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Interplay between the human gut microbiome
and host metabolism
Alessia Visconti 1,9, Caroline I. Le Roy1,9, Fabio Rosa1, Niccolò Rossi1,2, Tiphaine C. Martin1,3,4,

Robert P. Mohney 5, Weizhong Li 6,8, Emanuele de Rinaldis7, Jordana T. Bell 1, J. Craig Venter6,8,

Karen E. Nelson6,8, Tim D. Spector1,10* & Mario Falchi1,10*

The human gut is inhabited by a complex and metabolically active microbial ecosystem.

While many studies focused on the effect of individual microbial taxa on human health, their

overall metabolic potential has been under-explored. Using whole-metagenome shotgun

sequencing data in 1,004 twins, we first observed that unrelated subjects share, on average,

almost double the number of metabolic pathways (82%) than species (43%). Then, using

673 blood and 713 faecal metabolites, we found metabolic pathways to be associated with

34% of blood and 95% of faecal metabolites, with over 18,000 significant associations, while

species showed less than 3,000 associations. Finally, we estimated that the microbiome was

involved in a dialogue between 71% of faecal, and 15% of blood, metabolites. This study

underlines the importance of studying the microbial metabolic potential rather than focusing

purely on taxonomy to find therapeutic and diagnostic targets, and provides a unique

resource describing the interplay between the microbiome and the systemic and faecal

metabolic environments.
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The human gut is home to trillions of microbes that form a
complex community referred to as the gut microbiota. The
metabolic activity of the gut microbiota is essential in

maintaining host homoeostasis and health, as proven, for
instance, by the study of germ-free animals1,2. Although the
presence of a microbiota is vital, variations in its composition
induce metabolic shifts that may result in alterations of host
phenotype3. The gut microbiome is highly malleable and can be
altered throughout lifespan mostly by environmental factors, such
as diet and medication4–6. Although the external environment
plays an important role in shaping the gut microbiome com-
munity, the host can affect the microbial ecosystem through its
immune system, and has also an impact on the faecal metabolic
content7–9.

The joint study of microbiome and metabolome has been
suggested as the most promising approach to evaluate
host–microbiome interactions10. However, studying the meta-
bolic holobiont is complex, and few studies have tackled this issue
in humans at any scale. Our group previously used 16S rRNA
gene amplicon data to confirm that the gut microbiome is
exceptionally metabolically active, and that the faecal metabolome
may improve our estimation of the gut microbiota impact on
health11. However, it is not possible to fully capture the metabolic
activity of the gut microbiome using 16S rRNA gene amplicon-
sequencing techniques alone, and the use of the more compre-
hensive whole metagenomic shotgun sequencing (WMGS) is
necessary. Indeed, WMGS not only detects the taxonomic com-
position at higher resolution but also allows inferring its function,
thus allowing the study of the metabolic potential of the microbial
community.

Here, we study the effect of this metabolic activity on host
health. We assess the impact of the gut microbiome on both the
gut and host systemic metabolism by using WMGS and untar-
geted faecal and blood metabolomics data. We find multiple
associations between the gut microbiome (taxonomic composi-
tion and microbial metabolic function) and faecal and blood
metabolites. In addition, we identify a number of microbial spe-
cies and metabolic functions likely to play a leading role in the
gut-systemic metabolic interplay.

Results
Microbial metabolic pathways are shared across subjects.
WMGS was performed on faecal samples provided by 1,054
volunteers from the TwinsUK registry, of which 1,004 survived
quality control with an average of 39M microbial reads per
sample (see the “Methods” section, Supplementary Table 1).
Taxonomic profiling identified, in the kingdoms of archaea and
bacteria, 14 phyla, 24 classes, 37 orders, 74 families, 182 genera,
and 580 species present in at least one sample (see the “Methods”
section). Each species was observed in a median of 2.7% of the
samples, and 12% of species were sample-specific (Fig. 1). The
most ubiquitous species were from the Subdoligranulum genus
(unclassified species), Ruminococcus obeum, Ruminococcus tor-
ques, and Faecalibacterium prausnitzii, all detected in more than
98% of the samples (Supplementary Fig. 1). Microbial metabolic
detection (as described by the MetaCyc microbial metabolic
pathways) identified 434 non-redundant pathways, which were
detected in most samples (see the “Methods” section). Each
pathway was observed in a median of 91.6% of the samples, with
12% of the pathways present in all samples and only 2% being
sample-specific (Fig. 1).

Microbial metabolic pathways were widely shared between
individuals, compared to their taxonomical composition. Indeed,
multiple known species (up to 465, and 29 on average) identified
from the WMGS data, plus a large number of unclassified species,

contributed to the abundance of each microbial metabolic
pathway (Supplementary Data 1). As a consequence, pathway
prevalence within our sample strongly correlated with the
number of species in which it could be detected (Spearman’s
ρ= 0.34; P= 9.4 × 10−9), i.e., pathways present in the largest
number of species were also those with highest prevalence (and
vice versa). When comparing pairs of unrelated individuals, we
observed that, on average, they shared 82% of the pathways but
only 43% of the species (paired Wilcoxon’s test P < 2 × 10−16,
Supplementary Fig. 2, see the “Methods” section).

