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Principles of meiotic chromosome assembly
revealed in S. cerevisiae
Stephanie A. Schalbetter 1,5*, Geoffrey Fudenberg 2,5*, Jonathan Baxter 1, Katherine S. Pollard 2,3,4* &

Matthew J. Neale 1*

During meiotic prophase, chromosomes organise into a series of chromatin loops emanating

from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use

Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome

organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong

cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian

interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations

of loop extrusion with growth limited by barriers, in which a heterogeneous population of

expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes

similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative

mechanisms of barrier formation. While grid-like interactions emerge independently of

meiotic chromosome synapsis, synapsis itself generates additional compaction that matures

differentially according to telomere proximity and chromosome size. Collectively, our results

elucidate fundamental principles of chromosome assembly and demonstrate the essential

role of cohesin within this evolutionarily conserved process.
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During meiosis, eukaryotic chromosomes are broken,
repaired and paired with their homologues followed by
two rounds of segregation—a series of events accom-

panied by dynamic structural changes of the chromosomes
(Fig. 1a, top). Most prominent is the paired arrangement of
pachytene chromosomes into a dense array of chromatin loops
emanating from proteinaceous axes linked by a central core, the
synaptonemal complex (SC), which is highly conserved across
eukaryotes2,3. In S. cerevisiae, structural components include the
meiotic cohesin kleisin subunit, Rec84, the transverse filament,
Zip15, the axial/lateral elements, Hop1 and Red16,7, and the pro-
DSB factors Rec114-Mei4-Mer2 (RMM)8,9. Rec8 is a major
component of the meiotic axis—its absence disturbs the locali-
sation patterns of Red1 and Hop110,11, with no axial or central
elements detected by electron microscopy (EM)4. In the absence
of Hop1 or Zip1, unsynapsed axial elements are formed4,5. Much
of our understanding of meiotic chromosome structure has been

deduced from a combination of EM, immunofluorescence
microscopy and the genome-wide patterns of protein localisation
determined by ChIP. However, clarifying the link between key
meiotic protein complexes, chromosome conformation and
genomic sequence is of great interest.

Chromosome conformation capture (3C) techniques generate
maps of pairwise contact frequencies that are snapshots of chro-
mosome organisation. 3C methods were originally applied to assay
chromosome conformation in S. cerevisiae, including during
meiosis12. Now they are widely used across a range of organisms
and cellular contexts to link 3D organisation directly with genomic
sequence13, revealing important roles of the Structural Main-
tenance of Chromosomes (SMCs) cohesin and condensin in
genomic organisation14,15, where they likely mediate chromosome
compaction via the process of loop extrusion16.

Recent studies have utilised Hi-C to investigate meiotic chro-
mosome structure in mammals17–19 and S. cerevisiae20. Consistent
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Fig. 1 Chromosome conformation during yeast meiosis. a Upper panel: cartoon of chromosome morphology during the stages analysed in the meiotic time
course. The Rabl-structure observed in G1 is characterised by centromere clustering (in blue), meiotic axis proteins are represented in green, with the fully
assembled synaptonemal complex (SC) represented in light green. Lower panels: cells were collected during meiosis at indicated timepoints and analysed
by Hi-C. At 0 h the cells are in G1. Representative Hi–C contact maps of chromosomes 6, 11 and 7 plotted at 5 kb resolution. Centromeres, telomeres and
arm fold-back at the centromere are indicated by blue, red and grey arrows, respectively, and axial compaction by the width of the main diagonal relative to
the fixed-width black clamp. For interactive HiGlass1 views see: http://higlass.pollard.gladstone.org/app/?config=Z5iwKpjzQpePCXXyvuYGeQ. b Meiotic
entry assessed by FACS; at 4 h, the majority of cells show a 4C peak indicating completion of DNA replication. c Meiotic progression was monitored by
quantification of nuclear divisions determined by DAPI staining. Around 4 h, cells start to undergo meiotic divisions I and II. The majority of cells undergo
meiotic divisions between 4 h and 8 h, indicating the degree of heterogeneity within the cell population. Source data are provided as a Source Data file.
d Upper panels: Average trans centromere–centromere contact maps. Lower panels: trans telomere–telomere contact maps. Right: ratio of cis to total
contact frequency. e Intra-arm contact probability versus genomic distance, P(s), indicating the emergence (left) and disappearance (right) of chromosome
arm compaction during meiosis. Shaded area bounded above and below by the two ndt80Δ 8 h replicates. fMeiosis was induced in ndt80Δ cells for 8 h and
meiotic entry was checked by monitoring DNA replication by FACS. g ndt80Δ cells were grown for 8 h in sporulation media and analysed by Hi–C (left).
Log2 ratio of ndt80Δ cells 8 h over G1 (right). Centromeres and telomeres are indicated by blue and red arrows, respectively, and axial compaction by a
black clamp. h Left: contact probability of individual chromosome arms stratified by length. Right: contact probability stratified by the distance from the
telomere
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with compaction by a loop array, pachytene chromosome struc-
ture displays increased short-range cis interactions and a shoulder
in contact frequency versus distance curves17–20. Mouse and
monkey pachytene chromosomes additionally display a loss of the
topological domains (TADs) characteristic of mammalian inter-
phase17–19. In S. cerevisiae, Hi–C with a synthetically re-designed
chromosome found low levels of interhomologue contacts, and
increased insulation at Rec8 sites20. However, it remains to be
determined whether cohesin is required for the formation of
meiotic chromosome structure, as measured by Hi-C, and what
mechanisms organise meiotic chromosomes.

