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Single-cell transcriptomics of human T cells reveals
tissue and activation signatures in health
and disease
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Human T cells coordinate adaptive immunity in diverse anatomic compartments through

production of cytokines and effector molecules, but it is unclear how tissue site influences T

cell persistence and function. Here, we use single cell RNA-sequencing (scRNA-seq) to

define the heterogeneity of human T cells isolated from lungs, lymph nodes, bone marrow

and blood, and their functional responses following stimulation. Through analysis of >50,000

resting and activated T cells, we reveal tissue T cell signatures in mucosal and lymphoid sites,

and lineage-specific activation states across all sites including distinct effector states for

CD8+ T cells and an interferon-response state for CD4+ T cells. Comparing scRNA-seq

profiles of tumor-associated T cells to our dataset reveals predominant activated CD8+

compared to CD4+ T cell states within multiple tumor types. Our results therefore establish a

high dimensional reference map of human T cell activation in health for analyzing T cells in

disease.
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T lymphocytes coordinate adaptive immune responses and
are essential for establishing protective immunity and
maintaining immune homeostasis. Activation of naive

T cells through the antigen-specific T cell receptor (TCR) initiates
transcriptional programs that drive differentiation of lineage-
specific effector functions; CD4+ T cells secrete cytokines to
recruit and activate other immune cells while CD8+ T cells
acquire cytotoxic functions to directly kill infected or tumor cells.
Most of these effector cells are short-lived, although some develop
into long-lived memory T cells which persist as circulating central
(TCM) and effector-memory (TEM) subsets, and non-circulating
tissue resident memory T cells (TRM) in diverse lymphoid and
non-lymphoid sites1–4. Recent studies in mouse models have
established an important role for CD4+ and CD8+ TRM in
mediating protective immunity to diverse pathogens2,5–7. Defin-
ing how tissue site impacts T cell function is therefore important
for targeting T cell immunity.

In humans, most of our knowledge of T cell activation and
function derives from the sampling of peripheral blood. Recent
studies in human tissues have revealed that the majority of
human T cells are localized in lymphoid, mucosal and barrier
tissues8 and that T cell subset composition is a function of the
specific tissue site9,10. Human TRM cells can be defined based on
their phenotypic homology to mouse TRM and are distinguished
from circulating T cells in blood and tissues by a core tran-
scriptional and protein signature10–13. However, the role of tissue
site in determining T cell functional responses, and a deeper
understanding of the relationship between blood and tissue
T cells beyond composition differences are key unanswered
questions in human immunology.

The functional responses of T cells following antigen or
pathogen exposure have been largely defined in mouse models,
and are generally classified based on whether or not they secrete
specific cytokines or effector molecules. Effector CD4+ T cells
comprise different functional subtypes (Th1 cells secrete IFN-γ
and IL-2; Th2 secrete IL-4, 13; Th17 secrete IL-17A, etc.)14, while
effector CD8+ T cells secrete pro-inflammatory cytokines (IFN-γ,
TNF-α) and/or cytotoxic mediators (perforin and granzymes)15.
Certain conditions can lead to inhibition of functional responses;
for example, CD4+ T cells encountering self-antigen become
anergic and fail to produce IL-2, while CD8+ T cells responding
to chronic infection, tumors, or lacking CD4+ T cell help become
functionally exhausted, and express multiple inhibitory molecules
(e.g., PD-1, LAG3)16–18. While human T cells can produce
similar cytokines, effector and inhibitory molecules as mouse
counterparts19–22, the full complement of functional responses
for human T cells in tissues has not been elucidated. Thus,
establishing a baseline of healthy T cell states in humans is
essential for defining dysregulated and pathological functions of
T cells in disease.

Single cell transcriptome profiling (scRNA-seq) has enabled
high resolution mapping of cellular heterogeneity, development,
and activation states in diverse systems23,24. This approach has
been applied to analyze human T cells in diseased tissues25,26 and
in response to immunotherapies in cancer27; however, baseline
functional profiles of human T cells in healthy blood and tis-
sues would be an important reference dataset. We have estab-
lished a tissue resource where we obtain multiple lymphoid,
mucosal, and other peripheral tissue sites from human organ
donors9–11,13,28,29, enabling study of T cells across different
anatomical spaces.

Here, we used scRNA-seq of over 50,000 resting and activated
T cells from lung (LG), lymph nodes (LN), bone marrow (BM)
and blood, along with integrated computational analysis to define
cellular states of homeostasis and activation of human blood and
tissue-derived T cells. We reveal how human T cells in tissues

relate to those in blood, and identify a conserved tissue signature
and activation states for human CD4+ and CD8+ T cells con-
served across all sites. We further show how scRNA-seq profiles
of T cells associated with human tumors can be projected onto
this healthy baseline dataset, revealing their functional state. Our
results establish a high dimensional reference map of human T
cell homeostasis and function in multiple sites, from which to
define the origin, composition and function of T cells in disease.

Results
scRNA-seq analysis of human T cells in blood and tissues. We
obtained BM, LN, and LG as representative primary lymphoid,
secondary lymphoid and mucosal tissue sites, respectively, from
two deceased adult organ donors who met the criteria of health
for donation of physiologically healthy tissues for lifesaving
transplantation, being free of chronic disease and cancer (Sup-
plementary Table 1). For comparison, we obtained blood from
two healthy adult volunteers. CD3+ T cells isolated from tissues
and blood were cultured in media alone (“resting”) or in the
presence of anti-CD3/anti-CD28 antibodies (“activated”)
(Fig. 1a). Single cells were encapsulated for cDNA synthesis and
barcoded using the 10x Genomics Chromium system, followed by
library construction, sequencing, and computational identifica-
tion of T cells (Supplementary Fig. 1, Supplementary Table 2,
Supplementary Data 1).

We initially analyzed tissue T cell populations from the two
individual donors, comprising six samples per donor (resting and
activated samples from three tissue sites). We merged all data for
each donor, performed unsupervised community detection30 to
cluster the data based on highly variable genes (Supplementary
Data 2), and projected cells in two dimensions using Uniform
Manifold Approximation and Projection (UMAP)31. For both
donors, the dominant sources of variation between cells were
activation state (vertical axis) and CD4/CD8 lineage (horizontal
axis) (Fig. 1b). Tissue site was also a source of variability; T cells
from BM and LN co-localized while LG T cells were more distinct
(Fig. 1b), consistent with a greater proportion of CD8+ T cells
and TRM phenotype cells in LG relative to the two lymphoid sites
(Supplementary Fig. 2 and previous studies10,13,32).

Differential gene expression from the scRNA-seq data resolved
T cell subsets and functional states within and between sites and
lineages into 10–11 clusters (Fig. 1c, Supplementary Data 3, 4).
CD4+ T cells comprised 6–7 clusters: resting cells expressing
CCR7, SELL and TCF7, (corresponding to naive or TCM cells);
three activation-associated clusters expressing IL2, TNF, and IL4R
at different levels; TRM-like resting and activated clusters
expressing canonical TRM markers CXCR6 and ITGA113,33;
and a distinct regulatory T cell (Treg) cluster expressing Treg-
defining genes FOXP3, IL2RA, and CTLA4 (Fig. 1c). CD8+ T cells
comprised four clusters distinct from CD4+ T cells and included:
two TEM/TRM-like clusters expressing CCL5, cytotoxicity-
associated genes (GZMB, GZMK), and TRM markers (CXCR6,
ITGA1); an activated TRM/TEM cluster expressing IFNG, CCL4,
CCL3; and clusters representing terminally differentiated effector
cells (TEMRA) expressing cytotoxic markers PRF1 and NKG7
(Fig. 1c). In terms of tissue distribution, TRM cells were largely in
the lung, Tregs were primarily identified in LN, while TEMRA
cells were enriched in BM (consistent with phenotype analysis,
Supplementary Fig. 2); the remaining resting and activated CD4+

and CD8+ T cell clusters derived from all sites (Fig. 1b, c). These
results show subset-specific profiles in human tissues, but suggest
similar activation profiles across sites.