Microbiome and faecal metabolic content are strongly linked.
Faecal metabolomics and WMGS data were available for 479
individuals, and generated on the same faecal samples. 713
annotated metabolites were measured in more than 50 individuals
and tested for association with the gut microbiome at both
taxonomic and functional levels using PopPAnTe12, which uses a
variance component framework and the matrix of the expected
kinship between each pair of individuals to model the resem-
blance between family members. Sex and age at sample collection
were included as covariates (see the “Methods” section, Fig. 2). As
expected, both the composition of the gut microbiome and its
metabolic function were widely associated with the faecal meta-
bolic content. At a 5% false discovery rate (FDR) we found 16,133
associations with microbial metabolic pathways and 2493 asso-
ciations with microbial species (Supplementary Data 2 and 3). In
particular, 99.7% of the metabolic pathways were significantly
associated with 95% of the faecal metabolites, while 90% of the
species were associated with 82% of the faecal metabolites (see the
“Methods” section; Fig. 2). We observed 48% and 51% positive
associations with microbial metabolic pathways and species,
respectively. On average, each metabolite level was associated
with 4 species and 24 pathways. In addition, 145 (20%) meta-
bolites were associated to a single species, while only 50 of them
(7%) were associated to a single pathway. Five microbial species
played a major metabolic role and were independently associated
with 10% of the faecal metabolites (Supplementary Fig. 3):
unclassified Subdoligranulum spp. (149 metabolites), Akkerman-
sia muciniphila (106 metabolites), Roseburia inulinivorans (105
metabolites), Methanobrevibacter smithii (96 metabolites), and
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Detected in less than 1% of the samples
Detected between 1% and 25% of the samples
Detected between 25% and 50% of the samples
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Fig. 1 Gut microbiome composition. The composition of the gut ecosystem
is unique to an individual while its functionality is maintained across the
population. Pie charts represent the percentage of species (on the left) and
microbial metabolic pathways (on the right) present in <1% of the
population (dark blue), between 1% and 25% (light blue), between 25%
and 50% (turquoise), between 50% and 75% (brown), and more than 75%
(yellow)
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Roseburia intestinalis (92 metabolites). In contrast, the top-five
microbial metabolic pathways were associated with more than
53% of the faecal metabolites, with the pathways of L-rhamnose
degradation I, Kdo transfer to lipid IVA III (Chlamydia), CDP
diacylglycerol biosynthesis I and II and NAD biosynthesis I from
aspartate associating with 226, 218, 215, 215, and 206 faecal
metabolites, respectively.

We calculated the enrichment of the associated metabolites for
metabolic super-pathways (as annotated by Metabolon, Inc.; see
the “Methods” section). Faecal metabolites associated with
microbial species were enriched for a decrease in amino acids
(PAGE adj P= 1.6 × 10−4) and an increase in lipids (PAGE adj
P= 1.9 × 10−3), while metabolites associated with metabolic
pathways were enriched for a decrease in lipids (PAGE adj P=
8.0 × 10−5), and an increase in both nucleotides (PAGE adj P=
0.02) and carbohydrates (PAGE adj P= 0.03).

B vitamins in faeces were strongly associated with both species
and metabolic pathways, with riboflavin (vitamin B2), nicotinate
(vitamin B3), pantothenate (vitamin B5), pyridoxine (vitamin
B6), biotin (vitamin B7) associated with 9–27 species and with
48–155 microbial pathways (Supplementary Data 2 and 3).
Finally, 16 associations were observed between faecal vitamin E
(alpha, beta, gamma and delta tocopherol) and species/pathways.

Eleven of the 82 drug or drug-derived metabolites detected by
the Metabolon platform in faeces were present in at least
50 samples with matching metagenomics data. At the species
level, we observed six associations with three of these metabolites
passing an FDR threshold of 5% (Supplementary Data 2). One
association was between 3-hydroxyquinine (a degradation product
of quinine, used against malaria but also contained as a flavouring
in beverages, including tonic water) and unclassified Anaero-
truncus spp. (β= 0.68, SE= 0.18. P= 4.02 × 10−5). Two negative
associations were identified between salicylic acid (a precursor of
aspirin) and M. smithii (β=−0.53, SE= 0.17, P= 2.21 × 10−4)
and unclassified Anaerotruncus spp. (β=−0.62, SE= 0.17, P=
2.13 × 10−4). Finally, N-carbamylglutamate (a drug that can be
used for the treatment of hyperammonemia) was associated with
F. prausnitzii (β= 0.68, SE= 0.18, P= 2.21 × 10−4), Odoribacter
splanchnicus (β= 0.88, SE= 0.25, P= 3.93 × 10−4), and Blautia

hydrogenotrophica (β=−0.57, SE= 0.15, P= 1.17 × 10−4). At
a 5% FDR, a total of 101 associations were observed between
microbial metabolic pathways and faecal metabolites annotated as
drugs or and drug-derived metabolites (Supplementary Data 3).
Namely: 3-(N-acetyl-L-cystein-S-yl) acetaminophen (26 associa-
tions, metabolite derived from paracetamol), 3-hydroxyquinine
(1 association), 4-acetamidophenol (24 associations, metabolite
derived from paracetamol), carboxyibuprofen (2 associations,
metabolite derived from ibuprofen), N-carbamylglutamate (8
associations) and salicylic acid (40 associations).

The microbiome associates with host systemic metabolites.
Blood metabolomics profiling was available for 859 individuals
with WMGS data. Faecal and blood samples were collected, on
average, 0.9 years apart, with 41% of our samples collected within
one week, and 91% within 2 years (Supplementary Fig. 4). Intra-
individual correlation analysis of the tested metabolites showed a
good correlation between samples collected up to 2 years
apart (n= 149, mean Pearson’s ρ= 0.53, SD: 0.12, 1st–3rd
interquartile range: 0.47–0.60), as confirmed by permutation
analysis (Pempirical= 1 × 10−4, see the “Methods” section). We
further observed that metabolomics stability persists over longer
periods of time (Supplementary Table 2), in line with previous
literature suggesting that human metabolic profiles are conserved
for up to 7 years13.

Six hundred and seventy-three annotated metabolites (includ-
ing 369 metabolites also measured in faeces) were measured in
more than 50 individuals, and used in this study. At a 5% FDR,
we identified 2030 associations with microbial metabolic path-
ways and 254 associations with microbial species, of which 44%
and 43% were positive, respectively (Fig. 2; Supplementary Data 4
and 5). In particular, 86% and 34% of the microbial metabolic
pathways and species associated with 33% and 24% of the studied
blood metabolites, respectively, with a total of 309 unique blood
metabolites (46%) associated with the microbiome. The species
showing the largest number of associations with blood metabo-
lites were Lactobacillus acidophilus (n= 30), and Lactobacillus
fermentum (n= 14; Supplementary Fig. 5). The metabolite
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Fig. 2 Study design and number of associations. The top of the figure reports the number of microbial species and metabolic pathways which were detected
in at least 50 individuals with metabolomics and WMGS data, and that were used in the study, and the number of associations tested. The bottom of the
figure reports the number of associations that were significant at a 5% FDR, along with the number and percentage of metabolites, microbial species, and
microbial metabolic pathways involved. Association testing was performed using PopPAnTe12, in order to model the resemblance between family
members. Sex and age at the sample collection were included as covariates
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sebacate showed the highest number of associated species (n=
11), followed by tartronate (n= 9), phenylacetylglutamine (n=
8), and p-cresol sulfate (n= 6). On average, each blood metabolite
was associated with two species (with 118 species associating with
a single metabolite) and 10 metabolic pathways (with 93
pathways associating with a single metabolite). The three
microbial metabolic pathways showing the largest number of
associations with blood metabolites were the super pathways of L-
phenylalanine and of ʟ-alanine biosynthesis, and the pathway of
urate biosynthesis/inosine 5'-phosphate degradation (30, 26, and
24, respectively). Four blood metabolites were associated with
more than 100 microbial metabolic pathways: phenylacetylgluta-
mine (n= 143) and p-cresol-glucuronide (n= 102), two known
gut microbial-derived metabolites, as well as tyramine O-sulfate
(n= 130), that can be synthesised by a Eubacterium enzyme14,
and 1,5-anhydroglucitol (n= 129), that is present in a wide
variety of food products.