Here we employ yeast meiosis as a model system to elucidate
mechanisms of chromosome assembly, and define the role of key
meiotic chromosome components, including cohesin and the SC.
We show that meiotic chromosome compaction is accompanied
by the emergence of punctate grid-like interactions. These
interactions are dependent on Rec8 and their underlying DNA
loci are preferred Rec8 association sites. Our data agrees with
polymer simulations of loop extrusion with barriers, which sug-
gest a remarkable heterogeneity in loop size and location from
cell-to-cell. We further show that the synaptonemal complex
modulates compaction differentially along chromosome arms.

Results
Chromosome compaction emerges and subsides in meiosis.
Starting with a synchronised G1 population we analysed time-
points encompassing DNA replication, meiotic prophase and
both meiotic divisions (Fig. 1a–c, Supplementary Fig. 1a–c). In
G1, we detect strong centromere clustering (Fig. 1a, d) and
folding back of the arms at the centromeres (Fig. 1a, Supple-
mentary Fig. 2), characteristic of a Rabl conformation12,21. Dur-
ing meiosis, centromere clustering is transiently dissolved (3–5 h,
Fig. 1a, d, Supplementary Fig. 1a); this coincides with a global
decrease in inter-chromosomal contact frequency at mid-pro-
phase, reflecting chromosome individualisation. Subtelomeric
clustering also decreases during meiotic prophase (Fig. 1a, d,
Supplementary Fig. 1a, Supplementary Fig. 3). Our wild-type
timecourse displayed no evidence of a telomere bouquet, likely
due to its transience, which has been measured by microscopy22.

Entering meiosis, contact frequency versus distance, P(s), curves
display a shoulder, consistent with the linear compaction of
chromosome arms increasing due to cis-loop formation (2–4 h,
Fig. 1e, Supplementary Fig. 1d, e.g. as defined23; for review16). This
change in P(s) is reminiscent of the SMC-dependent changes
observed via Hi-C during mitosis across species24–28. Compaction
coincides with meiotic prophase I and the formation of the SC at
pachytene, and is lost at later stages (Fig. 1e, Supplementary Fig. 1d).

To study meiotic chromosome conformation in more detail,
and to eliminate cell-to-cell heterogeneity (Fig. 1b, c), we enriched
for pachytene cells in subsequent experiments by inactivating
Ndt80, a transcription factor required for exit from meiotic
prophase29. ndt80Δ cells entered meiosis synchronously, assessed
by bulk DNA replication (Fig. 1f), but do not initiate the first
nuclear division29. Similar to the wild-type prophase population
(3–5 h), but likely accentuated by the increased homogeneity, Hi-
C maps of pachytene-enriched cells (Fig. 1g) displayed total loss
of centromere clustering (Supplementary Fig. 2) and dramatic
chromosome arm compaction (Fig. 1e). Shorter chromosomes
(Supplementary Fig. 1e) and shorter chromosome arms (Fig. 1h,
Supplementary Fig. 1f), displayed elevated contact frequency at
short genomic separations, and an earlier shoulder. These features
may arise from the distinct behaviour of subtelomeric and
subcentromeric regions (Fig. 1h, Supplementary Fig. 1g). Alter-
natively, or in addition, distinct P(s) for chromosomes with
different length arms (Supplementary Fig. 1h) may be due to the

centromere insulating the process that leads to differences
between arms. In agreement with this, compaction is interrupted
at centromeres in Hi–C maps (Fig. 1a, Supplementary Fig. 2b).

Rec8-dependent punctate interactions emerge in meiosis.
Zooming in to consider within-arm organisation revealed punctate
grid-like Hi–C interactions between pairs of loci during prophase
(Fig. 2a), particularly prominent in ndt80Δ (Fig. 2a, b). Indeed, the
focal meiotic patterns we observe resemble peaks between CTCF
sites31 rather than TADs32,33 detected in mammalian interphase
Hi-C maps, and likely arise from a heterogeneous mixture of
‘transitive’ interactions and ‘skipping’ of peak bases (Fig. 2c).

Genomic regions underlying the punctate Hi–C interactions
display a remarkable visual (Fig. 2a, b), and quantitative
(Fig. 2d–g), correspondence with previously characterised sites
of high Rec8 occupancy30. A reciprocal analysis of calling Hi–C
peaks and assaying the frequency of Rec8 sites around peak
anchors confirmed this correspondence (Supplementary Fig. 4a).
At pachytene, Rec8 sites display elevated cis/total contact
frequencies (Fig. 2d), enriched contact frequency (Fig. 2e, f),
and evidence of insulation (Fig. 2g)—features that correlate with
Rec8 occupancy measured by ChIP (Fig. 2a, lower) consistent
with recent observations20. In wild-type cells, Rec8-Rec8 inter-
actions became visible in early prophase (2 h), peaked at mid
prophase (4 h), and were especially prominent in the homo-
genous ndt80Δ cell population (Fig. 2a, b, f, Supplementary
Fig. 4b, c). Importantly, Rec8-Rec8 enrichments are strongest
between adjacent sites, decrease between non-adjacent sites with
increasing genomic separation, and are absent in trans (Supple-
mentary Fig. 4b, c). As for enrichments between CTCF sites in
mammalian interphase34, these observations argue that a cis-
acting process generates such focal interactions in meiosis.

