Source data are provided as a Source Data file
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Fig. 2 HCMV US7 and US8 destabilize TLR3 and TLR4. a US7 and US8 degrade TLR3 and TLR4. HeLa cells were transfected with empty vector, HA-US2,
HA-US7, HA-US8, or HA-US11 and then the lysates were immunoblotted with anti-TLR3, anti-TLR4, anti-HA, anti-MHC class I molecules (K455), or anti-
Tubulin antibody. The intensity of TLRs bands was quantified as comparing the relative abundance of TLR3 or TLR4 to Tubulin (bottom graphs). b US7 and
US8 downregulate the cell-surface expression of TLR4. Endogenous TLR4 surface expression on U937 cells expressing US7 or US8 was assessed by FACS
analysis. Right graph, validation of TLR4 cell surface expression levels in US7- or US8-expressing cells by FACS. *P < 0.001 (Student’s t-test). c HeLa cells
stably expressing TLR4-Myc were transfected with HA-US7 or HA-US8. Cells were labeled with [35S] methionine/cysteine for 1 h and chased for 4 h. After
endo-H treatment, lysates were immunoprecipitated with anti-Myc antibody. Asterisk denotes an endo-H resistant form of TLR4. d, e US7 and US8
destabilize TLR3 and TLR4 by a proteasome-dependent and/or lysosome-dependent pathway. HeLa cells expressing TLR3-Myc or TLR4-Myc were
transfected with empty vector, HA-US7 d, or HA-US8 e and then treated with either 20 μM MG132 or 100 μM chloroquine for 4 h. Lysates were
immunoblotted with the indicated antibodies. Asterisk indicates a non-specific bands. Data are representative of at least three independent experiments
and are presented as the mean ± s.d. in b. Source data are provided as a Source Data file
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Fig. 3 US7-mediated TLR3 or TLR4 degradation requires Derlin-1/Sec61 and ubiquitination. a US7 physically interacts with TLR3 and TLR4. HeLa cells were
transfected with empty vector or HA-US7 and treated with 20 μM MG132 for 4 h. Lysates were immunoprecipitated with anti-TLR3 or anti-TLR4 antibody
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US8 promotes TLR3 and TLR4 destabilization. Because US8 is
detectable in lysosomal compartments, and its ability to degrade
TLR3 and TLR4 is impaired in the presence of chloroquine, we
speculated that US8 directly targets TLR3 and TLR4 to the
lysosome via a physical interaction with the TLRs. Indeed, US8
associated with both endogenous TLR3 and TLR4, which is
concordant with the IFA data showing the colocalization of US8
with both tagged TLR proteins (Fig. 4a, b). TLR4 mainly localized
in either the ER/Golgi or the plasma membrane in control cells,
but it endocytosed to the early endosome in LPS-stimulated cells
(Supplementary Fig. 4), which promotes the subsequent expres-
sion of IFNs and IFN-related genes42. Intriguingly, regardless of
LPS stimulation, the TLR4 distribution included punctate struc-
tures in lysosomal compartments containing US8 (Fig. 4b and
Supplementary Fig. 4). The TLR4 distribution displayed dim
punctate structures in lysosomal compartments containing US8.
Interestingly, those structures were exhibited more clearly in the
presence of chloroquine, suggesting that US8 targets TLR4 to the
lysosome for its degradation (Fig. 4b). Additionally, in accordance
with previous findings showing that US8 degrades TLR4 in a
proteasome-dependent manner (Fig. 2e), US8 also enabled TLR4
to be ubiquitinated (Fig. 4c), presumably because of the structural
destabilization of TLR4 caused by the physical interaction with
US8. Together, our results suggest that US8 promotes aberrant
translocation of TLR4 into lysosomes and ubiquitination for
lysosomal or proteasomal degradation.

Because TLR3 originally requires translocation to the endoly-
sosomes, where it plays an important role in the activation of
TLR3 signaling, we needed to understand how US8 promotes a
decrease in TLR3 stability or activation in endolysosomes. To
explore that, we focused on the effect of US8 on the regulation
and function of UNC93B1, which enables TLR3 to be transported
to endolysosomes and to stabilize43–46. Co-IP experiments
revealed that US8 binds to UNC93B1, which is consistent with
IFA data showing that UNC93B1 was targeted to US8-containing
lysosomal compartments (Fig. 4d, e). Overexpression of US8
decreased the level of UNC93B1, and US8-mediated UNC93B1
destabilization was rescued by chloroquine (Fig. 4f). We also
observed that US8 inhibits the TLR3-UNC93B1 interaction
(Fig. 4g). Furthermore, TLR3 that was rendered incapable of
binding to UNC93B1 by US8 was eventually ubiquitinated
and degraded in a proteasome-dependent manner, which was
similar to the pattern observed with TLR4 (Fig. 4h, compared
with Fig. 2e). These results suggest that US8 facilitates
TLR3 destabilization by blocking the binding affinity of
UNC93B1 for TLR3, thus promoting the lysosomal degradation
of UNC93B1. Taken together, our findings demonstrate that US8
disrupts the TLR3-UNC93B1 interaction and targets TLR4
into lysosomes, thereby promoting TLR3 and TLR4 destabiliza-
tion through proteasome-dependent or lysosome-dependent
degradation.