Pathways have a broader metabolic footprint than species.
Overall, we identified about seven times more associations
between faecal and blood metabolites and microbial metabolic
pathways than microbial species. We observed that pathways
found in a larger number of species have a stronger impact on the
metabolome, with a significant positive correlation between the
number of species contributing to each pathway and the number
of associations between the pathway and both faecal and blood
metabolites (Spearman’s ρ= 0.27, P= 2 × 10−6, and ρ= 0.33,
P= 1 × 10−9, respectively).

Our results confirmed a wide network of associations between
the gut microbiome and the faecal metabolome, which extends to
the systemic metabolome. At a 5% FDR, we identified 360
microbial metabolic pathways associating with 679 faecal and 222
blood metabolites, and 233 microbial species associating with 582
faecal and 160 blood metabolites. We observed that age at the
sample collection had a negligible effect on the number of
significant associations identified between faecal and blood
metabolites and both microbial metabolic pathways and species
(see the “Methods” section, Supplementary Table 3, Supplemen-
tary Data 6–9, Supplementary Fig. 6). Similarly, correction for
drug intake (antibiotics, metformin, and proton–proton inhibitor
(PPI)), which was assessed in a small subset of our study sample
(n= 411, see the “Methods” section), appeared to minimally
affect the number of significant associations between the
metagenome and the faecal and blood metabolome (Supplemen-
tary Table 4, Supplementary Data 10–13).

Notably, in both faeces and blood, the majority of the
metabolic pathways were associated with metabolites apparently
unrelated to their functions. Indeed, only 999 out of 4,891 unique
faecal metabolite–pathway associations (20%) and 186 out of 419
unique blood metabolite–pathway associations (44%), respec-
tively, linked 155 faecal and 42 blood metabolites to pathways
either producing or consuming them (see the “Methods” section).

Most microbial metabolic pathways (85%) associating with one
or more metabolites in faeces also associated with one or more
metabolites in blood (Supplementary Table 5). In contrast, the
majority of microbial species only associated with faecal
metabolites alone (58%, Supplementary Table 5). Still, 31% of
species showed association with both faecal and blood metabo-
lites, suggesting important effects on host systemic metabolism
for this subset. Specifically, 4,861 pairs of faecal–blood metabo-
lites co-associated with the same species and 108,565 pairs with
the same metabolic pathway. Among these associations, 152 pairs
involved exactly the same named metabolite in both faeces and
blood (145 with metabolic pathways, and only seven with species;
Table 1, Supplementary Data 14), while 113,274 pairs involved a
different metabolite in faeces and blood (unique pairs n=
27,608). Sebacate, threonate, and p-cresol sulfate, in both faeces
and blood, showed the largest number of associations with
pathways and with species in both faeces and blood.

The microbiome interfaces faecal and systemic metabolism. We
further investigated the full set of faecal–blood co-associating
pairs of metabolites to better understand whether the observed
associations were randomly coincident at the same species or
pathway, or if they were suggesting an interplay between the gut
and systemic environments. We assessed, through simulations,
the probability that the microbiota was involved in the dialogue
between faecal and blood metabolites (see the “Methods” section).
We hypothesised that, if the species (or metabolic pathway) was
involved in the dialogue between faecal and blood metabolites,
these were expected to more strongly correlate in individuals for
which the species (or metabolic pathway) was present than in the
remaining samples. Significantly higher correlations were
observed between co-associated faecal–blood metabolite pairs
when species (or metabolic pathways) were detected (Pempirical=
1 × 10−3 for species, and Pempirical= 0.03 for pathways). These
results suggested that at least some of the observed faecal and
blood metabolite associations were likely not randomly coin-
cident at the same species (or pathway), thus supporting the
analysis of this subset of faecal metabolite–blood
metabolite–species/pathway trios with the P-gain approach15

(Supplementary Fig. 7). The P-gain statistic compares the
increase in strength of association with the species (or pathway)
when using the metabolite ratios compared to the smaller of the
two P values when using the two metabolite abundances indivi-
dually. A strong reduction in P value indicates that two meta-
bolite levels may be linked by a mechanism that involves the gut
microbiota. To carefully assess a significance threshold for the
P-gain statistics in our sample, we estimated its empirical null
distribution through simulations. We obtained a P-gain threshold
of 73 for species and of 42 for metabolic pathways at an
experimental-wide α-level of 0.05 (see the “Methods” section).
P-gains passing these thresholds are reported in Supplementary
Data 15 and 16, and included 31% of the P-gains with species

Table 1 Association between microbial species and the same named metabolite in both faeces and blood

Species Metabolite FN Fβ FSE FP BN Bβ BSE BP
Akkermansia muciniphila p-cresol sulfate 443 −0.35 0.11 7.74 × 10−4 829 0.47 0.10 6.36 × 10−6

Bacteroidales bacterium ph8 Sebacate 406 0.68 0.18 1.65 × 10−4 718 −0.50 0.09 4.33 × 10−9

Eubacterium rectale p-cresol sulfate 444 0.45 0.11 2.84 × 10−5 823 −0.45 0.11 2.09 × 10−5

Methanobrevibacter smithii Threonate 287 −0.65 0.14 3.31 × 10−6 527 1.01 0.16 4.09 × 10−10

Oscillibacter spp. 3-phenylpropionate 418 −0.54 0.11 1.95 × 10−6 799 −0.55 0.10 1.02 × 10−7

Roseburia inulinivorans p-cresol sulfate 433 0.43 0.10 1.09 × 10−5 802 −0.53 0.10 1.45 × 10−7

Subdoligranulum spp. p-cresol sulfate 461 −0.32 0.10 9.86 × 10−4 854 0.62 0.10 1.75 × 10−9

For each association, in faeces (F) and blood (B), we report the number of observations (N), effect size (β), standard error (SE), and P value (P)
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(1325/4232 co-associated metabolite pairs) and 19% with
microbial metabolic pathways (16,839/88,452 co-associated
metabolite pairs). The P-gain statistics suggested a potential
dialogue between 36% of the faecal metabolites and 5% of the
blood metabolites, involving 12% of the species (n= 29). This
dialogue was wider with the microbial metabolic pathways,
involving 70% of the faecal and 14% of blood metabolites, and
67% of the pathways (n= 247).