Rec8 is a central component of the meiotic chromosome axis4.
rec8Δ mutants fail to assemble chromosome axes as detected by
EM, and exhibit delayed and inefficient chromosome segregation
producing few viable spores4. Assaying a rec8Δ mutant in the
ndt80Δ background enabled us to determine that Rec8 is
absolutely required for the emergence of the grid-like Hi–C
patterns present in meiosis (Fig. 2a, b). Moreover, rec8Δ cells
completely lose the shoulder in P(s), indicative of a dramatic loss
of arm compaction (Fig. 2b, Supplementary Fig. 4d), similar to
that caused by depletion of SMCs in diverse contexts24,26,28,35–38.
Instead of assembling an axis of loops, rec8Δ cells appear to be
caught in a state with highly clustered telomeres (Supplementary
Fig. 3, Supplementary Fig. 4e), consistent with previous
observations by microscopy39,40. Moreover, in rec8Δ cells cis
contact frequency is reduced (Fig. 2d, Supplementary Fig. 2c),
similar to G1 cells, and cis/total no longer correlates with Rec8
occupancy. Instead, rec8Δ cis/total displays a decreasing trend
along chromosome arms (Supplementary Fig. 4e), likely due to
persistent telomere clustering (Supplementary Fig. 3a). Impor-
tantly, because focal interactions in wild-type cells are detected as
early as cells start progressing through S phase (Fig. 2a, 2 hours),
the lack of such interactions in ndt80Δ-arrested rec8Δ cells, which
have completed DNA replication (Supplementary Fig. 2d), cannot
be explained by partial arrest prior to a pachytene-like stage.

Meiotic chromosomes modelled by loop extrusion with bar-
riers. To test how compaction and grid-like interaction patterns
could jointly emerge in meiosis, we developed polymer simula-
tions (Fig. 3a, Methods) similar to those used to successfully
describe the assembly of TADs in mammalian interphase chro-
mosomes16. Importantly, these simulations employ the cis-acting
process of loop extrusion, where extruders form progressively
larger chromatin loops, unless impeded by adjacent extruders or
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barrier elements (Fig. 3a). Extrusion dynamics are controlled by
parameters dictating the processivity (average loop size) and
separation (number of active extruders), as well as the strength of
barriers (Methods). Because the accumulation of Rec8 at ChIP-
seq sites30 is indicative of barriers to extrusion34, we positioned
bi-directional barriers at Rec8 sites.

To find loop extrusion dynamics in agreement with experimental
data, we computed the goodness-of-fit between experimental

ndt80Δ Hi–C maps and simulated Hi–C maps generated for a
wide range of parameter combinations (Fig. 3, Methods). Models
with excellent fits were identified in which ~64% of the genome is
covered by extruded loops (Fig. 3b, c)—a far denser array than
present in S. cerevisiae mitosis28, but still less compact than human
mitotic cells27. Even though extrusion can generate compaction
independently of barriers (Fig. 3d, iii), an intermediate barrier
strength is essential to match the grid-like patterns observed
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experimentally (Fig. 3d, i). Despite the simplifying assumptions,
simulated chromosomes displayed many features observed experi-
mentally: (i) chromosomes fold into a loose polymer brush4,41,42,
with a Rec8-rich core4 (Fig. 4a, Supplementary Fig. 5a, b); (ii) a
grid-like interaction pattern naturally emerges in simulated Hi-C
maps (Fig. 3d); (iii) importantly, because loop extrusion is a cis-
acting process, pairs of Rec8 sites at increasing separations naturally
have lower contact frequency (Fig. 3e).

Simulations also highlight the stochasticity of loop positions in
the best-fitting models, with most barriers (73%) unoccupied by
an extruder, and extruders paused with barrier elements on both
sides only a minority of the time (15%) (Fig. 4b–d). Because of
this, the majority (65%) of extruded loops cross over Rec8 sites,
consistent with an average loop size roughly twice the average
distance between Rec8 ChIP peaks (26 kb versus 12 kb, Fig. 4e),
and remarkably consistent with estimates made using EM (~20
kb41). Genome-wide simulations for these best-fitting parameters
show that the majority of chromosomes display similar goodness-
of-fit with meiotic Hi-C data as on chr13 (Supplementary Fig. 6).
Most strikingly—despite the prominence of Rec8-dependent grid-
like features in the experimental data (Fig. 2a, b)—our
simulations indicate that Rec8 sites are not always occupied by
extruding cohesins and thus are present at the meiotic
chromosome core in only a subset of cells, as inferred
previously43. Notably, when loop extrusion operates indepen-
dently on each chromatid, as in our simulations, the positions and
sizes of loops are naturally heterogenous, even between sister
chromatids (Fig. 4d). Such heterogeneity agrees with a recent
microscopy study in C. elegans which argues for asymmetric
chromatin loops on sister chromatids in meiosis44.

The range of loop extrusion parameters we explored encom-
passes the situation where Rec8 sites always halt extrusion and cis-
loops are formed between each consecutive Rec8 site. However,
simulations with these parameters have quantitatively poor fits
with experimental maps (Fig. 3d–e, ii): the bend in P(s) comes too
early to recapitulate experimental P(s), and Rec8-Rec8 contacts are
much too strong. The poor fit of such ‘direct-bridging’ simulations
underscores the conclusion that only a fraction of Rec8 sites are
occupied in a given cell, and argues that cohesin-dependent cis-
loops must link regions that are not primary Rec8 binding sites in
order to provide compaction without making Rec8-Rec8 enrich-
ments overly strong. As expected, certain loop extrusion
parameter sets give rise to TAD-like patterns. However, simula-
tions with TAD-like patterns show poor quantitative agreement
with experimental ndt80Δ data (Fig. 3d–e, iv), arguing that the
patterns we observe in meiosis are better described as grids-of-
peaks rather than a segmentation into TADs, and underscoring
how a single process, loop extrusion limited by barriers, can give
rise to multiple distinct 3D contact patterns.