The C terminus of US7 and US8 is involved in their function.
Because the C-terminal region of US7 and US8 faces the cyto-
plasmic side of the cellular membrane, where many immune
regulatory proteins elicit their immune responses, we speculated
that the C-terminal region might contribute to TLR3 or TLR4
degradation and thus block IFN or cytokine production. To test
this, we constructed deletion mutants lacking the C-terminal
domain of US7 and US8 (US7ΔCT and US8ΔCT; Fig. 5a) and
measured the stability and fast-mobility of the mutant proteins in
non-reducing conditions to assess whether they undergo proper
folding. The protein stability and mobility of US7ΔCT and
US8ΔCT were similar to those of wild-type US7 and US8, sug-
gesting that the mutants maintained their proper folding

(Supplementary Fig. 5a, b). The intracellular distribution and the
Sec61/Derlin-1 interaction of US7ΔCT were both similar to those
of wild-type US7 (Supplementary Fig. 6a and b). Notably,
US7ΔCT-expressing cells showed restored cxcl10 and ifnb mRNA
expression compared with wild-type US7-expressing cells
(Fig. 5b). Consistent with the qPCR results, cells that expressed
US7ΔCT exhibited normal luciferase activity at the ifnb promoter
after stimulation with dsRNA or LPS (Supplementary Fig. 6c).
Although the expression levels of the wild-type and mutant
proteins were comparable, US7ΔCT was ineffective in causing
TLR3 or TLR4 degradation and ubiquitination compared with
wild-type US7 (Fig. 5c, d). Likewise, in contrast to wild-type US7,
US7ΔCT resulted in normal cell-surface expression of TLR4,
which was almost equal to that observed in control cells (Fig. 5e).
These results suggest that the cytoplasmic region of US7 is
required for degrading TLR3 and TLR4 proteins.

We further analyzed whether the cytoplasmic C-terminal
domain of US8 is essential for blocking TLR3 or TLR4 activation.
In contrast to full-length US8, US8ΔCT failed to localize to
lysosomes (Supplementary Fig. 7a), suggesting that the cytoplas-
mic domain of US8 is involved in its subcellular translocation to
the lysosome. Of note is that the C-terminal region of US8
contains two putative tyrosine-based motifs responsible for
lysosomal targeting47. To determine if those tyrosine motifs are
essential for the lysosomal targeting of US8, we generated a point
mutation in the US8 cytoplasmic region by substituting alanine
for the tyrosine at amino acid positions 204 and 211 (US8-Y204/
211A; Fig. 5a). Although cells expressing US8-Y204/211A
displayed discernible punctate structures, the mutant protein
failed to localize to the lysosomes, as evidenced by its
colocalization not with LAMP1 (Supplementary Fig. 7a). To
examine the effects of US8ΔCT and US8-Y204/211A on antiviral
responses induced by TLR3 and TLR4, we analyzed cxcl10 and
ifnb mRNA expression levels in cells expressing empty vector,
wild-type US8, US8ΔCT, or US8-Y204/211A after stimulation
with dsRNA or LPS. Both mutant proteins significantly restored
the mRNA expression levels of cxcl10 and ifnb as well as the ifnb
promoter activity (Fig. 5f and Supplementary Fig. 7b). In contrast
to wild-type US8, the US8ΔCT and US8-Y204/211A mutants
were incapable of inducing TLR3/TLR4 or UNC93B1 degradation
(Fig. 5g and Supplementary Fig. 7c). In addition, the cell-surface
expression of TLR4 was restored in cells expressing US8ΔCT or
US8-Y204/211A to the extent of being essentially indistinguish-
able from that in empty-vector-expressing cells (Fig. 5h). Taken
together, these findings suggest that the cytoplasmic region of
both US7 and US8 is involved in the ability of the viral proteins to
destabilize TLR3 and TLR4, and particularly, that the tyrosine
motifs within the US8 cytoplasmic region plays a role of
transporting US8 and its targets to the lysosome, leading to
lysosomal degradation of TLR3 and TLR4 and subsequent
suppression of antiviral responses.

US7 and US8 subvert the innate antiviral response in vivo. To
directly demonstrate the physiological relevance of US7 and US8
in suppressing TLR-mediated antiviral responses, we investigated
the functions of US7 and US8 during infection by wild-type
HCMV strain AD169. To do that, we used an HCMV deletion
mutant lacking the US7-US16 region (HCMVΔUS7-16), which is
nonessential for viral replication, and recombinant versions of
HCMVΔUS7-16 with reinserted US7 or US8 (HCMVΔUS7-16-
Rev.US7 and HCMVΔUS7-16-Rev.US8; Fig. 6a). We initially
examined the time courses of US7 and US8 expression in wild-
type HCMV-infected HFF cells. The mRNA expression levels of
both proteins increased steadily at the early time points and were
sustained at later time points during the infection (Fig. 6b, left
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Fig. 4 US8 promotes TLR3 and TLR4 destabilization by disrupting TLR3-UNC93B1 interaction and targeting TLR4 to lysosomes. a US8 interacts with TLR3
and TLR4. HeLa cells were transfected with empty vector or HA-US8 and then treated with 100 μM chloroquine for 4 h. Lysates were immunoprecipitated
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Data are representative of at least three independent experiments. Source data are provided as a Source Data file
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panels). As expected, although HCMVΔUS7-16 successfully
infected the host cells, as evidenced by high expression levels of
UL44 throughout the course of infection, neither US7 nor US8
was detected during infection by the mutant virus (Fig. 6b, right
panels). We further investigated whether US7 or US8 affects
TLR3-mediated or TLR4-mediated innate antiviral immune
responses in vivo. During wild-type HCMV infection, ifnb
expression increased at early time points but was gradually