At the species level, unclassified Subdoligranulum spp.
accounted for 49% of the putative dialogue, and F. prausnitzii,
R. inulinivorans, M. smithii, E. rectale, and A. muciniphila
together contributed to a further 36%. In contrast, the results at
the pathway level were not dominated by a limited number of
pathways, with the top six contributing only towards 24% of the
observed dialogue.

Methanogens associate with adiposity. Threonate in blood
showed the highest P-gains involving a large number of sig-
nificantly co-associated faecal metabolites (n = 61 faecal
metabolites, including threonate levels in faeces). All
these associations involved the methanogenic M. smithii, the
main archeon in the human gut16, present in 62% of our
metagenomic samples. Threonate is produced from vitamin C
under oxidative conditions17. In both blood and faeces, threo-
nate was also associated with two microbial pathways linked to
methanogenesis: coenzyme factor 420 biosynthesis (β= 0.94,
SE= 0.18, P= 2.2 × 10−7) and methanogenesis from H2 and
CO2 (β= 0.93, SE= 0.18, P= 3.3 × 10−7), to which M. smithii
contributes, in our sample, for about 47% (the remaining
attributable to Methanosphaera stadtmanae, <1%, and to
unclassified species, 53%; see the “Methods” section). The role of
M. smithii, and of other methanogenic microbes in human
health is still unclear, however, several studies suggested that its
depletion is linked to obesity18,19. We found it to be significantly
negatively associated with the percentage of visceral fat (β=
−0.09, SE= 0.04, P= 0.013; Supplementary Table 6). We also
observed a significant negative association (P < 0.05/3= 0.017,
Supplementary Table 6) between blood threonate and three
measures of adiposity, namely BMI (β=−0.48, SE= 0.12, P=
3.2 × 10−5), and the percentages of total body fat (β=−0.41,
SE= 0.10, P= 4.3 × 10−5) and visceral fat (β=−0.48, SE=
0.11, P= 2.6 × 10−5), while faecal threonate was not associated
with any measure of adiposity (P > 0.05). On the other hand, 31
out of 61 faecal metabolites whose dialogue with blood threo-
nate via M. smithii was confirmed by the P-gain statistic were
significantly associated with measures of adiposity (P < 0.05/
(61 × 3)= 1.3 × 10−3; Supplementary Data 17).

Discussion
Microbiome studies are mainly focused on the effect of individual
microbial taxa on human health, while the metabolic potential of
microbes has been largely overlooked.

A previous report on a small sample of female subjects (n= 18)
showed that, despite a high β-diversity at the phyla level, between
26% and 53% of the ‘enzyme’-level functional groups were shared
among samples20. Higher similarity of microbial metabolic
pathways vs. organismal abundances was also observed by the
larger (n= 242) Human Microbiome Project21. This may be
explained by the high redundancy of metabolic pathways across
different microbial species22. Our larger study validates these
findings, and estimates that 12% of the microbiome metabolic
potential (as described by the MetaCyc microbial metabolic
pathways) is present in all individuals. More in general, a random
pair of unrelated subjects shares on average 82% of their micro-
bial metabolic pathways, while this is the case for only 43% of the

species. We also observed that microbial metabolic pathways are
highly redundant, with up to 465 identified species (and a pos-
sibly large number of unknown ones) sharing the same metabolic
pathway.

Using 713 faecal and 673 blood metabolites measured by
Metabolon, Inc. and WGMS data, we conducted a microbiota-
wide association study. Our results showed that the gut meta-
genome (both at the species and at the metabolic pathway levels)
widely associates with both the gut and host systemic metabolism.
At a 5% FDR, we identified association between the faecal
metabolites and 90% of the microbial species and 99.7% of the
microbial metabolic pathways. In particular, metabolic pathways
were significantly associated with 95% of the faecal metabolites,
while microbial species were associated with 82% of the faecal
metabolites. The results at the taxonomic level were comparable
to those previously reported in a recent study on the TwinsUK
cohort leveraging 16S rRNA gene amplicon data11. In both stu-
dies, we observed that over 90% of microbes were associated with
a vast proportion of the measured gut metabolites (>80%). The
WMGS data used in this study allowed us to extend these
observations, by improving the precision of the taxonomic
associations at the species level rather that at the genus level. For
instance, we were able to identify five species interacting with at
least 10% of the studied faecal metabolites. Four of them (Sub-
doligranulum spp., A. muciniphila, R. inulinivorans, and R.
intestinalis) were present in at least 80% of the population sam-
ple and are already known for their ability to affect faecal
metabolic content23–26. Additionally, the WMGS data allowed the
inference of microbial metabolic pathways and their association
with the faecal metabolome, which could not be performed on the
previous TwinsUK study.

Interestingly, among the numerous microbiome–metabolome
associations identified in this study, a large proportion was
involved with the metabolism of vitamins. For instance, we
observed over 700 associations with vitamin B-related metabo-
lites. While B vitamins are mostly provided to the host through
diet, these can also be synthesised by lactic acid bacteria27. Our
results show a similar number of positive and negative associa-
tions with vitamin B metabolites, suggesting that the microbiome
is not only involved in the biosynthesis of vitamins B but also in
its degradation. Drugs can be metabolised by the gut microbiota,
and they may affect both the metabolic activity of the gut
microbiome and its composition28,29. In our analyses, we iden-
tified associations between six species and 101 microbial meta-
bolic pathways and 6 out of 11 drugs and drug-related
metabolites detected in faeces through the Metabolon platform in
a sufficient number of subjects.