A crucial prediction of our loop extrusion simulations is that
depletion of extruders in meiosis would lead to both decompac-
tion (Supplementary Fig. 5a–c) and loss of the grid-like pattern of
Hi–C interactions. When we repeated our fitting procedure for
rec8Δ, the best fits were for simulations with either no, or very
few, extruded loops (Supplementary Fig. 5e). The lack of
compaction in these simulations is consistent with previous EM
showing decompacted chromatids in rec8Δ4. Such joint consis-
tency between Hi–C and imaging data further supports loop
extrusion as a mechanism underlying assembly of the cohesin-
rich core and contributing to chromosomal compaction in
meiosis. Our simulations also open the possibility that overly
shortened axes observed upon Wapl45,46 and Pds547 depletion
may reflect heightened extruder processivity48 upon which
shortened SCs are assembled, and predict that such perturbations
would cause a rightward shift in the P(s) shoulder measured via
Hi-C (Supplementary Fig. 5c).

The synaptonemal complex modulates chromosome compac-
tion. To investigate how homologue synapsis affects chromosome
conformation, we assayed pachytene cells in the absence of Zip1,
the transverse filament of the SC5, and Hop1, an axial element
required for Zip1 loading7 (Fig. 5a, b). Despite unsynapsed axial
elements forming4,5, hop1Δ and zip1Δ mutants proceed through
both meiotic nuclear divisions—with a partial delay in prophase I
in zip1Δ cells—generating spores with low viability49–51. Thus, to
aid direct comparisons we again combined the use of the ndt80Δ
allele to prevent exit from prophase. Both zip1Δ and hop1Δ
retained punctate Hi–C interactions (Fig. 5b, Supplementary
Fig. 4b, c), and displayed compaction relative to G1 or rec8Δ, but
with the P(s) shoulder shifted left relative to ndt80Δ (Fig. 5c).
Attempts to model the known zip1Δ and hop1Δ defects in
chromosome synapsis simply by removing interhomologue
crosslinks from best-fitting ndt80Δ simulations did not recapi-
tulate the P(s) shift observed experimentally (Supplementary
Fig. 5f). Instead, best-fitting simulations had shifts towards
slightly lower processivity and larger separation (Fig. 5d), con-
sistent with less axial compaction relative to the ndt80Δ control
(Fig. 3c). Interestingly, subtelomeric regions no longer displayed a
distinct P(s) in zip1Δ and hop1Δ (Fig. 5e), suggesting that chro-
mosome compaction at chromosome termini is regulated
differentially.

Discussion
Our analysis of meiotic chromosome organisation via Hi–C
reconciles the function and localisation of factors thought to
shape meiotic chromosomes with their 3D organisation (Fig. 6a),
revealing the emergence of a punctate grid of interactions

Fig. 2 Emergence of a Rec8-dependent grid of punctate interactions in meiosis. a Hi–C contact maps of chromosome 11 for the indicated genotypes at 2 kb
resolution, showing near-diagonal interactions. Lower panels: log2(insulation); cis/total ratio, Rec8 ChIP-seq30. Insulation and cis/total calculated from
ndt80Δ maps. Green circles: positions of Rec8 sites. Genome-wide cis/total (Spearman’s R= 0.62, P < 1e-10) and insulation (R=−0.23, P < 1e-10,
insulation window= 20 kb) profiles are correlated with Rec8 occupancy. Colour scale as in Fig. 2b. b Zoom-in of chromosome 11 (0–200 kb) for wt-4h,
ndt80Δ and rec8Δ. Contact probability versus genomic distance, P(s), for G1 (ndt80Δ-0h) and ndt80Δ and rec8Δ. Data are the average (n= 2) except for
wt-4h. While faint locus-specific patterns exist in rec8Δ, there is no global enrichment at Rec8 sites (see f and g). Rec8 peak sites called from ChIP-seq
data30 are indicated in green. Interactive view: http://higlass.pollard.gladstone.org/app/?config=Twrh61jGT4SlxotaguTIJg. Comparison to published
ndt80Δ-arrested Hi-C data20: http://higlass.pollard.gladstone.org/app/?config=NKoclcPJRTuah4ZrQPPm_Q. c Simplified illustration of how a grid of
peaks on a Hi-C map can emerge between Rec8 sites either by transitive contacts between adjacent loops, or by loops that skip over adjacent sites.
Experimentally observed grids extend much further than separation= 2 (Supplementary Fig. 4c). d Cis/total ratios for Rec8 (green) and nonRec8 (grey)
sites for indicated datasets, showing an elevated cis/total frequency (0.85 versus 0.77) at Rec8 sites in ndt80Δ. e Contact probability versus
genomic distance, P(s), between Rec8-Rec8 sites (green), Rec8-nonRec8 sites (light green) and nonRec8-nonRec8 sites (grey). Note elevated pairwise
contact frequency (~2-fold at 20 kb) at Rec8 sites in ndt80Δ. f Log2 ratio of contact frequency between adjacent Rec8 sites (separation= 1) compared to
average cis interactions. g Log2 ratio of contact frequency centred at Rec8 sites compared to average cis interactions, showing mild insulation at Rec8 sites
in ndt80Δ. These distinctions (d–g) are similar in wild-type pachytene (4 h) yet absent in G1 (ndt80Δ-0h) or in rec8Δ
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Fig. 3 Modelling meiotic chromosome compaction. a In simulations, yeast Chr13 was represented as a polymer fibre confined to the nucleus subject to
additional meiosis-specific constraints. These include extruded loops, sister crosslinks and homologue crosslinks (Methods). Barriers to extruded loops
were placed at Rec8 sites30. We imposed inter-sister and inter-homologue crosslinks at sites of extruded loop bases in order to approximate the paired
arrangement of homologues at pachytene. For each set of extruded loop parameters (processivity, separation and barrier strength), conformations were
collected and used to generate simulated contact maps. Roughly, processivity dictates the size of an extruded loop unimpeded by collisions, separation
controls the number of active extruders on the chromosome, and barrier strength controls the probability that an extruder gets paused when attempting to
step past a barrier. Goodness-of-fit was then evaluated using the combined average fold discrepancy between P(s) curves for Rec8-Rec8, Rec8-non and
non-non bin pairs at 2 kb resolution. Note that a value of 1 indicates perfect agreement between simulations and experimental data. b Goodness-of-fit for
indicated barrier strengths over coarse grids of processivity and separation demonstrate that intermediate barrier strengths are required to agree with
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stable loops between neighbouring Rec8 sites, (iii) no barriers, (iv) square TAD-like patterns of enriched contacts. Positions for each of these parameter
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concomitant with initial stages of meiotic chromosome com-
paction. Crucially, we formally demonstrate the link between
preferential positioning of meiotic cohesin along the genome11,30