To assess how blood T cells relate to those in tissue, we
performed scRNA-seq analysis of resting and activated blood
T cells from two adult donors, and projected the merged data
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onto the UMAP embeddings of T cells from each tissue donor
(Fig. 2a, b). The majority of blood T cells co-localized with resting
or activated T cells from BM but did not exhibit substantial
overlap with LG or LN T cells from either donor, particularly in
the resting state (Fig. 2a, b). We also quantified the number of

blood T cells that were transcriptionally similar to CD4+ and
CD8+ T cells from each tissue within resting or activated samples
(Fig. 2c, d). Resting blood T cells were highly represented among
CD4+ and CD8+ T cells in BM (Fig. 2c, d). Interestingly, a
substantial number of unstimulated blood T cells projected onto
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activated CD4+ T cells in BM for both donors (Fig. 2c, d, left
panels). In contrast, activated blood T cells were strongly
represented among activated CD4+ T cells for all tissue sites
and in LN for CD8+ T cells (Fig. 2c, d; right panels). Similar
results were obtained when each blood sample was compared
separately to each tissue donor (Supplementary Fig. 3), and when
blood T cells were projected onto tissue T cells using scmap34, an
alternative scRNA-seq data projection package (Supplementary
Fig. 4). These results indicate that resting blood T cells are most
similar to those in the BM, while activated blood and tissue-
derived T cells share common signatures.

Identifying a tissue gene signature in multiple sites. The major
transcriptional differences between tissue and blood T cells based
on population-level RNAseq originate from the presence of TRM

in tissues13. Because scRNA-seq enables high-resolution detection
of gene expression differences that can be unambiguously traced
to individual T cells, we investigated whether there were intrinsic
features of tissue T cells that distinguished them from blood.
Resting memory T cells in tissues and blood express high levels of
CCL5 (Supplementary Fig. 5), a marker of CD8+ TEM cells35,
enabling direct comparison of gene expression between similar
subsets. We identified a similar complement of genes that were
highly expressed in TEM cells from each tissue compared to
blood (Fig. 3a–c). Interestingly, these tissue-intrinsic genes
include those associated with microtubules and cytoskeleton
(tubulin-encoding genes TUBA1A, TUBA1B, TUBB, TUBB4B;
S100A4) as well as genes encoding cell matrix, membrane scaf-
folding, and adhesion molecules (VIM or vimentin, galectins
LGALS1/LGALS3, AMICA1, ITM2C, EZR, annexins ANXA1/
ANXA2) (Fig. 3a–c). TRM signature genes including ITGA1 and

Fig. 1 Single-cell RNA-seq analysis of resting and activated T cells from multiple tissue sites. a Experimental workflow for single-cell analysis of T cells from
human tissues and blood including magnetic negative selection of CD3+ cells, in vitro culture and activation, and Chromium 3′-scRNA-seq. b UMAP
embeddings of merged scRNA-seq profiles from resting and activated T cells from lung (LG), bone marrow (BM), and lung-draining lymph node (LN) in
each of two organ donors colored by resting/activated condition, CD4/CD8 expression ratio (all cells in a given cluster assigned the same average value),
and tissue source. c Identification of T cell subpopulations. UMAP embeddings colored by expression cluster along with heatmaps showing z-scored
average expression of curated T cell subset marker genes that had a fold change >2 and p < 0.05 by the binomial test for at least one cluster. Genes are
ordered by the cluster in which they have the highest enrichment. Subsets designated based on resting (“rest”) or activated (“act”) condition and
expression of known markers denoting effector memory (TEM), tissue resident memory (TRM), terminally differentiated effector cells (TEMRA), and
regulatory T cells (Treg). Source data for c detailing averaged expression values for T cell subset marker genes are provided in the Source Data file

LG LNBM

Resting T cells from blood

LG resting
LG activated
BM resting
BM activated
LN resting
LN activated

LG resting
LG activated
BM resting
BM activated
LN resting
LN activated

P
ro

j. 
de

ns
ity

 o
f T

 c
el

ls
 fr

om
 b

lo
od

P
ro

j. 
de

ns
ity

 o
f T

 c
el

ls
 fr

om
 b

lo
od

T
is

su
e 

do
no

r 
1

T
is

su
e 

do
no

r 
2

a

b

c

276 2536 771

197 2338 257

37 521 479

94 917 55

147 255 119

1237 2304 3087

35 71 111

245 431 1105

LG LNBM

CD4 Rest.

CD4 Act.

CD8 Rest.

CD8 Act.

CD4 Rest.

CD4 Act.

CD8 Rest.

CD8 Act.

Activated T cells from blood

436 2368 804

82 2095 663

34 1198 429

189 70 110

22 148 116

1895 2260 2623

3 183 32

679 83 1103

LG LNBM

Resting T cells from blood

LG LNBM

CD4 Rest.

CD4 Act.

CD8 Rest.

CD8 Act.

CD4 Rest.

CD4 Act.

CD8 Rest.

CD8 Act.

Activated T cells from bloodd

Fig. 2 Comparison of blood and tissue T cells. a UMAP embedding of T cells from tissue donor 1 colored by tissue and overlaid with a contour plot
corresponding to the UMAP projection of the combined resting and activated T cells from two blood donors onto the tissue embedding. b Same as (a) for
organ donor 2. c Heatmaps showing the number of blood T cells that project most closely to each tissue/stimulation status combination in the tissue donor
1 UMAP embedding. d Same as (c) for tissue donor 2

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12464-3

4 NATURE COMMUNICATIONS |         (2019) 10:4706 | https://doi.org/10.1038/s41467-019-12464-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ITGAE were also upregulated in tissues compared to blood,
particularly in the lung (Fig. 3a–c). These findings suggest that
localization of T cells in tissues likely involves structural changes
in the cell that facilitate interactions with tissue matrix.

We next compared the single-cell distribution of average
expression of tissue signature genes in the blood and tissues
(Fig. 3d). CCL5+ TEM cells from all three tissues (both donors)
express higher levels of tissue signature genes compared to blood,

though LG and LN T cells have higher expression than those
from BM (Fig. 3d). Notably, a minute fraction of blood TEM cells
(<0.5%) express this tissue signature at levels comparable to that
in LN (within one standard deviation of the mean for all tissues).
Shown in a heat map are the relative expression levels for genes
within the tissue signature, including genes enriched in human
TRM cells13,36, and genes associated with cytoskeletal, cell-matrix
interactions, cell division, apoptotis, and signaling (Fig. 3e).
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Expression of the tissue signature genes is highest in LG, followed
by LN and BM expressing only a subset of tissue-associated genes;
the outlier subpopulation from blood expresses a fraction (<40%)
of tissue signature genes at levels comparable to those in tissues
(Fig. 3e). When resting TEM cells from all sites and donors were
visualized by UMAP using the tissue-associated signature genes,
blood T cells clustered distinctly from all tissues, while LG T cells
clustered distinctly from LN and BM (Fig. 3f). Notably, a subset
of T cells from BM and LG clustered more closely to blood T cells
(Fig. 3f), indicating the presence of circulating T cells within these
sites. Together, these results show that tissue T cells express genes
associated with infiltration and localization in tissues along with
residency markers, while blood contains only trace numbers of
cells expressing these genes.