In this study, we also evaluated the impact of the gut
microbiome on the host systemic metabolism. We showed that
nearly half of the blood metabolites (n= 309, 46%) were
associated with microbial species and/or metabolic pathways.
More exactly, 34% of the species and 86% of the pathways were
associated with 24% and 33% of the metabolites, respectively.
Two bacteria stood out as playing a major role: L. acidophilus
(5% of the associations) and L. fermentum (2% of the associa-
tions), both known for their probiotic properties30–32. Notably,
a previous study on the TwinsUK cohort observed that 72% of
blood metabolites were under host genetic influence33. Inter-
estingly, 144 out of 309 microbiome-associated blood metabo-
lites (47%) identified in our study were not heritable.
Heritabilities for the remaining 165 blood metabolites ranged
from 10% to 78%, with a mean value of 47% (Supplementary
Data 18). This suggests that, despite the widespread host
genetic effects on blood metabolites, the gut microbiome might
play a role on the systemic metabolism that is independent
from the host genome.
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In our sample, composed predominantly of active middle-aged
women, we observed that associations between the gut micro-
biome and both the gut and systemic metabolisms were mini-
mally impacted by age. This is in line with previous observations
showing that, in absence of external perturbation, the gut
microbiome of healthy adults remains relatively stable for
years34,35. We also observed, in a small subset of our study
sample, that antibiotics, metformin, or PPI intake had a minimal
effect on the associations between the microbiome and the
metabolome, although this is likely due to the limited number of
individuals taking any of these three drugs.

Bile acids (BAs) metabolism has been associated with gut
microbiota composition in many studies. Indeed, the gut
microbiota shapes the composition of the BA pool (by hydrolysis
and hydroxy group dehydrogenation of primary BAs to second-
ary BAs) and BAs can affect the growth of certain gut
bacteria36–38. In faeces, 5% and 3% of the total number of asso-
ciations between faecal metabolites and metabolic pathways and
species, respectively, were with BAs, over 80% of which were with
secondary BAs. In blood, 6% of all associations with species and
3% of all associations with metabolic pathways were with BAs.
Again, secondary BAs were more associated (over 70% of all BAs
associations) than primary BAs with both species and metabolic
pathways.

Sebacate was the faecal metabolite that was associated with the
largest number of species and metabolic pathways. Sebacate
metabolism has been poorly studied. However, a pharmacokinetic
study of sebacate in rats has revealed, post-ingestion, a low sys-
temic bioavailability, suggesting that this may be explained by
direct beta-oxidation of sebacate (i.e., sebacate degradation) by
the liver, and that only traces of the compound could be detected
in faeces39. Another study on rats also revealed the absence of
sebacate in faeces after intravenous injection of the radioactive
compound40, indicating that it is unlikely that systemic sebacate
level affects the gut microbiome through its excretion in the gut.
Sebacate was also used as primary carbon source by some gut
commensals (Pseudomonas aeruginosa and Pseudomonas multi-
livoran)41. Thus, the observed low post-ingestion level of sebacate
in both faeces and blood in rats, and the numerous associations
identified by our study between faecal and blood sebacate and the
gut microbiome may also be due to its utilisation by gut bacteria
as carbon source. Endogenous sebacate, naturally found in blood,
can be synthesized, in rats, through omega-oxidation in starva-
tion periods, before undergoing beta-oxidation to produce suc-
cinate and be used as energy source through gluconeogenesis42,43.
It was also reported that gut bacteria may affect liver beta-
oxidation through modulation of the immune system in mice44.
Therefore, an alternative/complementary hypothesis might be
that the high number of associations observed between blood
sebacate and the gut microbiome might picture the effect that the
gut microbiome exerts on liver functions45.

Altogether, our results indicate an intense interplay between
the gut microbiome and its host. While only a small number of
metabolites were found to be associated to the same species (or
pathway) in both metabolic environments (n= 152), we detected
more than 27,000 unique pairs of faecal–blood metabolites, which
were associated with the same microbial species and/or metabolic
pathway (co-associated metabolites). The limited size of our study
sample makes it unsuitable to test causality using a Mendelian
randomisation method46. Nonetheless, using two complementary
approaches, we showed that, first, co-associated metabolites are
more strongly correlated in the presence of the associated species
or metabolic pathways (Pempirical= 1 × 10−3 and 0.03, respec-
tively), and, second, that a significant dialogue, as assessed
through the P-gain statistic, exists between 71% of the faecal and
the 15% of blood metabolites, involving 12% of the species

and 67% of the pathways. We highlight four potential mechan-
isms that could underlie the interplay between these two meta-
bolomic environments (Fig. 3). First, the interplay could be
triggered by the metabolic activity of the microbiome47. Second,
the gut microbiome could mediate metabolite transfer through
the gut barrier by affecting its integrity, as suggested, for example,
by the associations involving the same species and named meta-
bolites in both blood and faeces (Table 1). Indeed, these asso-
ciations showed opposite direction of effects, suggesting that
microbes may modulate the absorption of the metabolites by the
host rather than its bioavailability. Third, microbial growth could
be impacted by secretion of metabolites by the host within the gut
as extensively discussed regarding BAs37,48. Fourth, the host–gut
microbiome interplay could also be triggered by non-metabolic
interactions including microbial secretion of peptides or direct
cell–cell interactions49, which could not be investigated in the
present study.

We observed about seven times more associations between
metabolites and microbial metabolic pathways than species. This
trend was even stronger when studying the faecal–blood dialogue,
with nearly 13 times more co-associated metabolite pairs identi-
fied by means of the P-gain statistics for microbial metabolic
pathways than species. These results support the claim that
looking at functions rather than taxonomy alone gives a better
appreciation of the true gut microbiome metabolic activity10. We
suggest that this large number of associations with metabolic
pathways is likely due to functional redundancy. Nonetheless, the
majority of the metabolic pathways, especially in faeces, were
associated with metabolites apparently unrelated to their func-
tions, with only 20% and 44% of the faecal metabolite–pathway
associations and blood metabolite–pathway associations linking
metabolites with the MetaCyc metabolic pathways either produ-
cing or consuming them. Therefore, we cannot exclude that part
of the observed associations with pathways are driven by the
concerted action of microbial sub-communities rather than only
by the specific function of the pathways.