and the inference that these loci come into close proximity based
on the localisation of Rec8 to the chromosomal axes4. In the
context of recent characterisations of mammalian meiosis via
Hi–C17–19, our results highlight similarities and differences across
species. In all cases, meiotic contact frequency versus distance
curves display a prominent shoulder consistent with cis-loop
formation. Only S. cerevisiae, however, display punctate grid-like
patterns of Hi–C enrichment all along chromosomal arms. This
argues that the positioning of underlying loops may be much
more stochastic from cell-to-cell in mammalian meiosis. Addi-
tionally, the plaid-like patterns observed in mammalian meiosis,

yet not observed in yeast, suggest that additional mechanisms,
beyond loop extrusion, are at play in mammalian meiosis.

Remarkably, the punctate cohesin-dependent interactions in
yeast meiosis emerge despite the absence of CTCF in this
organism; this challenges previous models where focal Hi–C
peaks are strictly dependent on CTCF31,37,52, and indicates that
alternative mechanisms of loop positioning must exist. Tran-
scription constitutes a promising candidate for a mechanism of
loop positioning that does not rely on CTCF53–55. Indeed, pre-
vious studies highlight the correspondence between cohesin
positioning and convergent transcription in both yeast meiosis11

and mitosis56,57. Moreover, whilst much less prominent than in
meiosis, we find that locus-specific folding is evident in new high-
resolution Hi–C maps of mitotic cells (Fig. 6b, c). Finally, in
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agreement with a role for transcription in loop positioning, we
observe an enrichment of convergently oriented TSSs around
both meiotic and mitotic peak anchors (Fig. 6d, e).

However, whether or not it is transcription per se or the
binding of large protein complexes-like RNA polymerase that
influences loop positioning is unclear. We favour the view that
transcription-associated machinery acts as a barrier to cohesin-
dependent loop extrusion (Fig. 6a), rather than as a motive force
as previously proposed11,58,59, consistent with transcription-
independent compaction by cohesin in mammalian inter-
phase60 and direct observation of extrusion by the related SMC
condensin in vitro61. Indeed, the fact that chromosome com-
paction is interrupted at centromeres in both meiosis (Fig. 1a, g)
and mitosis54,62,63 supports the concept that large protein com-
plexes—like the kinetochore or RNA polymerase—act as potent
barriers to loop extrusion.

The reason for why loops are more prominent and strictly
positioned in meiosis compared to mitosis is intriguing. How-
ever, our observations enable us to rule out the axial element,
Hop1, the SC lateral element, Zip1 and the process of homo-
logous recombination mediated by Spo11, Sae2 and Dmc1
(unpub. obs.) as important for the generation of such patterns.
The axial element Red1, however, localises to chromosome axes
prior to Hop1 in budding yeast6, and the additional observation
that Rec10 (ScRed1) binds to cohesin in fission yeast meiotic
prophase64 make Red1 a possible candidate for regulating loop

extrusion dynamics. The strong meiotic Hi-C patterns are also
reminiscent of the grid-like Hi–C patterns observed in interphase
mammalian cells upon depletion of the cohesin unloader,
Wapl37,60, wherein “vermicelli”-like chromatids arise with a
cohesin-rich backbone65—emphasising the influence of cohesin
dynamics on loop extrusion, and suggesting that differential
cohesin regulation might underpin the differences between
meiosis and mitosis.

Exploring our Hi–C data via polymer simulations enabled us to
reveal a nuanced picture of meiotic chromosome assembly: loops
are, on average, larger than the inter-Rec8 peak distance, and
more than half of the loop bases are not associated with preferred
sites of Rec8 binding. It is likely that loop sizes and positions vary
widely from one cell to another, making classifications of genomic
regions as ‘axis’ or ‘loop’ a great oversimplification. Our simula-
tions also illustrate how a single mechanism—loop extrusion—
can give rise to divergent Hi-C patterns, either TADs or grids-of-
peaks, relevant in different cellular contexts. Indeed, simulations
allow us to quantitatively test mechanisms of chromosome fold-
ing in addition to reporting the patterns observed in Hi–C maps.
Looking more broadly, the agreement between our simulations
and experimental data furthers the case for loop extrusion as a
general mechanism20,26–28,34,66–69 that is flexibly employed and
regulated in interphase, mitosis and meiosis.