decreased over 48 h, reaching a level that was about 10% of that in
cells infected by HCMVΔUS7-16 (Fig. 6c). Whereas the protein
levels of TLR3 and TLR4 declined at 12 h and 24 h, respectively,
after infection by wild-type HCMV, they were barely affected by
infection with HCMVΔUS7-16 (Fig. 6d).

To specify the effects of US7 and US8 on the suppression of
antiviral responses mediated by TLR3 and TLR4, we transfected
the US7-US16 genes into HCMVΔUS7-16-infected HFF cells and
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examined ifnb mRNA production. We first observed over-
expressed levels of HA-US7 and HA-US8 in HFF cells,
confirming that these US genes were successfully overexpressed
at levels comparable to that observed during wild-type HCMV
infection (Supplementary Fig. 8a). Consistently, we observed ifnb
mRNA expression at 24 h, but not at 96 h, after wild-type HCMV
infection or stimulation with poly(I:C) (Supplementary Fig. 8b,
lanes 3 and 4). In contrast, ifnb mRNA expression was highly
increased at 96 h after infection with HCMVΔUS7-16 (Supple-
mentary Fig. 8b, lanes 4 and 5). The introduction of both US7 and
US8 reduced the ifnb mRNA levels in HCMVΔUS7-16-infected
HFF cells (Supplementary Fig. 8b, lanes 6 and 7). We also
observed a considerable reduction of ifnb mRNA levels in cells
transfected with US10, but not in those transfected with US11-
US16 (Supplementary Fig. 8b, lanes 9-15). Similar to the patterns
in cells infected with wild-type HCMV, the stability of TLR3-Myc
and TLR4-Myc was decreased when US7 or US8 was ectopically
expressed in HCMVΔUS7-16-infected HFF cells (Supplementary
Fig. 8c).

To exclude the possibility that the transfection system with
each US gene had any side effects, we examined endogenous
TLR3 and TLR4 protein levels in HFF cells infected with
HCMVΔUS7-16-Rev.US7 or HCMVΔUS7-16-Rev.US8. Immu-
noblot analysis of infected-cell lysates showed that the overall
amounts of endogenous TLR3 and TLR4 proteins, but not
another membrane protein, Calnexin, decreased considerably
after infection with wild-type HCMV, HCMVΔUS7-16-Rev.US7,
or HCMVΔUS7-16-Rev.US8, whereas they remained unchanged
in cells infected with HCMVΔUS7-16 (Fig. 6e). Consistent with
the in vitro results, the mRNA expression levels of cxcl10, cxcl11,
tnfsf10, and ifnb were severely reduced in HFF cells infected with
wild-type HCMV, HCMVΔUS7-16-Rev.US7, or HCMVΔUS7-
16-Rev.US8, whereas they were induced normally in cells infected
with HCMVΔUS7-16 (Fig. 6f). Overall, our results provide direct
evidence for an essential in vivo role of US7 and US8 in
subverting the antiviral innate response by targeting TLR3
and TLR4.

Discussion
Many viruses have been reported to target TLR signaling
pathways that activate both innate and adaptive immunity.
However, how HCMV blocks TLR-mediated antiviral responses
has yet remained unknown. In this study, we report that the
HCMV-encoded glycoproteins US7 and US8 target the TLR3
and TLR4 signaling pathways by promoting the degradation of

those TLRs, which results in the overall downregulation of the
TLR-mediated antiviral immune response. We found that US7
binds to Derlin-1 and Sec61β together with TLR3 or TLR4,
leading to the subsequent degradation of those TLRs in a
proteasome-dependent manner. Furthermore, US8 not only
disrupts the binding affinity of TLR3 for UNC93B1 by a
competitive interaction with both TLR3 and UNC93B1, but it
also causes TLR4 to be aberrantly transported to the lysosome,
eventually leading to the destabilization of both TLRs and the
subsequent suppression of antiviral innate immunity (Fig. 7).
The expression of TLR3 and TLR4 was significantly down-
regulated during wild-type HCMV infection, but not during
infection by mutant HCMV with a deletion of the US7-US16
region. The loss of TLR3 and TLR4 downregulation by the
mutant HCMV was reversed by the introduction of US7 or
US8, which provided evidence of the physiological relevance of
those viral proteins. Overall, our results identify a previously
unknown strategy for evading the innate immune response in
which HCMV-encoded glycoproteins US7 and US8 both
negatively regulate the antiviral response by targeting TLR3 and
TLR4.