The tissue signature identified in Fig. 3 compared tissue from
deceased organ donors to blood from living individuals. To
establish that the observed differences were not due to tissue
processing and/or T cells from organ donors versus living
individuals, we analyzed our tissue signature in scRNAseq data
from several available datasets, including BM from living
individuals37 and additional blood data (see Methods). We found
that the tissue signature was significantly enriched in BM from
living individuals, compared to blood (Supplementary Fig. 6a).
Similarly, we found the tissue signature was enriched in all organ
donor sites compared to blood from additional living donors
(Supplementary Fig. 6b). Together, these results indicate that the
tissue signature is an intrinsic feature of T cells from non-blood
sites, and that our results from blood and BM are representative
of T cells in these sites and representative of diverse individuals.

Activation-induced transcriptional states across sites. The
clustering analysis in Fig. 2 suggested that activated T cells were
more similar across sites than resting counterparts. To uncover
gene expression patterns that were conserved across T cell
populations in different tissues throughout activation, we applied
a new analytical method called single-cell Hierarchical Poisson
Factorization (scHPF)38. The scHPF algorithm identifies a small
number of expression patterns, called factors that vary coherently
across cells. These factors can represent discrete, subpopulation-
specific programs or continuous programs like T cell activation
that are expressed as a gradient across cells in different stages of a
biological process. We applied scHPF to merged resting and
activated T cells from each tissue and donor separately and
hierarchically clustered the resulting factors (Fig. 4a, Supple-
mentary Figs. 7, 8a). This analysis revealed seven gene expression
modules (three resting and four activated/functional) that were
highly conserved across tissues and donors, for which the highest
scoring genes formed interpretable gene signatures (Fig. 4a,
Supplementary Fig. 8a, Supplementary Data 5). Modules were
annotated based on known markers among their highest scoring

genes, association with resting or activated states, and CD4:CD8
experssion ratio. The three modules associated with a resting state
(Fig. 4a) included a Treg module defined by canonical genes
(FOXP3, CTLA4, IRF4, TNFRSF4 (OX40)39); a putative resting
CD4+ Naive/Central memory (NV/CM) module enriched in
CD4+ T cells and defined by genes associated with lymphoid
homing, egress and quiescence (SELL, KLF2, LEF1, respectively);
and a CD4+/CD8+ Resting module, distinguished by expression
of IL7R, a receptor required for T cell survival40,41, and AQP3,
which encodes a water channel protein of unclear function in
lymphocytes42. Importantly, the CD4+/CD8+ Resting module
did not contain factors from blood and had the highest enrich-
ment for the tissue signature identified in Fig. 3 (Supplementary
Fig. 9).

Four modules were associated with T cell activation and/or
function, some of which were lineage-specific. A Proliferation
module expressed by activated CD4+ and CD8+ lineages
included genes associated with T cell activation/proliferation
(IL2, LIF) and cell division (CENPV, G0S2, ORC6) (Fig. 4a). This
module was also marked by expression of NME1, a metastasis
suppressor/endonuclease-encoding gene43 not previously asso-
ciated with T cells (Fig. 4a). An Interferon (IFN) Response
module enriched among activated CD4+ T cells included
multiple gene families associated with canonical IFN
responses44–46 (IFIT3, IFIT2, STAT1, MX1, IRF7, and JAK2). In
contrast, CD8+ T cell-enriched modules included a Cytotoxic
module, containing genes associated with cytotoxicity (GNLY,
GZMK) and transcription factors associated with effector/
memory differentiation (ZEB2, EOMES, ZNF683)46–48, and a
Cytokine module with genes encoding chemokines and cytokines
(CCL3, CCL4, CCL20, IFNG, IL10, TNF), inhibitory molecules
(LAG3, CD226 (TIGIT), HAVCR2 (TIM3)), and the widely
expressed homeobox protein HOPX49. These results indicate a
limited spectrum of functional states for human T cells across
blood and tissue sites.

To understand how these gene modules correspond to resting
and activated states in CD4+ and CD8+ T cells, we visualized the
average expression of their top-ranked genes on diffusion maps
for each donor and tissue (Fig. 4b–e). This visualization defined
activation trajectories with resting T cells on the left (blue) and
activated T cells projecting to the right (red; Fig. 4b, c). In all four
sites in both individuals, module expression for CD4+ T cell was
positioned along activation trajectories from CD4 NV/CM
Resting (left) to IFN-Response (middle) to Proliferation (right)
(Fig. 4d). Expression of genes within the Proliferation module co-
localized with peak expression of NME1 and IL2RA (Supple-
mentary Fig. 8b, c), while the IFN Response module genes
exhibited peak expression at the middle of the trajectory as
exemplified by IFIT3 expression (top ranked gene) (Supplemen-
tary Fig. 8d), suggesting a potential intermediate activation state.

Fig. 3 Identification of a tissue gene signature for resting memory T cells. a Volcano plot showing the average log-fold-change and average Benjamini-
Hochberg-corrected p-values (FDR) for pairwise differential expression between CCL5+ T cells from each resting LG sample and each resting blood
sample. Genes with negative log-fold-change are more highly expressed among CCL5+ cells in LG, with several differentially expressed genes (multiple
test-corrected Wilcoxon p < 0.05, fold change >2) highlighted in red. b Same as (a) for comparison of resting CCL5+ T cells in BM and blood. c Same as (a)
for comparison of resting CCL5+ T cells in LN in blood. d Violin plot showing the distributions of the average expression of all genes with two-fold higher
expression (on average) in any tissue compared to blood and average FDR < 0.05 (described above) in any tissue for the resting CCL5+ T cells in each
tissue and blood sample. The dashed line marks one standard deviation below the mean for average expression of this signature for all tissues (note a small
number of blood cells fall above this line). e Heatmap shows z-scored average expression for all genes in the tissue signature from (d) among the resting
CCL5+ T cells from each tissue and blood sample plus that of the rare blood subpopulation from (d), which expresses high levels of a subset of tissue
signature genes. Previously identified TRM-associated genes from bulk RNA-seq studies are highlighted in red (enriched in CD69+ vs. CD69− tissue
memory T cells)13, and CD27 highlighted in blue was previously found to be upregulated on human TRM compared to TEM cells36. f UMAP embedding of
resting CCL5+ T cells (TEM cells) from all four donors generated using the tissue-associated T cell signature colored by tissue site (left), donor (center),
and average expression of the signature (right). Source data listing genes and expression values for (a–e) are provided in the Source Data file
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Fig. 4 Defining conserved transcriptional states in resting and activated T cells by single-cell Hierarchical Poisson Factorization (scHPF). a Heatmap shows
gene scores for the top genes (rows) in each expression module identified by clustering scHPF factors (columns) that were computed in separate analyses
of cells from each tissue and donor (Supplementary Fig. 8a). Selected genes are indicated to the left, and complete lists of top genes are available in
Supplementary Data 5. Color bars at the bottom of the heatmap indicate each factors’ tissue of origin, donor of origin, and CD4/CD8 bias. (NV/CM=
naive or TCM). b Diffusion maps of CD4+ T cells in each tissue and donor, with cells colored by sample origin as resting (blue) or activated (red). c Same
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In CD8+ T cells, the Cytokine module localized in the most
activated cells for all sites also shown by IFNG expression (Fig. 4e,
Supplementary Fig. 8e), while the Cytotoxic module was
expressed among resting and activated cells (Fig. 4e). Therefore,
scHPF takes an unbiased approach to uncover major functional
states, reference signatures and activation trajectories for human
T cells that are conserved across sites.