Finally, our results also reveal how the interplay between the
synapsis components, Hop1 and Zip1, influences chromosome
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Fig. 5 Hop1- and Zip1-dependent compaction of Rec8-dependent loops. a Top: Hi-C maps for hop1Δ and zip1Δ (plotted as in Fig. 1a). Bottom: Log2 ratio of hop1Δ or
zip1Δ over control (as in Fig. 1g). For interactive views of the full genome, see: http://higlass.pollard.gladstone.org/app/?config=TTBGu5DDR0SHAa09zrjTXA.
b Hi–C contact maps of chromosome 11 for hop1Δ and zip1Δ plotted at 2 kb bin resolution, showing near-diagonal interactions, as in Fig. 2a. c Contact probability
versus genomic distance, P(s), for G1, ndt80Δ, hop1Δ, zip1Δ. Shaded area bounded above and below by ndt80Δ replicas. Average between two replicas for zip1Δ
and one sample for G1 and hop1Δ are shown. d. Goodness-of-fit for simulations without homologue crosslinks with a fine grid of processivity versus separation at
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morphology. That Hop1 and Zip1 are both required to increase
chromosome compaction at pachytene likely points at their joint
role in promoting synapsis5,7, and supports the view that synapsis
itself modulates axial compaction (Fig. 6a). While mouse sper-
matocytes defective for SC formation also show changes in
chromosome compaction17, developmental arrest of these
mutants in a zygotene-like state makes it difficult to interpret the
contribution of the SC to this phenotype. Our data suggests that
the SC does have an impact on chromosome compaction because
even though zip1Δ cells are partially defective in exiting prophase
I, hop1Δ cells are not49–51. Interestingly, whilst Zip1 binds largely
uniformly along the arms of pachytene chromosomes70, sub-
telomeres and short chromosomes display an increase in short-
range contacts and an earlier shoulder in P(s), consistent with
smaller loops or less compression of spacers between loops in
these regions, and therefore less axial compaction. Because such
differences correlate with disproportionate retention of Hop1 in
these regions70 and diminished efficiency of synapsis71, it is
possible that Hop1 impedes the pathway whereby Zip1 imposes
additional compaction upon synapsis. Nevertheless, it is unclear
whether Zip1 mediates this effect by modifying loop extrusion
dynamics, or via a distinct process of axial compression, as has

been argued for higher eukaryote mitotic chromosome compac-
tion27. Given the influence that chromosome structure has over
so many aspects of meiosis, teasing apart these mechanisms is of
great future interest.

Methods
Yeast strains and cell culture growth. Strains used in this study were derived
from SK1 and are listed in Supplementary Table 1. Key genes of interest are
summarised in Supplementary Table 2.

Monitoring DNA replication and nuclear divisions. Cells were fixed in 70%
EtOH, digested with 1 mg/ml RNAse (10 mM Tris-HCl pH 8.0, 15 mM NaCl,
10 mM EDTA pH 8.0) for 2 h at 37 °C, 800 rpm in Thermomixer (Eppendorf) and
subsequently treated with 1 mg/ml Proteinase K in 50 mM Tris-HCl pH 8.0 at
50 °C, 800 rpm (as above) for 30 min for analysis by FACS. Cells were then washed
in 50 mM Tris-HCl pH 8.0 and stained in the same buffer with 1 µM Sytox green or
1 µg/ml Propidium Iodide (PI) overnight in the fridge. Samples were processed on
an Accuri C6. Collected FACS profiles were plotted with R using the library
hwglabr2 (https://github.com/hochwagenlab/hwglabr2), applying the following
gates: For Sytox green (gate= c (200000, 3000000)) and for PI (gate= c (800,
10000)). Fixed cells were also used for quantification of nuclear divisions by
spreading onto a microscope slide, mounting with Fluoroshield containing DAPI
followed by analysis with a Zeiss Scope.A1 microscope.
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Hi–C library preparation. The Hi–C protocol used was amended from72 by ~5-
fold reduction in all materials and volumes. Briefly, for meiotic samples, S. cere-
visiae diploid cells were synchronised in G1 by growth at 30 °C for ~16-18 h in 30
ml YPA (1% Yeast extract, 2% Peptone, 1% K-acetate) to OD600 of ~4, harvested,
washed and resuspended in prewarmed sporulation medium (2% K-acetate with
0.2x nutritional supplements adenine, histidine, leucine, tryptophan and uracil)
before fixing 5 ml aliquots (20–30 ODs) of relevant timepoints with formaldehyde
at 3% final concentration for 20 min at 30 °C, in an orbital shaker at 250 rpm, then
quenched by incubating with a final concentration of 0.35 M Glycine (2x the
volume of Formaldehyde added) for an additional 5 min. Cells were washed with
water, split into two samples (for two libraries) and stored at −80 °C ready for
library preparation. For mitotic samples, S. cerevisiae diploid cells were grown in
YPD (1% Yeast extract, 2% Peptone, 2% Glucose) to exponential phase, 10 µg/ml of
nocodazole were added and 100 ml of cells (50–80 OD, sufficient for 1 Hi-C
library) were fixed and stored (as described above). Cells were thawed, washed in
spheroplasting buffer (SB, 1 M Sorbitol, 50 mM Tris pH 7.5) and digested with 100
μg/ml 100 T Zymolyase in SB containing 1% beta-Mercaptoethanol for 15–20 min
at 35 °C. Cells were washed in restriction enzyme buffer (NEB3.1), chromatin was
solubilised by adding SDS to 0.1% and incubating at 65 °C for 10 min. Excess SDS
was quenched by addition of Triton X100 to 1%, and chromatin was incubated
with 2.07 U/μl of DpnII overnight at 37 °C. DNA ends were filled in with
nucleotides, substituting dCTP for biotin-14-dCTP using Klenow fragment DNA
polymerase I at 37 °C for 2 h, followed by addition of SDS to 1.5% and incubation
at 65 °C for 20 min to inactivate Klenow and further solubilise the chromatin. The
sample volume was diluted 15-fold, crosslinked DNA ends ligated at 16 °C for 8 h
using 0.024 U/μl of T4 DNA ligase, and crosslinks reversed by overnight incubation
at 65 °C in the presence of proteinase K. DNA was purified by phenol:chloroform:
isoamylalcohol extraction and precipitated with ethanol, dissolved in TE and
passed through an Amicon 30 kDa column. DNA was further purified by phenol:
chloroform:isoamylalcohol extraction and precipitated again before treating with
RNase A at 37 °C for 1 h. Biotin was removed from unligated ends by incubation
with T4 DNA polymerase and low abundance of dNTPs (0.05 mM) at 20 °C for 4 h
and at 75 °C for 20 min for inactivation of the enzyme. DNA was subsequently
fragmented using a Covaris M220 (Duty factor 20%, 200 cycles/burst, 350 s, 20 °C),
purified with Qiagen MinElute columns and DNA ends were repaired using T4
DNA polymerase, T4 Polynucleotide Kinase and Klenow fragment DNA poly-
merase I. DNA was purified with Qiagen MinElute columns and A-tailed before
isolating fragments of 100–250 bp using a Blue Pippin (Sage). Biotinylated frag-
ments were enriched using streptavidin magnetic beads (C1) and NextFlex (Bioo
Scientific) barcoded adaptors were ligated while the DNA was on the beads.
Resulting libraries were minimally amplified by PCR and sequenced using paired-
end 42 bp reads on a NextSeq500 (Illumina; Brighton Genomics).