This study has some limitations. First, we used data from a
cohort including only individuals of European ancestry and
composed predominantly of middle-aged woman (96%, average
age 65 years old). Therefore, our results may not generalise to
diverse populations. Ideally, data collected in other larger cohorts
and meta-analyses would be necessary to confirm our novel
findings. Second, despite the large-scale sample, this is a cross-
sectional study, and no causal relationship between the micro-
biome and the metabolome can be inferred from the identified
associations. Third, while WMGS data allow us to infer the
functional capability of the microbial community, it does not
provide information on which microbial metabolic pathways are
actually active. Metatranscriptomic data will help in bridging this
gap, also allowing discerning between associations with microbial
metabolic pathways that are connected to their specific function
or that are simply a proxy for microbial sub-communities.
Fourth, stool consistency and microbial cell count, which can
have an influence on the gut microbiota composition50,51, were
not recorded in this study. Finally, the results obtained in this
study are not quantitative, since all analyses were carried out
using relative abundances. This implies that the identified asso-
ciations report the effect of microbial species/metabolic pathways
proportion rather than of their actual concentration.

In conclusion, we first confirmed the key role played by the
microbiome on the faecal and host systemic metabolism. Next, we
described the microbiome effect on the interplay between the two
metabolic compartments. We observed that only a few key spe-
cies, but many common microbial functions, are substantially
associated with faecal and blood metabolic profiles. Therefore,
microbial metabolic pathways should be considered beyond their
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primary function and interpreted as proxies for microbial com-
munities, interacting with their surrounding environment. Future
treatments designed to improve host health through the mod-
ulation of the gut microbiome should optimally target function-
ally related microbial communities rather than single organisms.
Moreover, with this study, we make available to the scientific
community a unique resource providing a detailed investigation
of the dialogue between the microbiome and the faecal and blood
metabolome, which will help in pinpointing potential biomarkers
and targets capable of modulating the abundances of metabolites
and of species and functions relevant for human health for fur-
ther investigations, and inform microbiology research on poten-
tial new metabolic functions of the gut microbiome. Results are
made fully available through extensive Supplementary Materials
and through a Web portal (http://www.metabgut.org) where they
can be queried and visualised both graphically and as interactive
tables.

Methods
TwinsUK cohort. The TwinsUK adult twin registry includes about 14,000 subjects,
predominantly females, with disease and lifestyle characteristic similar to the
general UK population52. Metagenomics sequencing was performed on 1,054
randomly selected samples, while faecal and blood metabolomics was assessed in
479 and 859 individuals with metagenomics data, respectively.

Twins collected faecal samples at home, and the samples were refrigerated for
up to 2 days prior to their annual clinical visit at King’s College London, when they
were stored at −80 °C for an average of 2.3 ± 1.0 years at −80 °C before processing.

Both faecal metabolomics and WMGS data were generated on the same faecal
samples. Blood samples, collected during the clinical visit, were stored at −80 °C
for an average of 1.8 ± 1.2 years before processing. Faecal and blood samples were
collected, on average, 0.9 ± 1.3 years apart.

St. Thomas’ Hospital Research Ethics Committee approved the study, and all
twins provided informed written consent.

DNA extraction, library preparation, and sequencing. A 3-mL volume of lysis
buffer (20 mM Tris–HCl pH 8.0, 2 mM sodium EDTA 1.2% Triton X-100) was
added to 0.5 g of stool sample, and the sample vortexed until homogenised. A
1.2 mL volume of homogenised sample and 15 mL of Proteinase K (Sigma Aldrich,
PN.P2308) enzyme was aliquoted to a 1.5 mL tube with garnet beads (Mo Bio PN.
12830-50-BT). Bead tubes were then incubated at 65 °C for 10 min and then 95 °C
for 15 min Tubes were then placed in a Vortex Genie 2 to perform bead beating for
15 min and the sample subsequently spun in an Eppendorf Centrifuge 5424. 800 μL
of supernatant was then transferred to a deep well block and DNA extracted and
purified using a Chemagic MSM I (Perkin Elmer) following the manufacturer’s
protocol. Zymo Onestep Inhibitor Removal kit was then performed following
manufacturer’s instructions (Zymo Research PN. D6035). DNA samples were then
quantified using Quant-iT on an Eppendorf AF2200 plate reader.

Nextera XT libraries were prepared manually following the manufacturer’s
protocol (Illumina, PN. 15031942). Briefly, samples were normalised to 0.2 ng ml−1

DNA material per library using a Quant-iT picogreen assay system (Life
Technologies, PN. Q33120) on an AF2200 plate reader (Eppendorf), then
fragmented and tagged via tagmentation. Amplification was performed by Veriti
96-well PCR (Applied Biosystems) followed by AMPure XP bead cleanup
(Beckman Coulter, PN. A63880). Fragment size for all libraries were measured
using a Labchip GX Touch HiSens. Sequencing was performed on an Illumina
HiSeq 2500 using SBS kit V4 Chemistry, with a read length of 2 × 125 bp.
Sequencing of 1054 samples yielded an average number of reads of 54M per sample
before quality control.
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Fig. 3 Potential mechanisms implicated in the interplay between the gut microbiome, the faecal metabolome, and the blood metabolome. (1) Small dashed
lines: metabolites are produced by the microbiota and then absorbed, resulting in associations between the microbiome and both the blood and faecal
metabolites. (2) Large dashed lines: the microbiome affects the gut barrier integrity, resulting in alterations of metabolites absorption (i.e., the same
metabolite is associated with a species/pathway in both blood and faeces, but the directions of effects are opposite). (3) Light continuous line: metabolites
produced by the host, such as bile acids, affect microbial growth. (4) Bold continuous line: direct microbiome to host cell interactions that result in host
systemic modulation (i.e., species are associated with blood metabolites but not with faecal metabolites)
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Taxonomic profiling and functional annotation. Paired-end reads were processed
using the YAMP pipeline (v. 0.9.1)53. Briefly, we first removed identical reads,
potentially generated by PCR amplification54. Next, reads were filtered to remove
adapters, known artefacts, phix174, and then quality trimmed (PhRED quality
score < 10). Reads that became too short after trimming (N < 60 bp) were dis-
carded. We retained singleton reads (i.e., reads whose mate has been discarded) in
order to retain as much information as possible. Contaminant reads belonging to
the host genome were removed (build: GRCh37). Low-quality samples, i.e., samples
with <15M reads after QC were discarded (n= 4). Next, MetaPhlAn255 (v. 2.6.0)
and the HUMAnN2 pipeline56 (v 0.10.0), both included into the YAMP pipeline,
were used to characterise the microbial community composition and its functional
capabilities, respectively. Functional capabilities of the microbial community were
described by the MetaCyc metabolic pathways, and assessed using the UniRef90
proteomic database annotations. HUMAnN2 was also used to evaluate the per-
centage of species contributing to the abundance of each microbial metabolic
pathway.