A type II IFN response state in activated CD4+ T cells. The
functional states identified for human CD8+ T cells in Fig. 4 were
consistent in with those seen in vivo in mouse infection models15.
By contrast, the modules identified for CD4+ T cell activation
revealed markers and functional states not typically associated
with effector CD4+ T cells. We therefore assessed expression
kinetics of the top-scoring genes in the Proliferation and IFN
Response modules, NME1 and IFIT3, respectively, during the
course of T cell activation ex vivo by qPCR. Expression of NME1
transcripts rapidly increased after TCR-stimulation, peaking
between 16 and 24 h and remaining elevated for up to 72 h, for
both CD4+ and CD8+ T cells compared to unstimulated controls,
a pattern of expression similar to the canonical T cell activation
marker IL2RA (Fig. 5a). Notably, the extent of activation-
associated upregulation of NME1 transcripts was greater in CD4+

compared to CD8+ T cells, while IL2RA was more upregulated in
CD8+ T cells (Fig. 5a). At the protein level, NME1 expression
increased in CD4+ and CD8+ T cells after TCR-mediated sti-
mulation from 24 to 120 h (Fig. 5b, upper), and with each suc-
cessive round of T cell proliferation, while CD25 was expressed
similarly, independent of cell division (Fig. 5b, lower). These
results establish NME1 expression as a marker of T cell activa-
tion, coupled to the extent of proliferation.

In contrast to NME1/IL2RA upregulation, expression of the
interferon-inducible transcript IFIT3, showed transient upregula-
tion by CD4+ T cells following TCR-stimulation, peaking at 16 h
and returning to near baseline levels by 48 h post-stimulation
(Fig. 5c). By contrast, induction of IFIT3 by culturing T cells with
IFN-α (type I) or IFN-γ (type II) occurred rapidly (within 2 h)
and persisted throughout the culture period (Fig. 5d, e). To
identify the contribution of type I or type II IFN signaling to
TCR-triggered IFIT3 induction, we included blocking antibodies
to type I or Type II IFN in the cultures. While neutralizing
antibodies for type I IFNs and IFNαR2 completely inhibited
IFIT3 induction by Type I IFN, TCR-mediated upregulation of
IFIT3 was unaffected (Fig. 5d). However, blockade of type II IFN
signaling via a combination of anti-IFNγ and anti-IFNγR1
antibodies inhibited upregulation of IFIT3 by both exogenous
IFN-γ and TCR-mediated stimulation (Fig. 5e). Importantly,
blocking type II (or type I) IFN signaling did not inhibit T cell
activation as assessed by induction of NME1 transcript expres-
sion, and addition of IFN-α or −γ did not induce NME1
expression (Fig. 5d, e). These results establish that the IFN-
responsive state suggested by the scRNA-seq trajectories is
recapitulated in real-time as part of an intermediate activation
state driven by TCR-triggered IFN-γ production.

We further assessed whether CD4+ T cells express IFIT3 and
NME1 in vivo using a published scRNA-seq dataset of T cells
isolated from the blood of dengue virus-infected patients, which
contains a fraction of activated CD4+ T cells50. Both NME1 and
IFIT3 were expressed by CD4+ T cells from dengue-infected
patients (Supplementary Fig. 10). These results show that genes
associated with functional modules identified for CD4+ T cell
activation are expressed in vivo.

Defining functional states in tumor-associated T cells.
Although there have been several large-scale scRNA-seq studies

of disease-associated T cells, these data are generally not placed in
the context of T cell activation in healthy individuals. To
demonstrate the utility of our resource as a reference point for
human disease, we used UMAP to project recently reported
scRNA-seq profiles of tumor-associated T cells from four differ-
ent human cancers onto our map of T cell activation states. We
merged all of our T cell data from four donors and four sites in a
single UMAP embedding (Fig. 6a), colored by tissue site, donor,
stimulation, cluster-level CD4/CD8 status, and CCL5 expression,
indicative of effector status. We projected scRNA-seq profiles of
tumor-associated T cells from four different human cancers27,51–
53 (non-small cell lung cancer (NSCLC), colorectal cancer (CRC),
breast cancer (BC), and melanoma (MEL)) onto this embedding
to compare each tumor-associated T cell to healthy T cells
(Fig. 6b, c). We also investigated expression of activation state
and lineage markers in the healthy T cell embedding and tumor
projections (Fig. 6c). Tumor-associated CD8+ T cells project onto
healthy CD8+ T cells from all sites in both resting and activated
states (Fig. 6b). Moreover, genes associated with TRM (CXCR6)
and the Cytotoxic and Cytokine modules are all represented
among tumor-associated CD8+ T cells (Figs. 6c, 7). By contrast,
tumor-associated CD4+ T cells projected mostly onto resting
blood and tissue T cells (Fig. 6b), while CD4+ T cell activation
states and associated markers (NME1, IFIT3) were largely absent
(Fig. 6c). Projecting tumor-associated T cells onto each individual
tissue and blood donor yielded results consistent with projection
onto the combined dataset (Supplementary Figs. 11–14). We note
that projecting tumor-associated T cells onto our reference map
using the alternate projection algoritham scmap34 showed similar
results (Supplementary Fig. 15). This analysis reveals that tumor-
associated T cells contain activated CD8+ T cell states, but lack
the presence of functionally activated CD4+ T cell states.

A hallmark of tumor-associated T cells is a state of
hyporesponsiveness or functional exhaustion, marked by persis-
tent expression of surface inhibitory markers including PD-1,
CTLA4, LAG3, TIM3 and others, many of which are expressed
following T cell activation17,54,55. Some of these molecules (PD-1,
CTLA4) are important targets for immunotherapy to promote
anti-tumor immunity56–60. We compared expression of exhaus-
tion and functional markers across healthy and tumor-associated
T cells (Fig. 7; Supplementary Figs. 16, 17). Tumor-associated
CD8+ T cells expressing exhaustion markers across all four
tumor types project onto activated CD8+ T cells in our map, and
express genes within the Cytokine module (CCL3, CCL4, XCL1,
XCL2, and IFNG), and to a lesser extent Cytotoxic module (Fig. 7;
Supplementary Figs. 16, 17). Interestingly, a subset of these
tumor-associated CD8+ T cells, but not healthy T cells, express
high levels of MKI67, associated with proliferating cells and other
cell cycle control markers (Fig. 7, Supplementary Fig. 17).
Therefore, tumor-associated T cells expressing exhaustion
markers also express genes associated with normal CD8+ effector
T cell function and ongoing proliferation.

Discussion
Human T cells persist in distinct anatomic sites, maintain pro-
tective immunity and surveillance, and are key targets for
immune modulation in tumor immunotherapy, transplantation,
and autoimmunity. Here, we used scRNA-seq profiling of resting
and TCR-stimulated T cells from blood, lymphoid and mucosal
tissues to generate a reference map of human T cells and
understand how T cell homeostasis and function are related to
the tissue site. Our findings demonstrate fundamental differences
between T cells from tissues and blood, but similar functional and
activation states across sites that are intrinsic to lineage; human
CD4 T cell activation is defined by response to cytokines and

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12464-3

8 NATURE COMMUNICATIONS |         (2019) 10:4706 | https://doi.org/10.1038/s41467-019-12464-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a b