Hi-C data processing and analysis. Hi-C sparse matrices were generated at
varying spatial resolutions using the Hi-C-pro pipeline73, using a customised S288c
reference genome ('SK1Mod', in which high confidence SK1-specific polymorph-
isms were inserted in order to improve read alignment rates74) and plotted using R
Studio (version 1.0.44) after correcting for read depth differences between samples.
Raw read statistics are presented in Supplementary Table 3. Repeat biological
samples gave broadly similar matrices and, unless indicated otherwise, were
averaged to improve their expected quantitative accuracy. As visual inspection
indicated a number of potential translocations in the SK1 strain as compared with
the S288c reference genome, for conservative downstream analyses, additional bins
were masked if they contained potential translocations. Such bins were identified if
they either had values in trans at the level of the median of the third diagonal in cis,
or the maximum value in trans exceeded the maximum value in cis for SSY14 for
bins displaying these properties in either ndt80Δ-0h or in ndt80Δ−8h and for MJ6
in wt-0h or wt-4h. chr1 was excluded from downstream analysis as few informative
bins remained after filtering potential translocations.

Average maps centred at centromeres and telomeres were calculated as in Hsieh
et al.75, ensuring that collected patches for average centromere maps did not extend
inter-chromosomally, and collected patches for average telomere maps did not
extend beyond centromeres or inter-chromosomally. Contact frequency versus
distance curves, P(s), were calculated from 2 kb binned maps, with logarithmically-
spaced bins in s (numutils.logbins, https://bitbucket.org/mirnylab/mirnylib, start=
2, end=max(binned arm lengths), N= 50), and restricting the calculation to bin
pairs within chromosomal arms and excluding bins less than 20 kb from
centromeres or telomere (as in Hsieh et al.75), and normalised to the average value
at 4 kb. P(s) stratified by distance to telomeres was calculated using the combined
distance to telomeres for each bin-pair (as in Mizuguchi et al.76), and excluded
bins-pairs where one bin was closer to a centromere than telomere along that arm.
Distance to centromeres, and P(s) stratified by this distance, was calculated
similarly. Log2 insulation profiles were calculated using a sliding diamond window
(as in Crane et al.77) with a ± 20 kb ( ± 10 bins) extent; as in Nora et al.52

downstream analyses were restricted to when there were zero or one filtered bins in
the sliding window. To calculate histograms of cis/total (Fig. 2d), bins were defined
as either Rec8 or non-Rec8. To calculate P(s) split by Rec8 bin-pair status, each bin-
pair (i.e. entry of the heatmap) was assigned as either Rec8-Rec8, Rec8-nonRec8 or
non-non (e.g. Figure 2e). P(s) was then aggregated separately across chromosomes
for these three categories, similar to calculation of P(s) within and between TADs34.

Average log2 observed/expected maps were calculated by first dividing by intra-
arm P(s) and then averaging together appropriate patches of Hi-C maps.
Correlations between Rec8 occupancy from30 and insulation or cis/total profiles
excluded chromosome 12 because the rDNA locus greatly alters the insulation
profile within the right arm of the chromosome.

For display via HiGlass1, Hi–C matrices were processed with the distiller
pipeline (https://github.com/mirnylab/distiller-nf) and stored in cooler format
(https://github.com/mirnylab/cooler78) compatible with HiGlass. Hi–C peaks were
called using the call-dots command line tool in cooltools (https://github.com/
mirnylab/cooltools), as recently employed for Micro-C XL data79. This identified
locally enriched interactions (as defined previously31), for Hi-C data at 2 kb
resolution (parameters:–dots-clustering-radius 4000–kernel-width 3–kernel-peak
1–max-loci-separation 200000–fdr .25). As the post-hoc filtering thresholds used
in31 appeared too stringent, we used a more relaxed FDR 0.25 and a 50% more
lenient post-processing enrichment threshold (enrichment_factors of 1.25, 1.375,
1.5 instead of default 1.5, 1.75, 2.0 in thresholding_step).