A principal component analysis evaluated using the taxonomic profiling was
used to identify and discard ecologically abnormal samples (n= 37). If sample
scores were greater than three times the standard deviation on one of the first 10
principal components the sample was labelled as outlier and discarded. Finally, we
removed individuals not of European ancestry (n= 9, self-reported via
questionnaire) resulting in 1004 samples with an average number of reads of 39M
(39 males, 965 female), all living in the UK at the time of specimen collection
(Supplementary Table 1). The dataset included 161 monozygotic twin pairs (n=
322), 201 dizygotic twin pairs (n= 402), and 280 singletons.

Taxonomic and microbial metabolic pathways relative abundances were arcsine
square-root transformed, filtered for outliers using the Grubbs outlier test
(significance threshold P= 0.05), and standardised to have zero mean and unit
variance57. Under the assumption that a zero relative abundance meant
impossibility to detect the taxum/pathway rather than its absence, zero values were
considered as not available (NA).

Metabolomics profiling. Metabolite ratios were measured from faecal samples and
blood by Metabolon, Inc., Morrisville, NC, USA, by using an untargeted
UPLC–MS/MS platform. Details to help reproducing the present findings using
comparable non-commercial methodologies are available in the Supplementary
Methods and in Zierer et al.11, for faecal metabolome, and Long et al. 33, for blood
metabolome. Briefly, faecal samples were lyophilised then extracted at a constant
per-mass basis while blood samples were used directly for extraction at a constant
per-volume basis. Proteins and other macromolecules were removed using
methanol precipitation. Samples were run using four different methods, against
three controls (a pooled sample, extracted water -blank- and a cocktail of stan-
dards). Metabolites were identified by comparison to a referenced library of che-
mical standards58, and area-under-the-curve analysis was performed for peak
quantification and normalised to day median value. To ensure high quality of the
dataset, control and curation processes were subsequently used to ensure true
chemical assignment and remove artefacts and background noise. Details regarding
the platform used for each individual metabolite are provided as Supplementary
Data 19 and 20. A total of 1116 metabolites were measured in the 480 faecal
samples, including 850 of known chemical identity used in this study. In blood, a
total of 902 metabolites were measured in 859 individuals, 687 of which had known
chemical identities. Metabolites were scaled by run-day medians, and log-
transformed. Faecal metabolites were further scaled to have mean zero and stan-
dard deviation one. Metabolites that were indicated as below detection level (zero)
were considered as not available (NA).

Temporal stability of the metabolic profiles. The blood metabolomic data used
in this study belonged to a larger set of 2070 individuals, with longitudinal mea-
surements up to three time points33, which we used to assess the blood metabo-
lomic stability over time.

In line with the difference observed between the metagenomic and blood
metabolomic data used in this study, where about 90% of our samples were
collected no more than 2 years apart (Supplementary Fig. 4), we extracted all the
individuals having two measurements within a 2-year time frame (n= 149),
ensuring that their metabolomic profiles were assessed in the same batch in order
to limit potential variability due to batch effects. We then removed, for each tested
metabolite’s profile, outliers (values further away than three standard deviations
from the dataset mean), scaled the data to have mean zero and standard deviation
one, and assessed the intra-individual correlations using the Pearson’s ρ. To
confirm that the observed correlations were not due to chance, we then built 10,000
datasets including 149 randomly paired metabolomic profiles from unrelated
subjects extracted from the whole metabolomics dataset, ensuring that each pair
was measured in the same batch. We then used the Wilcoxon’s test to assess the
probability of observing a larger average intra-individual correlation in the 149
individuals with measurements taken 2 years apart compared to that observed the
random sets. To further verify the stability of the intra-individual correlation over
larger time frames, we evaluated the intra-individual correlation for measurements
taken up to 10 years apart (and within the same batch).

Shared microbiome between unrelated individuals. For all individuals in our
dataset, we codified the absence/presence of a microbial species/metabolic path-
ways with 0 and 1, respectively. Then, after having identified all possible pairs of
unrelated individuals (n= 1,006,288), we assessed for each pair the percentage of
shared species/pathways as the ratio between the number of species/pathways
which were present in both members and the number of species/metabolic path-
ways which were present in at least one of them. The distribution of percentages
obtained for species and pathways across all pairs were then compared using a
paired Wilcoxon’s test.

Metagenome-wide association study. Associations of faecal and blood meta-
bolites with species and microbial metabolic pathways-transformed relative
abundances were carried out using PopPAnTe (v, 1.0.2)12, which uses a variance
component framework and the matrix of the expected kinship between each pair of
individuals, generated using the pedigree information, to model the resemblance
between family members. Sex and age at the sample collection were included as
covariates. Only pairs of metabolites–species/pathways with at least 50 observations
were tested for association. In these analyses, we used all the available samples with
faecal metabolites (n= 479) and with blood metabolites (n= 859). The significance
of the associations was evaluated by comparing the likelihood of a full model,
including the species/metabolic pathways in the fixed effect, and the likelihood of a
null model where these effects were constrained to zero. Associations passing a
FDR threshold of 5% were considered significant. FDR was evaluated using Storey’s
method59.

Age effect. To assess the effect of age in our analyses, associations of faecal and
blood metabolites with species and microbial metabolic pathways-transformed
relative abundances were carried out using PopPAnTe, with only pairs of
metabolites–species/pathways with at least 50 observations tested for association.
We compared, in the same dataset, the results of two models: one including only
sex as covariate, and the other including both sex and age at sample collection. In
both models, associations passing an FDR threshold of 5% and having concordant
direction of effects in the two experimental settings were considered as unaffected
by age.

Effect of medication. Self-reported use of antibiotics, PPI drugs, and metformin
was available for 411 individuals with metagenomic data. Only 13, 26, and 33 out of
these 411 individuals were using metformin, PPI, and antibiotics, respectively, with
two individuals taking both metformin and PPI, and two other individuals taking
both PPI and antibiotics, while 343 individuals (84%) were not taking any of these
medications. We compared the results obtained using an association model that
included only sex and age at the sample collection as covariates with those
obtained, in the same set of individuals, using an association model which had also
information on the use of the three reported drugs (each drug included as fixed
effect in the PopPAnTe linear mixed model and coded as: 1= taking the drug or
0= not taking the drug). Associations passing an FDR threshold of 5% in both
experimental settings and showing concordant direction of effects were considered
unaffected by these drugs.