Proliferation dye eFluor 450

N
M

E
1-

P
E

Unstim αCD3 + αCD28

C
D

25
-A

P
C

2 h 24 h 72 h 120 h

NME1-PE

%
 o

f m
ax

im
um

2 h 24 h 72 h 120 h

%
 o

f m
ax

im
um

CD4+ T cells

CD8+ T cells

αCD3+αCD28 Unstim Isotype 

8 16 24 48 72
Hours

2

8 16 24 48 72
Hours

2

1

10

100
F

ol
d 

ch
an

ge
NME1 mRNA

CD4+ T cells

CD8+ T cells

Unstim αCD3 + αCD28IFIT3 mRNA
CD4+ 
T cells

CD8+
T cells

8 16 24 482

1

10

100

F
ol

d 
ch

an
ge

d

αCD3/28

αCD3/28+T1-IFN block

IFNα2

IFNα2+T1-IFN block

αCD3/28

αCD3/28+T2-IFN block

IFNγ

IFNγ+T2-IFN block

* ** ***
**

***
*

***
** ***

NME1-PE

1

10

100

F
ol

d 
ch

an
ge

1000
IL2RA mRNA

CD4+ T cells

CD8+ T cells

* *
***

*** *** *** *** ***

***

** ***

**

**

*

**

***

**

25

50

75

100

102 103 104 105

102

105

104

103

102

105

104

103

102

101

103 104 105

102101 103 104 105 102101 103 104 105

25

50

75

100

Hours

Proliferation dye eFluor 450

IFIT3 mRNA

24

F
ol

d 
ch

an
ge

Hours
2 12

NME1 mRNA

24

1

10

100

F
ol

d 
ch

an
ge

1

10

100

F
ol

d 
ch

an
ge

1

10

100
F

ol
d 

ch
an

ge

Hours
2 12

e IFIT3 mRNA

24
Hours

2 12

NME1 mRNA

24
Hours

2 12

αCD3/28

αCD3/28+T1-IFN block

IFNα2

IFNα2+T1-IFN block

αCD3/28

αCD3/28+T2-IFN block

IFNγ

IFNγ+T2-IFN block

1

10

100

1000

ns

***

**

***

c

Fig. 5 Induction of NME1 and IFIT3 expression during T cell activation. a Expression of NME1 and IL2RA mRNA by blood CD4+ or CD8+ T cells after
stimulation with anti-CD3/anti-CD28 antibodies by qPCR. Data shown as mean fold-change (±SEM) relative to unstimulated CD4+ or CD8+ T cell
controls (dotted line) from 4 individuals (independent experiments). Statistical analysis between stimulated and unstimulated cells (black asterisk) or
CD4+ and CD8+ T cells (red asterisk) made by two-way ANOVA with Sidak test for multiple comparisons. b Intracellular NME1 protein expression by
blood T cells after stimulation for indicated timepoints (red) compared to unstimulated (black) and isotype control (gray). Bottom row: CD25 and NME1
expression by proliferating CD3+ T cells after 5 days of stimulation. Data are representative of 4 individuals. c Expression of IFIT3mRNA in blood T cells by
qPCR after TCR-stimulation, shown as mean fold-change (±SEM) relative to unstimulated controls (dotted line) for four individuals. Two-way ANOVA with
Sidak test for multiple comparisons was used for statistical comparisons (black asterisk, stimulated versus unstimulated) or (red asterisk, CD4+ versus
CD8+ T cells). d IFIT3 or NME1 mRNA expression in CD4+ T cells after culture with anti-CD3/anti-CD28 or IFNα2 (1000 units/mL) ± type I IFN
neutralizing antibody cocktail or e IFNγ (10 ng/mL) ± anti-IFNγ/anti-IFNγR1 antibodies (1 µg/mL each), shown as mean fold-change (±SEM) relative to
unstimulated controls (dotted line) for three individuals. Statistical comparisons made by two-way ANOVA. For all panels: “ns” denotes not significant;
*p≤ 0.05; **p≤ 0.01; ***p≤ 0.001. Source data for gene expression values are provided in the Source Data file
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proliferation while CD8+ T cells are defined by effector function.
We further demonstrate that this high-resolution map of T cell
homeostasis and activation across sites, lineages, and individuals
can serve as a new baseline for defining human T cell states in
disease.

The study of healthy human T cells has largely focused on
blood, while the majority of T cells persist in diverse lymphoid,

mucosal and barrier sites8,61. Human tissue T cells are largely
memory subsets, comprising tissue-resident (TRM) and non-
resident (TEM, TCM) populations; TRM predominate in mucosal
sites, while TEM are found in spleen, LN and BM13,33,62. The
transcriptional differences and functional relationship of these
tissue-localized TEM to blood TEM has been unclear. Impor-
tantly, profiling using scRNAseq enabled unambiguous
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assessment of T cell-intrinsic differences in tissue versus blood
T cells. We show here that TEM from all tissue sites examined
(LG, LN, BM) exhibit fundamental changes in expression of
cytoskeletal, cell-matrix interaction, and proliferative genes
compared to blood TEM cells, indicating alterations in cellular
structure. These tissue-intrinsic expression patterns are in addi-
tion to TRM-associated genes identified in previous studies 13,33

or functional adaptations of T cells to specific tissue sites12,63.
Whether T cells require these changes in gene expression to enter
or reside within the tissue architecture, and if their loss of
expression enables tissue T cell egress to circulation remains to be
established.

Our results reveal conserved functional states for human blood
and tissue-derived T cells. CD8+ T cells segregate into two major
effector subsets based on expression of genes involved in cellular
cytotoxicity (Cytotoxic module) and myriad cytokines and che-
mokines (Cytokine module). These predominant effector states
within activated human CD8+ T cells are consistent with results
showing that mouse CD8+ T cell activation triggers an effector
differentiation program64,65. We identified two major activation
states that were not associated with effector function: one asso-
ciated with proliferation and IL-2 production, and a second state
enriched in CD4+ T cells which is characterized by induction of
multiple IFN-responsive genes and gene families including IFIT3,

Fig. 6 Comparison of tumor-associated T cells to the reference map of healthy human T cell activation. a Merged UMAP embedding for the entire healthy
T cell scRNAseq dataset in this study including resting and activated tissue T cells (two donors) and blood T cells (two individuals) colored by sample
source, donor, resting/activated condition, CD4/CD8 status (CD4-enriched, green; CD8-enriched, purple), and CCL5 expression indicating TEM cells.
b First row: merged UMAP embedding for the entire dataset overlaid with contour plots indicating kernel density estimates for the projection of T cells
derived from organ/blood donors (column 1), non-small cell lung cancer (NSCLC) tissue (column 2), colorectal cancer (CRC) tissue (column 3), breast
cancer (BC) tissue (column 4), and melanoma (MEL) tissue (column 5). Note that these probability densities can be compared within each projection, but
cannot be quantitatively compared across projections. Second row: same as first row but overlaid with a two-dimensional hexbin histogram for each
projection. Histograms have been normalized to account for differences in cell numbers across datasets and therefore can be compared quantitatively
across projections. c Individual cells in the UMAP embedding (column 1) for the entire healthy T cell dataset and UMAP projections (columns 2–5) for
NSCLC, CRC, BC, and MEL tissue T cells colored by expression of CD4, CD8A, FOXP3 (Treg marker), CXCR6 (TRM marker), IFIT3 (IFN response marker),
NME1 (activation marker), PRF1 (cytotoxic marker), and IFNG. Expression values are normalized for quantitative comparison within each dataset (i.e.,
column), but not across datasets
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Fig. 7 Expression of functional modules and exhaustion markers on control and tumor associated-T cells. Individual cells in the UMAP embedding (far left
column) shown for the entire healthy T cell reference dataset and UMAP projections (remaining four columns) for NSCLC, CRC, BC, and MEL tissue
T cells. UMAP projections are colored by the average expression of the top 70 genes in the Cytotoxic module, the top 70 genes in the Cytokine module, the
average expression of a set of exhaustion markers (PDCD1, CTLA4, LAYN, LAG3, TIM-3, CD244, and CD160), and expression of the proliferation marker
MKI67. Note that these expression values are normalized so that they can be quantitatively compared within each dataset (within each column), but not
across datasets
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MX1, IRF7, and others. Induction of this IFN-response state is
due to TCR-mediated IFN-γ production (likely autocrine
responses), and appears as a kinetic intermediate early after CD4
+ T cell activation, and prior to induction of the proliferative
program. Identification of a functional state for T cells based on
cytokine responses is distinct from T cell functional states that are
typically defined based on cytokine secretion profile. We propose
that the IFN-responsive state for human CD4+ T cells may serve
an autoregulatory function to temper high IFN levels produced by
predominant memory responses, and ongoing responses to per-
sistent viruses.