Polymer simulations. Meiotic loop extrusion simulations begin with a generic
polymer representation of the yeast chromatin fibre similar to that used in previous
models of yeast mitotic chromosomes28, where each 20 nm monomer represents
640 bp (~4 nucleosomes), confined to a 1 micron radius nucleus. We simulated the
chromatin fibre with excluded volume interactions and without topological con-
straints, using Langevin dynamics in OpenMM80,81, as previously28. This is
achieved using a soft-core repulsive potential that allows for occasional chain
crossing in steady-state. Importantly, meiotic simulations remove the geometric
constraints specific to the Rabl conformation82,83 because this is not visible in
meiotic pachytene ndt80Δ Hi-C maps.

Because our focus was to characterise the grids of intra-chromosomal
interactions, we considered a system with multiple copies of chromosome 13,
equivalent to four copies of the haploid genome in terms of total genomic content
(4 × 13 copies of chromosome 13), to enable efficient computational averaging of
simulated Hi-C maps. Extruded loops were generated according to parameters that
describe the dynamics of loop extruders, using the simulation engine as previously
described84: extruder separation, extruder processivity, chromatin fibre relaxation
time relative to extruder velocity, and barrier strength. Because yeast chromosomes
are short compared to higher eukaryote chromosomes, relaxation time is relatively
rapid and we focused on separation, processivity and barrier strength. At every
given timepoint an extruded loop is realised as a bond between monomers at the
two bases of the loop (see ./src/examples/loopExtrusion in https://bitbucket.org/
mirnylab/openmm-polymer/).

Upon encountering a barrier, a loop extruder is paused with probability
according to the barrier strength; barrier strength= 1 indicates an impermeable
barrier, barrier strength= 0 indicates no impediment to extrusion. We assume loop
extrusion occurs independently on each chromatid, and simulate loop extrusion
dynamics on a 1D lattice (as previously described34) where the number of lattice
sites equals the total number of monomers (75,140). Bi-directional barriers were
placed at monomers with positions corresponding to Rec8 ChIP-seq sites30, and
pause extruders according the barrier strength parameter. We assume a uniform
birth probability, constant death probability, and that all barriers have an equal
strength; as additional data becomes available, these assumptions can be relaxed,
and more detailed models can be built.

We investigated scenarios where chromatids are then either left individualised
(52 copies), crosslinked to sisters (26 pairs), or additionally paired with
homologues (13 pairs-of-pairs). For simulations with sister crosslinks, these were
added (following Goloborodko et al.68) when extruded loop bases were present at
cognate positions ±30 monomers (~20 kb) on both chromatids (distance= 20 nm);
homologue crosslinks were added similarly when sister crosslinks were present on
both chromatids (distance= 100 nm); centromeres and telomeres were always
paired, and both presented impermeable (strength= 1) boundaries to extruders. To
avoid introducing pseudo-knots, if extruded loops were nested only the outer
cohesins were considered as possible bases for sister crosslinks, sister crosslinks
were only allowed between the same side of loop bases (i.e. left-to-left arm or right-
to-right arm), and sister crosslinks were only added between bases at the reciprocal
minimum distance.

To calculate simulated Hi–C maps, contacts were recorded from conformations
of the full system, which includes intra- and inter-sister, and interhomologue
contacts. Because experimental Hi–C here does not distinguish either sisters or
homologues, contacts were then aggregated into one simulated map. For each
model and parameter set we investigated, we collected an ensemble of
conformations at steady-state, generated simulated chromosome 13 Hi-C maps,
and compared their features and P(s) with those from experimental Hi-C maps.
Contacts were recorded between any two monomers in a given conformation
separated by <60 nm. Each simulated chromosome 13 map represented an average
over 5200 conformations. P(s) for chr13 was calculated from 2 kb binned simulated
maps exactly as for experimental maps.

Goodness-of-fit between simulations and experimental data (e.g. Fig. 3b,c) was
computed as the geometric standard deviation of the ratio of simulated to
experimental P(s) combined across PRec8-Rec8(s), PRec8-non(s), and Pnon-non(s), as
was previously done for P(s) within TADs of multiple sizes and between TADs34,
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for s from 10 kb to 300 kb.

Goodness-of -fit

¼ exp 1=N
X

s
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� �� �2

þ
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þ
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0
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1
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1=2
0
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1
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Where s indexes bins of increasing genomic distance, and N is the number of bins.
This measure reflects the typical fold-deviation in P(s) of each of these three classes
of bin pairs. Note that a value of 1 indicates a perfect agreement between
simulations and experimental data.

Simulated ChIP-seq profiles (Fig. 4c) for Rec8 were generated by aggregating
the position of extruded loop bases (two per extruded loop) across conformations.
Statistics of extruded loop positioning relative to Rec8 sites was calculated with
loopstats.py in looplib (https://github.com/golobor/looplib), and arc diagrams
(Fig. 4d) with loopviz.py. Conformations showing chromatids or positions of
extruded loop bases were rendered in PyMOL (https://pymol.org/sites/default/files/
pymol.bib).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw sequence reads are accessible via the SRA repository GSE127940. Hi-C matrices
publicly viewable via the interactive HiGlass viewer1, hosted at http://higlass.pollard.
gladstone.org. All other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files or from the
corresponding authors upon reasonable request. Data monitoring the cell culture—
evaluation of meiotic progression by DAPI (Fig. 1c; Supplementary Fig. 1c) and FACS
(Fig. 1b, f; Supplementary Fig. 1b; Supplementary Fig. 2d)—are available as a Source Data
File. A reporting summary for this Article is available as a Supplementary
Information file.

Code availability
Code used to analyse Hi-C data publicly available online: https://bitbucket.org/mirnylab/
mirnylib, https://github.com/mirnylab/cooltools. Code used to develop polymer
simulations publicly available online: https://bitbucket.org/mirnylab/openmm-polymer/.
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