Particularly, US7 uses Sec61 and Derlin-1 to promote ubiqui-
tination of TLR3 and TLR4, leading to ubiquitin-dependent
degradation in the proteasome, which is similar to US2- or US11-
mediated destruction of MHC class I molecules. Several studies
propose that US2 appropriates the TRC8 (translocation in renal
carcinoma, chromosome 8 gene) E3 ubiquitin ligase to degrade
MHC class I molecules, whereas degradation induced by US11 is
dependent on the TMEM129 E3 ligase48,49. We thus speculate
that US7 may possibly interact with TRC8 or TMEM129 E3
ligase, thereby facilitating ubiquitination and subsequent degra-
dation of TLR3 or TLR4.

The functional domain study of US7 and US8 revealed that
the C-terminal region of both proteins is essential for the
proteins ability to destabilize TLR3 and TLR4. In particular,
US8ΔCT completely failed to localize to lysosomes, suggesting
that other residues in the C-terminal domain of US8 may be
involved in accurately targeting US8 to the lysosome. Due to
the defective lysosomal translocation, the ability of the US8-
Y204/211A mutant to inhibit TLR3 and TLR4 destabilization
was significantly impaired. Although each glycoprotein enco-
ded by the US2-US11 region localizes mostly at the ER, each
has a different function in evading the host immune response.
That may be due to the diversity of the C-terminal region
among the US proteins, which determines the target and

Fig. 5 The C-terminal domain of US7 and US8 is required for the function of those proteins. a Schematic representation of US7 and US8 and their C-
terminal deletion mutants (US7ΔCT and US8ΔCT) and the US8 point mutant (US8-Y204/211A). b The effect of US7 C-terminal domain in the blockade of
TLR3- or TLR4-mediated cxcl10 or ifnb expression. HeLa cells were transfected with empty vector, wild-type US7, or US7ΔCT and then treated with 10 μg
ml−1 poly(I:C) or 5 μg ml−1 LPS for 12 h. The mRNA expression levels of cxcl10 and ifnb genes were measured by qPCR analysis. *P < 0.001, **P < 0.05
(Student’s t-test). c US7ΔCT restores TLR3 and TLR4 levels. TLR3-Myc- or TLR4-Myc-expressing HeLa cells were transfected with wild-type US7 or
US7ΔCT. Lysates were immunoblotted with anti-Myc antibody. Tubulin was used as a loading control. d The involvement of US7 C-terminal domain in the
ubiquitination of TLR3 or TLR4. TLR3-Myc- or TLR4-Myc-expressing HEK 293 T cells were transfected with wild-type US7 or US7ΔCTand then treated
with 20 μM MG132 for 4 h. Lysates were immunoprecipitated with anti-Myc and immunoblotted with indicated antibodies. e US7 CT domain is important
for downregulating the cell surface expression of TLR4. Endogenous TLR4 surface expression of US7- or US7ΔCT-expressing U937 was assessed by FACS
analysis. Right graph, validation of TLR4 cell surface expression levels in US7- or US7ΔCT-expressing cells by FACS. *P < 0.001, **P < 0.05 (Student’s t-
test). f Both US8ΔCT and US8-Y204/211A are not able to inhibit TLR3- or TLR4-mediated cxcl10 or ifnb expression. HeLa cells were transfected with empty
vector, wild-type US8, US8ΔCT, or US8-Y204/211A and then treated with 10 μg ml−1 poly(I:C) or 5 μg ml−1 LPS for 12 h. cxcl10 and ifnb mRNA levels were
measured by qPCR analysis. *P < 0.001, **P < 0.05 (Student’s t-test). g US8-Y204/211A mutant restores TLR3 and TLR4 levels. TLR3-Myc- or TLR4-Myc-
expressing HeLa cells were transfected with wild-type US8, US8ΔCT or US8-Y204/211A. Lysates were immunoblotted with indicated antibodies. h
US8ΔCT or US8-Y204/211A restores TLR4 surface. Endogenous TLR4 surface expression of wild-type-, US8ΔCT-, or US8-Y204/211A-expressing U937
was assessed by FACS analysis. Bottom graph, validation of TLR4 cell surface expression levels in US8-, US8ΔCT-, or US8-Y204/211A-expressing cells by
FACS. *P < 0.001, **P < 0.05 (Student’s t-test). Data are representative of three independent experiments and are presented as means ± s.d. in b, e, f, and
h. Source data are provided as a Source Data file
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functionality of the proteins in immune evasion. In addition,
whether other domains of US7 or US8 may be involved in the
antagonistic capabilities of those proteins needs to be better
understood.

Interestingly, HCMV miRNAs selectively block host immune
responses to viral infection12,37,50,51. It is also proposed that
HCMV regulates the expression of one of its own genes, US7, by
two different miRNAs, miR-US5-1 and miR-US5-2, thus down-
regulating US7 mRNA expression late in the infection52. The

mRNA expression level of US7 was slightly decreased after 96 h of
HCMV infection (Fig. 6b), which may help to prevent apoptosis
caused by excessive viral burden, thus facilitating a persistent
infection. Indeed, HCMV is characterized by a protracted repli-
cation cycle and the blocking of cellular apoptosis or necrosis,
which keep the host cell alive53.