Enrichment analysis. Enrichment analysis was performed using the super-
pathways annotation provided by Metabolon, Inc. Metabolites were grouped in the
following eight super-pathways: amino acid, carbohydrate, cofactors and vitamins,
energy, lipid, nucleotide, peptide, and xenobiotics. As done previously11, enrich-
ment P values were evaluated using the parametric analysis of gene set enrichment
(PAGE) algorithm60 using 10,000 random permutations as implemented in the
piano R package61 (v 1.20). The PAGE algorithm, being based on a two-tailed Z
score, can evaluate whether each super-pathway is significantly enriched for an
increase or a decrease of the amount of metabolites which it includes.

Linking metabolites to MetaCyc metabolic pathways. We downloaded from the
MetaCyc62 Web interface (version 22.6) the list of all compounds (univocally
identified using the MetaCyc compound identifier, and, when available, the InChi
Key). Then, using the MetaCyc SmartTables function (option: pathways of com-
pound; https://metacyc.org/PToolsWebsiteHowto.shtml#TAG:__tex2page_sec_6),
we generated a table assigning them to the pathways they belonged to. Finally, for
all the metabolites associated to at least one pathway in faeces and/or blood, we
generated a second table listing their InChi Key, when known. We were able to
annotate 627/679 and 198/222 faecal and blood metabolites, respectively. An inner
joint of the two tables, using the InChi Key as key, highlighted that 155 and 42 of
the faecal and blood metabolites annotated in the previous step (and involved in
4891 and 419 unique associations, respectively) were assigned to at least one of the
MetaCyc metabolic pathways. This table was used to evaluate the proportion of
metabolites associated to pathways that also included the metabolites as substrate
or product.

Gut–host metabolic dialogue. We selected all pairs of metabolites that were
observed in at least 100 individuals and were associated with the same species/
metabolic pathway in both environments (co-associated metabolites) and used two
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approaches to detect and validate the presence of an interplay between the gut and
the systemic host metabolism.

First, we hypothesised that, if a species (or pathway) is involved in the dialogue
between faecal and blood metabolites, these metabolites would be expected to be
more strongly correlated in the presence of the species (or pathway) than in its
absence. We used the missingness observed in our WMGS data to test this
hypothesis. Indeed, while we are not able to measure it, we can confidently assume
that a variable proportion of missing data in our dataset are likely to include truly
missing species (or pathways). We tested this hypothesis through simulations. We
selected all pairs of co-associated metabolites interacting with species (or pathways)
with at least 30 missing observations, and built 1,000 random datasets which
included 1,000 pairs of metabolites matched by correlation and sample size to the
original set of co-associated metabolites. These new pairs were then combined with
species (or pathways) having the same missingness pattern of the actual associated
species (or pathways). Then, we used these simulated datasets to assess the
probability of observing increased correlation between metabolites when the
species (or pathway) was present in the co-associated metabolites compared to the
matched pairs.

Second, we evaluated, for each pair of co-associated metabolites, its P-gain
statistic (Supplementary Fig. 7), which allows determining whether the ratio
between the two metabolites is more informative than the single metabolites alone,
therefore suggesting the presence of a relationship between them15. To this aim, we
first evaluated the log ratios between each pair of co-associated metabolites. Then,
we associated the single metabolites and the obtained ratios with the specific
species/pathway by fitting a linear mixed effect model in R (package lme4, v.
1.1.18), including age and sex as fixed effects, and family structure as a random
effect. All association tests were carried out between pairs of co-associated
metabolites and metagenomic data with at least 100 complete observations (i.e.,
having metagenomic data and metabolic profile for both co-associated metabolites
available). Finally, we evaluated the P-gain statistic as the ratio between the
minimum P value obtained using the single metabolites alone and the P value
obtained using their ratio15. It has previously suggested that a critical P-gain
threshold taking into account multiple test correction, under the assumption of a
type I error rate of 0.05, would be 10 times the number of tests15. However, it has
also been observed that the magnitude of the P-gain statistic can be reduced by the
increasing correlation between the metabolites and their ratio, and increased by an
increasing sample size15, two parameters which varied greatly in our dataset. We,
therefore, estimated a null distribution empirically using a conservative assumption
of no interplay between metabolites associated with different species or pathways.
Therefore, we build a null distribution of P-gain statistics using 100,000 pairs of
randomly selected metabolites which were associated at a 5% FDR with two
different species (or pathways) but were matched 1-to-1 by correlation and sample
size to the co-associated metabolite pairs. We used the top 5% P-gain value as the
critical P-gain threshold.

Adiposity phenotypes data and association study. Subjects were asked to
remove their shoes, and height (in cm) was measured using a stadiometer.
Weight (in kg) was measured on digital scales. Total and visceral fat mass
percentage was determined in 1141 individuals with metagenomic and/or
metabolomic data available by dual-energy X-ray absorptiometry (DXA; Hologic
QDR; Hologic, Inc., Waltham, MA, USA) whole-body scanning by a trained
research nurse. The QDR System Software Version 12.6 (Hologic, Inc., Wal-
tham, MA, USA) was used to analyse the scans. Measurements >3 standard
deviations from the dataset mean were excluded from the analysis. To ensure the
normality of their distribution, the data were rank-based inverse normalised.
Associations with M. Smithii, blood and faecal threonate, and 61 faecal meta-
bolites whose dialogue with blood threonate via M. smithii was confirmed by the
P-gain statistic, were carried out by fitting a linear-mixed effect model in R
(package lme4, v. 1.1.18), including age and sex as fixed effects, and family
structure as a random effect.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data generated during the study are available as Supplementary Data, while a web
interface for querying the associations between microbiome and metabolites is available
at: http://www.metabgut.org. Results are shown as interactive tables and can also be
visualised graphically. Data on TwinsUK twin participants are available to bona fide
researchers under managed access due to governance and ethical constraints. Raw data
should be requested via our website (http://twinsuk.ac.uk/resources-for-researchers/
access-our-data/) and requests are reviewed by the TwinsUK Resource Executive
Committee (TREC) regularly. The raw metagenomic sequences are available from the
European Nucleotide Archive website (study accession number: PRJEB32731).

Code availability
The source code used to assess the dialogue between the gut and systemic host metabolism,
is available at: https://github.com/alesssia/microbiome_metabolome_interplay.
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