This scRNA-seq analysis provides a high-resolution map for
human T cells from which to define T cell states in disease. We
demonstrate this approach by projecting T cell profiles from
human tumors onto our reference map. We identify predominant
CD8+ T cell effector populations, Tregs, and resting (but not
activated) CD4+ T cells in datasets derived from diverse tumor
types (breast, lung, skin, colon). Interestingly, the tumor-
associated CD8+ T cells exhibited transcriptional features simi-
lar to healthy activated CD8+ T cells including expression of
multiple effector molecules such as perforin, IFN-γ and chemo-
kines. We also examined the expression of multiple markers
associated with exhaustion, a functionally hyporesponsive state
found in tumor-infiltrating T cells targeted by checkpoint
blockade immunotherapies57,59,66. Interestingly, exhaustion
markers were upregulated along with CD8-associated cytokines
in activated T cells from both healthy and tumor tissues,
emphasizing the importance of obtaining baseline healthy profiles
for high resolution analysis of T cells on the single cell level.
Moreover, subsets of these CD8+ T cells in all four tumors
expressed higher levels of proliferation markers compared to
healthy T cells, consistent with a recent report that T cells
expressing exhaustion markers in melanoma exhibit aberrant
proliferation67. This analysis can therefore enable precise identi-
fication of features of resting and activated T cells that are
associated with tissues, activation and disease.

Our high-resolution analysis of human T cells across sites,
lineages, and activation states provides insights into human T cell
adaptations to tissues and their intrinsic activation properties.
Limitations of the study include that the select tissues and donors
profiled here may not include the full diversity of T cell tran-
scriptional programs throughout the body, and that quantifica-
tion of cell types may be subject to dissociation biases between the
individual tissues68,69. Importantly, our dataset establishes a
starting point for the integration of other T cell scRNA-seq
datasets to ultimately capture the full breadth of T cells states in
humans. International collaborative efforts like the Human Cell
Atlas70 are now underway, generating comprehensive scRNA-seq
datasets profiling a diverse range of cells, including T cells and
their transcriptional states. Recently developed computational
tools including scVI71, mutual nearest neighbors72, Seurat v373,
Conos74, and Scanorama75 will be useful for this integration and
as a guide for future studies. In this way, our novel reference map
can serve as a valuable resource for the ongoing study of human T
cell immunity in disease, immunotherapies, vaccines and infec-
tions, with the ultimate goal of diagnosing, screening and mon-
itoring immune responses.

Methods
Acquisition of human tissues and blood. We obtained human tissues from
deceased, brain-dead donors at the time of organ acquisition for clinical trans-
plantation through an approved research protocol and MTA with LiveOnNY, the
organ procurement organization for the New York metropolitan area. Obtaining
tissue samples from deceased organ donors does not qualify as “human subjects”
research, as confirmed by the Columbia University Institutional Review Board
(IRB). Donors were free of chronic disease, cancer and chronic infections such as
Hepatitis B, C, and HIV. Clinical and demographic data regarding organ donors

used in this study are summarized in Supplementary Table 1. We obtained per-
ipheral blood from healthy consenting adult volunteers by venipuncture, through a
protocol approved by the Columbia University IRB and have complied with all
relevant ethical regulations for work with human participants.

T cell isolation and stimulation. Tissues acquired from donors were maintained
in cold saline during transport to the laboratory, typically within 2–4 h of pro-
curement. We isolated mononuclear cells from donor lungs, lung-draining lymph
nodes (LN) and bone marrow (BM) as previously described10,11. Briefly, lungs were
flushed with cold complete medium (RPMI 1640, 10% FBS, 100 U/ml penicillin,
100 μg/ml streptomycin, 2 mM L-glutamine) and left lateral basal segment of the
lung was isolated. LN were isolated from the hilum, near the intersections of major
bronchi and pulmonary veins and arteries, removing all fat. To obtain mono-
nuclear cell suspensions, LN and lung tissues were mechanically processed using a
gentleMACS tissue dissociator (Miltenyi Biotec), enzymatically digested (complete
medium with 1 mg/ml collagenase D, 1 mg/ml trypsin inhibitor and 0.1 mg/ml
DNase for 1 h at 37 °C in a mechanical shaker) and centrifuged on a density
gradient using 30% Percoll Plus (GE Healthcare). BM was aspirated from the
superior iliac crest. For BM and peripheral blood, we isolated mononuclear cells by
density gradient centrifugation using Lymphocyte Separation Medium (Corning).
T cells were enriched from all samples using magnetic negative selection for CD3+

T cells (MojoSort Human CD3+ T cell Isolation Kit; BioLegend), followed by a
dead cell removal kit (Miltenyi Biotec), resulting in 80–90% purity. We cultured
0.5–1 × 106 CD3+ enriched cells from each donor tissue for 16 h at 37 °C in
complete medium, with or without TCR stimulation using Human CD3/CD28 T
Cell Activator (STEMCELL Technologies). After stimulation, dead cells were
removed as above before cell isolation for single-cell RNA-seq.

Single-Cell RNA-seq. Single-cell suspensions were loaded onto a Chromium
Single Cell Chip (10x Genomics) according to the manufacturer’s instructions for
co-encapsulation with barcoded Gel Beads at a target capture rate of ~5000 indi-
vidual cells per sample. We barcoded captured mRNA was barcoded during cDNA
synthesis and converted the barcoded cDNA into pooled single-cell RNA-seq
libraries for Illumina sequencing using the Chromium Single Cell 3′ Solution (10x
Genomics) according to the manufacturer’s instructions. All samples for a given
donor were processed simultaneously with the Chromium Controller (10x Geno-
mics) and the resulting libraries were prepared in parallel in a single batch. We
pooled all of the libraries for a given donor, each of which was barcoded with a
unique Illumina sample index, for sequencing in a single Illumina flow cell. All of
the libraries were sequenced with an 8-base index read, a 26-base read 1 containing
cell-identifying barcodes and unique molecular identifiers (UMIs), and a 98-base
read 2 containing transcript sequences on an Illumina HiSeq 4000. Cell counts and
transcript detection rates are summarized in Supplementary Table 2.

Single-Cell RNA-seq data processing. Prior to gene expression analysis, raw
sequencing data was corrected for index swapping, a phenomenon that occurs
during solid-phase clonal amplification on the Illumina HiSeq 4000 platform and
results in cross-talk between sample index sequences. We corrected index swapping
using the algorithm proposed by Griffiths et al76. First, we aligned the reads
associated with each sample index to GRCh38 (GENCODE v.24) using STAR
v.2.5.0 after trimming read 2 to remove 3′ poly(A) tails (>7 A’s) and discarding
fragments with fewer than 24 remaining nucleotides as described in Yuan et al.77.
For each read with a unique, strand-specific alignment to exonic sequence, we
constructed an address comprised of the cell-identifying barcode, unique molecular
identifier (UMI) barcode, and gene identifier. Next, we counted the number of
reads associated with each address in each sample. Because of index swapping, we
found that some addresses occurred in multiple samples at much higher fre-
quencies than one would expect by chance. For the vast majority of addresses, there
was a single sample containing most of the associated reads. If >80% of reads for a
given address were associated with a single sample (e.g., a single index sequence),
we kept all of the reads corresponding to that address in that sample and removed
all of the reads associated with that address from all other samples76. We also
identified addresses for which no sample contained >80% of the corresponding
reads and removed all of these reads from all samples. After correcting for index
swapping, we collapsed amplification duplicates using the UMIs and corrected
errors in both the cell-identifying and UMI barcodes to generate a preliminary
matrix of molecular counts for each cell as described previously77.