Several lines of evidence suggest that HCMV enhances intest-
inal bacterial infections, such as Salmonella typhimurium
infections54,55. In addition, the prevalence of HCMV infection in
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the colon is significantly higher in patients with inflammatory
bowel disease (IBD) relative to that in controls, supporting the
hypothesis that IBD severity is positively linked to HCMV
infection56,57. Although the mechanisms of synergistic patho-
genesis in viral-bacterial coinfections have remained elusive, on
the basis of published studies and our findings here, it is plausible
that HCMV infection may directly contribute to increased sus-
ceptibility to intestinal invasive bacteria by selectively targeting
TLR3 and TLR4 and, furthermore, may be a considerable risk
factor for developing the severity of secondary bacterial infections
or IBD.

For HCMV to establish a latent infection, it has adopted many
strategies to block IFN and cytokine production throughout the
course of infection. Previous studies suggest that HCMV encodes
several different genes, such as ul44, ul82, ul83, ul122, and ul123,
which are all essential for inhibiting IFN production17,58–62.
Additionally, because TLRs play a pivotal role in the activation of
both innate and adaptive immunity during viral infection, our
findings support the hypothesis that HCMV has also evolved
strategies to block IFN production by targeting TLR proteins.
That suggests the possibility of redundancy among the viral genes
that obscures important functions of the individual antagonists in
the suppression of IFN responses under different conditions. That
would explain why the deletion of the US7-US16 region in
HCMV did not result in attenuated replication of the virus. In

other words, the HCMVΔUS7-16 mutant virus might use other
viral proteins; such as UL44, UL82, UL83, UL122, or UL123; to
rescue the viral blockade of the IFN response in place of US7
and US8, thus maintaining viral replication in the host. Given
that the HCMV-encoded glycoproteins US7, US8, and US9 can
inhibit the innate antiviral response, and also that US10 seems
to attenuate IFN-β production, the US7-US10 region of the
HCMV genome might be a reservoir of viral genes that function
together and simultaneously to subvert host innate antiviral
responses, particularly at later time points of infection. Our
findings provide the first molecular mechanism by which an
HCMV-encoded glycoprotein blocks a TLR-mediated signaling
pathway, which will improve the understanding of HCMV
pathogenesis and support future development of potential
therapeutics for HCMV-associated diseases.

Methods
Cell lines. Human macrophages cell line U937 (CRL-1593.2, ATCC, Manassas,
VA) and human monocyte cell line THP-1 (TIB-202, ATCC) were cultured in
RPMI1640 supplemented with 10% heat inactivated fetal bovine serum (FBS)
(HyClone, Logan, UT) and penicillin/streptomycin (Hyclone). Human
embryonic kidney (HEK) 293 T (CRL-3216, ATCC), HeLa (CCL-2, ATCC), and
human foreskin fibroblasts (HFFs) (SCRC-1041, ATCC) cells were cultured in
DMEM supplemented with 10% heat inactivated FBS and penicillin/streptomy-
cin. Cells were grown at 37 °C in humidified air with 5% CO2.

DNA constructs. HCMV US7 and US8 constructs were fused at the N-terminus to
a hemagglutinin (HA) tag containing N-terminal H2-Kb signal sequences. We then
generated the C-terminal deletion constructs of HA-US7 (HA-US7ΔCT) and HA-
US8 (HA-US8ΔCT) by PCR and the point mutant HA-US8 (HA-US8 Mut;
Y204A/Y211A) by site-directed mutagenesis. All of the N-terminal HA-tagged US7
and US8 or C-terminal HA-US12-US16 genes into pcDNA3.1 or pMSCV,
respectively (Invitrogen, San Diego, CA). In addition, HA-US7 and HA-US8 were
fused at the C-terminus to green fluorescence protein (GFP) by subcloning them
into a pEGFP N3 vector (Clontech, Palo Alto, CA). We also sub-cloned all of the
above constructs, including TLR4-Myc, TLR3-Myc, MD2-Myc, Flag-TLR4,
UNC93B1-GFP, into a retroviral vector pMSCV (Clontech) or a pLHCX vector
(Clontech). We verified all constructs by sequencing. All primer sequences are
listed in Supplementary Table 1.

Antibodies and reagents. The following antibodies were used: HA (G036, ABM
Inc., Richmond, Canada, 1:1000), Myc (2276, Cell Signaling Technology, Danvers,
MA, USA, 1:1000), Flag (M185-3L, MBL International, Woburn, MA, USA,
1:1000), GFP (ab290, Abcam, Cambridge, UK, 1:1000), Tubulin (G094, ABM Inc.,
1:2000), human TLR3 (sc-32232, Santa Cruz Biotechnology, Santa Cruz, CA, USA;
ab62566, Abcam, Cambridge, UK, 1:1000), human TLR4 (sc-293072, Santa Cruz
Biotechnology; 312802, BioLegend, San Diego, CA, USA, 1:1000), LAMP1
(ab24170, Abcam, 1:1000), PDI (#ADI-SPA-891, Enzo Life Sciences, Farmingdale,
NY, USA, 1:100), GM130 (610822, BD Biosciences, Mountain View, CA, USA,
1:100), Ubiquitin (sc-8017, Santa Cruz Biotechnology, 1:1000), Alexa Fluor 488
anti-mouse (A-11029, Life Technologies, Carlsbad, CA, 1:100), and Alex Fluor 568
anti-rabbit (A-11036, Life Technologies, 1:100). Antibodies to Sec61β/Derlin-1 and
Calnexin/MHC class I molecules were kindly provided by Dr. Hidde L. Ploegh
(Boston Children’s hospital, Harvard Medical School, MA, USA, 1:1000) and Dr.
Kwangseog Ahn (Seoul National University, Seoul, South Korea, 1:1000),

Fig. 6 US7 and US8 suppress innate antiviral response in vivo. a Schematic representation of the HCMV strains used. HCMV WT, wild-type HCMV
AD169; HCMVΔUS7-16, HCMV deletion mutant lacking the US7-US16 region; HCMVΔUS7-16-Rev.US7 or -Rev.US8 HCMV mutant lacking all genes in
the US7-US16 region restored with US7 or US8 expression. b, c HCMV, but not HCMVΔUS7-16, blocks antiviral response through destabilizing TLR3 and
TLR4 proteins. HFF cells were infected with HCMV WT or HCMVΔUS7-16 at an MOI of 2 for the indicated times. The presence of HCMV-derived US7 or
US8 and ifnb mRNA expressions were analyzed by RT-PCR. UL44 and GAPDH were used as HCMV infection and loading controls, respectively. d HCMV,
but not HCMVΔUS7-16, degrades TLR3 and TLR4 proteins at late times. TLR3-Myc- or TLR4-Myc-expressing HFF cells were infected with HCMV WT or
HCMVΔUS7-16 and the lysates were immunoblotted with indicated antibodies. RT-PCR analysis of UL44 and GAPDH was used as HCMV infection and
loading controls, respectively. e US7 and US8 decreases TLR3 or TLR4 expression levels in vivo. HFF cells were infected with HCMV WT, HCMVΔUS7-16,
HCMVΔUS7-16-Rev.US7, or HCMVΔUS7-16-Rev.US8. Lysates were immunoblotted with anti-TLR3, anti-TLR4, anti-GFP, anti-Calnexin, or anti-Tubulin
antibody. RT-PCR analysis of UL44 and GAPDH was used as HCMV infection and loading controls, respectively. The intensity of TLRs bands was
quantified as comparing the relative abundance of TLR3 or TLR4 to Tubulin (right graphs). f Both US7 and US8 block innate antiviral response in vivo. HFF
cells were infected with HCMVWT, HCMVΔUS7-16, HCMVΔUS7-16-Rev.US7, or HCMVΔUS7-16-Rev.US8. The indicated gene expression was measured
by qPCR. *P < 0.001, **P < 0.05 (Student’s t-test). Data are representative of three independent experiments and are presented as means ± s.d. in f. Source
data are provided as a Source Data file
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respectively. The following reagents were used: LPS (L3755, Sigma-Aldrich, St
Louis, MO, USA), poly(I:C) (tlrl-pic, InvivoGen, San Diego, CA, USA),
Pam3CSK4/Imiquimod (InvivoGen, San Diego, CA, USA), CpG-DNA (TIB Mol-
biol, Berlin, Germany), Endo H (P0703, New England Biolabs, Ipswich, MA, USA),
MG132 (M-1157, AG Scientific, San Diego, CA, USA), Chloroquine (C6628,
Sigma-Aldrich), DAPI (4’,6-diamidino-2-phenylindole, D9542, Sigma-Aldrich).

Viruses. HCMV wild-type AD169 and mutant AD169ΔUS7-16, in which US7-16
region is deleted and replaced with 48 bp FRT site. Recombinant HCMVΔUS7-16-
Rev.US7/US8 used in the study was constructed utilizing a recombination strategy
and the materials were provided by Dr. Jun-Young Seo. Briefly, the Tet-on indu-
cible US7- or US8-GFP fusion plasmid was inserted into mutant HCMV
AD169ΔUS7-16 genome maintained in a bacterial artificial chromosome (BAC)
using a recombination strategy. Escherichia coli (E. coli) SW105 strain, carrying
BAC of mutant HCMVAD169ΔUS7-16 and ara-inducible Flpe recombinase gene,
was transformed with pO6-SVT-entry plasmid containing US7- or US8-GFP. The
ara-induced FLP recombinase induces site-specific recombination between the
FRT sequences in the BAC and the insertion plasmid. To reconstitute the
recombinant BAC containing US7- or US8-GFP into viruses, HFF cells were
electroporated and were incubated until the recombinant HCMVΔUS7-16-Rev.
US7/US8 viruses were generated. Virus stocks were prepared by infecting HFF cells
with (MOI= 0.01) and incubating until 100% of cells showed cytopathic effects.
Then cells were scraped and HCMV particle containing cell pellet and the
supernatant were collected. The viral stocks were distributed in small aliquots, and
stored at −80 °C. Virus stock aliquots were freshly thawed each time and not
reused to avoid defective viral particles.