We filtered the cell-identifying barcodes to avoid dead cells and other artifacts
as described in Yuan et al.77. Briefly, we removed all cell-identifying barcodes
where >10% of molecules aligned to genes expressed from the mitochondrial
genome or for which the ratio of molecules aligning to whole gene bodies
(including introns) to molecules aligning exclusively to exons was >1.5. Finally, we
also removed cell-identifying barcodes for which the average number of reads per
molecule or average number of molecules per gene deviated by >2.5 standard
deviations from the mean for a given sample.

Computational identification of T cells. Thoroughly removing non-T cells from
the data set is complicated by technical issues such as molecular cross-talk, mul-
tiplet capture, and a broad coverage distribution. We developed a procedure to
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remove non-T cells that accounts for these issues by identifying both individual
cells and clusters of cells that are enriched in expression of a blacklisted gene set
that is highly specific to contaminating cell types. We began by clustering the
single-cell profiles within each sample using a pipeline that we reported
previously77,78. Briefly, we identified highly variable genes that are likely markers of
specific subpopulations by normalizing the molecular counts for each cell to sum to
one, ordering all genes by their normalized expression values, and computing a
drop-out score dsg for each gene g defined as:

dsg ¼ fg � fmax
g

�
�
�

�
�
�=

ffiffiffiffiffiffiffiffiffi

fmax
g

q

; ð1Þ
where fg is the fraction of cells in which we detected g and fgmax is the maximum fg
in a 25-gene rolling window centered on g. We selected genes with dsg > 0.15 or
with dsg > 6σds+ < dsg > , where σds and < dsg > are the standard deviation and
mean of the dropout score distribution. Using these genes, we computed a cell-by-
cell Spearman’s correlation, from which we constructed a k-nearest neighbor’s
graph (k= 20) and used this as input for the Phenograph30 implementation of
Louvain clustering to identify cellular subpopulations.

Next, we used the pooled normalization approach described by Lun et al. as
implemented in the scran package with the computeSumFactors function to
compute size factors for each cell79,80. We supplied the computeSumFactors
function with the cluster identifiers obtained from Phenograph to account for cell
type-specific coverage differences. Using the resulting normalized expression
profiles, we identified Phenograph clusters with positive enrichment of average
CD3D and TRAC expression and labeled these clusters as T cell clusters
(Supplementary Fig. 1). Within each sample, we conducted differential expression
analysis between all pairs of T cell and non-T cell clusters via the Wilcoxon rank-
sum test using the SciPy function ranksums and Benjamini-Hochberg corrected p-
values with the StatsModels function multipletests in Python, yielding p values padj.
Finally, we established an initial blacklist of genes that are highly specific to the
non-T cell clusters by taking any gene with padj < 0.001 and greater than 10 fold-
enrichment in a non-T cell cluster for any of the above pairwise comparisons in
any sample. To refine the blacklist and avoid including genes that are specific to T
cell subsets found in only a limited set of samples or clusters, we also generated a
whitelist of genes with positive enrichment in any T cell cluster. We removed any
member of this whitelist from the initial blacklist to produce a final, refined
blacklist containing 744 genes highly specific to contaminating cell types
(Supplementary Data 1). As expected, genes on the final blacklist included markers
of epithelial cells, dendritic cells, mast cells, B cells, neutrophils, and red blood cells.

The blacklist of genes was used to remove cells from the T cell clusters that are
either improperly clustered (unlikely to be T cells) or potentially multiplets (a cell-
identifying barcode co-encapsulated both T cells and non-T cells). Importantly,
because of molecular cross-talk in scRNA-seq libraries from PCR recombination,
we only considered a cell to be expressing a blacklisted gene if the average number
of reads supporting the detected molecules was above a certain threshold. This
threshold depends on the average depth to which we sequenced the libraries in a
given sample. The distributions of the number of reads-per-molecule are generally
bimodal for a given sample. We assume that the mode with lower read counts per
molecule arises from PCR recombination in which a molecule originating from one
cell receives the cell-identifying barcode of a different cell at an intermediate point
in PCR, thereby resulting in a detected molecule supported by an unusually small
number of reads (i.e., amplicons). We therefore considered the sample h with the
highest coverage (and therefore the clearest separation between the two modes)
and took the minimum point between the two modes in the reads-per-molecule
distribution to be the threshold number of reads per molecule, Th, below which a
detected molecule would be considered to arise from cross-talk. We extrapolated a
reads-per-molecule threshold for each of the other samples s as:

Ts ¼ Th �
RPMs

RPMh

� �

; ð2Þ

where RPMs is the average number of reads per molecule detected in sample s.
Finally, for each cell c in a sample with threshold Ts, we computed bc, the per-

cell fraction of blacklisted genes detected with an average number of reads per
molecule above Ts. As expected, bc was typically bimodally distributed within each
sample (Supplementary Fig. 1e). The vast majority of cells in the lower mode were
in the T cell clusters described above, while the high mode was composed mainly,
but not exclusively, of cells from non-T cell clusters (Supplementary Fig. 1e). In
each sample, we fit a Gaussian to bc’s distribution across cells assigned to T cell
clusters and established a threshold at two standard deviations above the fitted
mean. We considered any cell with bc above this threshold and any cell that
clustered among the non-T cell clusters to be a non-T cell and discarded these cells
from all downstream analysis.

Course-grained clustering of T cells from each donor. Once we had identified
the T cells from each sample using the methodology described above, we merged
resting and activated samples from all of the tissues in each donor and clustered the
T cells from the two donors separately to generate Fig. 1b, c. We used the meth-
odology described above to identify a set of highly variable genes for each sample
(including the blood samples), and then merged those sets to generate a large list of
315 highly variable genes (Supplementary Data 2) with which we clustered the
merged samples from both donors. We computed Louvain clusters from the two

merged data sets with k= 12 and a minimum cluster size of 100 cells using a k-
nearest neighbors graph constructed from the Spearman’s correlation matrix cal-
culated using the 315 highly variable genes. We used the Python implementation
Uniform Manifold Approximation and Projection (UMAP)31 to produce the two-
dimensional projections shown in Fig. 1b, c. To obtain CD4/CD8 ratios for each
cluster, we first computed the expression level of CD4 and CD8A in each cell using
the normalized counts from computeSumFactors as described above. For both CD4
and CD8A, we then computed the average log2(normalized counts+ 1) for each
cluster and normalized this value by the average log2(normalized counts+ 1) for all
cells. We then took the log-ratio of these values for CD4 and CD8A to generate
Fig. 1b, where all the cells in each cluster are labeled with the cluster’s log-ratio.
Differentially expressed genes for cells in each cluster versus all other cells were
determined using a binomial test81 (Supplementary Data 3, 4).

Blood projection analysis. To project the data obtained from blood T cells onto
the tissue-derived profiles from each organ donor, we first merged the scRNA-seq
profiles from both blood donors. We note that the scRNA-seq data from blood
were subjected to the same computational procedure described above for elim-
inating non-T cell profiles. We used the same highly variable gene set (Supple-
mentary Data 2) that was used in the original UMAP model of each organ donor to
compute a Spearman’s correlation matrix between the blood and tissue profiles. We
then projected the blood T cell profiles onto the UMAP embeddings for each of the
two organ donors using the transform function in UMAP. We note that the organ
donor UMAP embeddings used for this analysis are slightly different from what
appears in Fig. 1b, c, because a small number of genes in the highly variable gene
set were eliminated due to lack of expression in the blood. We also note that a small
modification to the UMAP source code was needed to accommodate the use of
Spearman’s correlation as a similarity metric (available at https://github.com/
simslab/umap_projection).