HCMV infection. HFF cells were plated in six-well plates and cultured in DMEM
until cells were 70-80% confluent. HCMV strains were infected at a multiplicity of
infection (MOI) as indicated. After incubating the infected cells for the indicated
number of dpi, cells were washed and re-fed with fresh DMEM. Virus-infected cells
were incubated for indicated time periods as indicated. To determine HCMV
infectivity in all infection experiments, HCMV-infected HFF cells were stained
with an anti-IE1 antibody and quantified by measuring viral infectivity.

Transfection and retroviral transduction. Cells were transfected using Oimcsfect
(Omicsbio, Taipei City, Taiwan) in serum-free and antibiotic-free DMEM for 20-
36 h. For the maximal transfection efficiency of HFF cells, calculate the number of
HFF cells plated to obtain 70-80% confluence and incubate the cells at 37 °C in CO2

incubator for 24 h before transfection. All cell lines were tested for mycoplasma and
were confirmed free of contamination. For preparation of virus particles, HEK 293
T cells were transfected with plasmids encoding VSV-G and Gag-Pol, together with
constructs cloned into retroviral vector containing target gene. Virus-containing
supernatants were obtained at 48 h post-transfection and filtered through a 0.45-
μm filter. Cells were transduced with virus by centrifugation at 2,200 rpm for 45
min, and then incubated for 4 h. Transduced cells were incubated with fresh media
for 24 h and then selected with puromycin.

Enzyme-linked immunosorbent assay. THP-1 cells were stimulated with 5 μg ml
−1 poly(I:C) or 10 μg ml−1 LPS for 24 h. Cell culture supernatants were collected,
and human IFN-β or IL-6 levels were analyzed by ELISA assay according to the
manufacturer’s recommendations (IFN-βː #41410-1, PBL Assay Science, NJ, USA,
IL-6: BD Biosciences, San Jose, CA).

Flow cytometry. The expression levels of TLR4 on the cell surface were deter-
mined by flow cytometry (FACScalibur, BD Biosciences) after indirect immuno-
fluorescence using anti-TLR4 antibody and fluorescein isothiocyanate (FITC)-
conjugated secondary antibodies.

Pulse-chase experiment and immunoprecipitation. Cells were starved in
methionine/cysteine free DMEM for 1 h prior to pulse-labeling for 1 h using [35S]
methionine/cysteine at 0.1 mCi ml−1 (EasyTag Express 35S Protein labeling mix,
Perkin Elmer, Waltham, MA, USA) for 1 h at 37 °C. The labeling cells were chased
for 4 h with DMEM media containing 10% FBS. After once wash with phosphate-
buffered saline (PBS), cells were lysed using 1% Nonidet P-40 (NP-40) in PBS
supplemented with protease inhibitors for 30 min. Lysates were incubated with
primary antibodies and followed by protein G-Sepharose beads at 4 °C. The beads
were then washed three times with 0.1% NP-40/PBS and proteins were eluted by
boiling the samples in denaturing buffer. Eluted proteins were treated with Endo H
(New England Biolabs) and separated by sodium dodecyl sulfate (SDS)-poly-
acrylamide gel electrophoresis (PAGE). The gels were dried, exposed to BAS film,
and analyzed by Phosphor Imaging System BAS-2500 (Fuji Film Company, Tokyo,
Japan).

Co-IP and immunoblot analysis. Cells were lysed with 1% NP-40 (for TLR3/4-
US7/8 or UNC93B-US8 interactions) or 1% digitonin (for Sec61β/Derlin-1-US
interactions) with protease inhibitors. The lysates were then incubated with pri-
mary antibodies followed by protein G-Sepharose beads at 4 °C. The beads were

then washed three times with 0.1% NP-40 or 0.1% digitonin. The proteins were
eluted by boiling the samples, or heating the samples without boiling (for the
UNC93B1-US8 interaction), in denaturing buffer. Protein samples were separated
by SDS-PAGE and transferred to polyvinyl difluoride (PVDF) membrane (Milli-
pore, Bedford, MA, USA). The membranes were blocked with 5% skim milk in PBS
containing 0.1% Tween 20 (PBS-T) for 10 min and incubated with the appropriate
antibodies at 4 °C overnight. The membranes were washed three times with PBS-T
and incubated with horseradish peroxidase (HRP)-conjugated secondary anti-
bodies for 1 h. Bands were visualized using an enhanced chemiluminescence (ECL)
detection reagent (Advansta, Menlo Park, CA, USA). All the original blots images
are provided as the Source Data file.

Ubiquitination assay. For ubiquitination assay, cells transiently expressing indi-
cated plasmids were incubated for 20–24 h. Cells were harvested and lysed in
RIPA buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% NP-40, 0.1% SDS, and
1 mM EDTA) containing protease inhibitor cocktail and 10 μM deubiquitinase
inhibitor N-ethylmaleimide (NEM, Sigma). The cell lysate was immunoprecipi-
tated with anti-Myc antibody overnight at 4 °C and then protein G-Sepharose
beads were added to the samples for 1-1.5 h at 4 °C. The beads were washed three
times with RIPA buffer and proteins were eluted by boiling in 1 × SDS loading
buffer. Analysis of ubiquitination was performed by immunoblotting using anti-Ub
antibody.

RT-PCR and qPCR. Total cellular RNA was prepared using an RNA prep kit
(GeneAll, Seoul, South Korea). RNA (0.5 μg ml−1) was reverse transcribed with
oligo(dT) primers at 42 °C for 1 h using Moloney Murine Leukemia Virus (M-
MLV) reverse transcriptase (Enzynomics, Daejeon, South Korea). PCR products
were visualized on ethidium bromide-stained gels. The qPCR reactions were per-
formed on QuantStudio 3 Real-Time PCR system (Applied Biosystems, Foster City,
CA, USA) using SYBR Green (Enzynomics). Glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) was used for normalization. All primer sequences are listed in
Supplementary Table 1.

Immunofluorescence assay. For immunofluorescent staining, cells were fixed in
3.7% formaldehyde and permeabilized with 0.1% Triton X-100. After blocking with
2% bovine serum albumin (BSA) in PBS (PBA) for 30 min, the samples were
incubated with the appropriate primary antibody in 2% PBA for 1 h at room
temperature. Bound antibody was visualized with an Alexa Fluor 488- or Alexa
Fluor 568-conjugated secondary antibody (Life Technologies) by fluorescence
microscope. DAPI was used as a nuclear counterstain. The fluorescence intensity
(FI) of the IFA images was quantified using the Zen software (Carl Zeiss) (http://
zeiss.com). At least four randomly chosen fields for a total of at least 30 cells were
analyzed. The FI is given in arbitrary units as an average value per cell in the
selected representative fields.

Luciferase assay. Cells in 12 well plate were transfected with NF-κB or IFN-β
firefly luciferase, Renilla luciferase, along with empty vector, US7 or US8. The
transfected cells were then stimulated with poly(I:C) or LPS and lysed with lysis
buffer. The luciferase activity was determined using the Dual-Luciferase Reporter
Assay System (Promega, Madison, WI, USA). Firefly luciferase activity was nor-
malized to Renilla luciferase activity.

Microarray analysis. Total RNA was isolated using an RNeasy Mini kit (QIAGEN,
Hilden, Germany) and the integrity of the RNA was evaluated using an ND-1000
Spectrophotometer (NanoDrop, Wilmington, DE, USA) and Agilent 2100 Bioa-
nalyzer (Agilent Technologies, Palo Alto, CA, USA). We executed the Affymetrix
whole transcript expression array process according to the manufacturer’s protocol
(GeneChip Whole Transcript PLUS reagent Kit). cDNA was synthesized using the
GeneChip WT (Whole Transcript) Amplification kit according to the manu-
facturer’s instructions. We then fragmented the sense cDNA and biotin-labeled it
with terminal deoxynucleotidyl transferase using the GeneChip WT Terminal
Labeling kit. Approximately 5.5 µg of labeled DNA target was hybridized to the
Affymetrix GeneChip Human Gene ST 2.0 ST Array at 45 °C for 16 h. We then
washed the hybridized arrays, stained them using a GeneChip Fluidics Station 450,
and scanned them on a GCS3000 Scanner (Affymetrix). Signal values were com-
puted using the Affymetrix® GeneChip™ Command Console software. For analysis,
raw data were extracted automatically using the Affymetrix data extraction pro-
tocol and the software provided by Affymetrix GeneChip® Command Console®
software (AGCC). After importing CEL files, we summarized all of the data and
normalized it using the robust multi-average method implemented in the Affy-
metrix GeneChip® Console™ software (EC). Statistical significance of the expression
data was determined using the fold change. To identify differentially expressed
genes, we performed hierarchical cluster analysis using complete linkage and
Euclidean distance as a measure of similarity. All data analysis and visualization of
differentially expressed genes was conducted using R 3.1.2 (www.r-project.org).

Statistical analysis. All experiments were repeated at least three times with
consistent results. Data are presented as mean ± s.d. (as noted in figure legends).
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Statistical differences between two means were evaluated with the two-tailed
unpaired Student’s t-test. Differences with P values below 0.05 were considered
significant. Presented data were normally distributed and the variances were similar
between the groups being statistically compared. No statistical method was used to
predetermine sample sizes. Sample size was based on previous experience with
experimental variability. No samples were excluded from the analysis. The
experiments were not randomized. The investigators were not blinded to allocation
during experiments.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw data of microarray is available in the Gene Expression Omnibus database under
the accession number GSE136835. The raw data underlying Figs. 1d–g, 2a,b, 2d-e, 3a,
3c–e, 4a, 4c–d, 4f–h, 5b–h, 6b–f, as well as Supplementary Figs. 1b, 2a–c, 3a–d, 5a,b, 6b,c,
7b,c, and 8a–c are available in the Source Data file. All other data generated or analyzed
during this study are available from the corresponding author on reasonable request.
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