We confirmed our findings using scmap34, a previously published scRNA-seq
data projection algorithm. When projecting blood T cells onto the tissue T cells
from Tissue Donors 1 and 2, scmap yielded projections that were consistent with
UMAP (Supplementary Fig. 4a, b, e, f) with projection coordinates that were highly
correlated across both data sets (Supplementary Fig. 4c, d, g, h).

To generate the cell number heatmaps in Fig. 2 and Supplementary Fig. 3, we
first computed a centroid position in the UMAP embedding for each condition,
subset and tissue combination in the tissue data based on the Louvain clustering
described above for Fig. 1b, c. For example, for Donor 2, we computed the average
position of LG-, BM-, and LN-derived resting. We then identified the nearest
condition, subset and tissue combination for each cell in the blood samples based
on the Euclidean distance between a given blood-derived cell’s position in the
UMAP model (following projection of the blood data onto the tissue UMAP
model) and each centroid position. The heatmaps summarize the results of these
calculations, providing the number of blood-derived cells that are closest to each
condition, subset and tissue combination in the organ donor data.

Comparison of TEM cells from tissue and blood. To identify a tissue-specific T
cell signature, we compared the expression profiles of effector memory cells from
resting LG, BM, and LN T cells from the two tissue donors to resting blood T cells
from the two blood donors. We found CCL5 to be an extremely highly expressed
marker of effector-memory (TEM) cells that exhibited strong anti-correlation with
SELL, a marker of non-effector memory cells, in all of our resting samples (Sup-
plementary Fig. 5a). We also found that the average number of reads per molecule
for CCL5 was bimodally distributed, consistent with spurious detection of CCL5 in
a population of cells due to PCR recombination (Supplementary Fig. 5b). For each
sample, we used the point between these two modes where the probability density
was minimal as a threshold for the minimum average number of reads per
molecule of CCL5 required for a cell to be considered positive for CCL5. For each
sample, we normalized the matrix of molecular counts for the CCL5+ TEM cells
using the computeSumFactors function in scran to compute size factors for each
cell79,80. For each tissue site, we then identified differentially expressed genes for all
four pairwise comparisons of resting tissue to resting blood CCL5+ T cells (tissue
donor 1 vs. blood donor A, tissue donor 2 vs. blood donor A, etc.) using the
Wilcoxon rank-sum test with the SciPy function ranksums and computed
Benjamini-Hochberg corrected p-values with the StatsModels function multipletests
in Python after removing genes from the blacklist described above (Supplementary
Data 1). For each tissue, we took all genes with padj < 0.05 and fold-change > 2 in all
4 pairwise comparisons to comprise a tissue-specific effector memory T cell sig-
nature (Fig. 3).

Next, all of the genes in the tissue-specific effector memory T cell signature and
computed the average normalized expression of the resulting gene set to obtain
Fig. 3d. Z-scored normalized expression for each of these genes appears in the
heatmap in Fig. 3e for each site/donor, which also includes a set of blood T cells
with outlier expression of the tissue-enriched gene signature (blood T cells with
average expression within one standard deviation of that of the tissue T cells as
indicated by the dashed line in Fig. 3d). For Fig. 3f, we took all genes with padj <
0.05 (Wilcoxon and correction described above) and two-fold higher expression in
either the tissue- or blood-associated T cells in all four pairwise comparisons. We
then constructed a Spearman’s correlation coefficient between pairs of resting
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CCL5+ cells in the dataset across these genes and used this to generate a UMAP
embedding.

Analysis of tissue T cell signatures in other datasets. We used Gene Set
Enrichment Analysis (GSEA) to assess the enrichment of the tissue-associated T
cell signature in T cells profiled from the bone marrow of living donors and its
depletion in T cells profiled from two additional blood samples in Supplementary
Fig. 6. We obtained 10x Genomics Chromium scRNA-seq profiles of bone marrow
from 20 individuals from GEO accession GSE12022137. We merged the data from
all of the samples and clustered the merged scRNA-seq profiles using Phenograph
as described above. To computationally isolate TEM cells, we took all CCL5+ cells
that occurred in any Phenograph cluster that was positively enriched in TRAC
expression. We then compared the expression profiles of CCL5+ T cells from the
bone marrow of living donors to the resting, CCL5+ T cells from the two blood
donors from this study (Donors A and B) using the Wilcoxon rank-sum test as
described above. After ranking all genes for which a test statistic could be com-
puted by fold-change (comparing bone marrow to blood), we used GSEA (pre-
ranked, “classic” mode with 10,000 permutations) to calculate the enrichment of
the tissue-associated T cells signature among the differentially expressed genes. We
used the Java implementation of GSEA that is freely available from http://software.
broadinstitute.org/gsea/index.jsp.

To assess the depletion of the tissue-associated T cell signature in other blood
data sets relative to the tissue samples collected here, we obtained 10x Genomic
Chromium scRNA-seq data from PBMCs of a healthy donor and purified T cells of
a healthy donor from 10x Genomics (Donor C PBMCs: pbmc8k data set from
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/
pbmc8k; Donor D purified T cells: t_4k data set from https://support.10xgenomics.
com/single-cell-gene-expression/datasets/2.1.0/t_4k). We performed clustering
separately on the two samples using Phenograph and computationally isolated
TEM cells as described above for the live donor bone marrow samples. We then
performed differential expression analysis using the Wilcoxon rank-sum test to
compare TEMs from Donors C and D to those in each tissue from the resting
samples collected for this study. For each tissue site, we merged the resting TEMs
from Donors 1 and 2. Finally, we performed GSEA as described above to assess the
depletion of the tissue-associated T cell signature in Donors C and D for each tissue
site comparison.

Single-cell hierarchical poisson factorization analysis. We applied Single-cell
Hierarchical Poisson Factorization (scHPF), a method that we recently reported for
de novo discovery of gene expression signatures in scRNA-seq data, to the merged
activated and resting cells for each tissue and donor38. Given a molecular count
matrix, scHPF identifies a small number of latent factors that explain both con-
tinuous and discrete expression patterns across cells. Each gene has a score for each
factor, quantifying the gene’s contribution to the associated expression pattern.
Likewise, each cell assigns a score to each factor, which reflects the contribution of
the factor to the observed expression in the cell.

We applied scHPF to each tissue and blood sample after merging their
respective resting and activated datasets. We considered only genes with
GENCODE protein coding, T cell receptor constant or immunoglobulin constant
biotypes, excluded genes on the previously described blacklist, and removed genes
detected in fewer than 0.1% of cells in a given merged dataset. scHPF (version 0.1)
was run with default parameters for seven values of K, the number of factors, equal
to all values between 6–12, inclusively. This resulted in seven candidate scHPF
factorizations per merged dataset. We then selected K to avoid factors with
significant overlap in their gene signatures. For each dataset and value of K, we
calculated NK: the maximum pairwise overlap of the 300 highest-scoring genes in
each factor for the corresponding scHPF model. We considered overlap significant
if p < 0.05 by a hypergeometric test with a population size equal to the number of
unfiltered genes in the tissue sample and NK observed successes. Finally, for each
dataset, we selected the model with maximum K such that p >= 0.05
(Supplementary Fig. 7). This procedure resulted in eight factorizations: six from
tissue donors (lung, BM, and LN from each of two organ donors) and two
factorizations from the blood of living donors. We defined each factors’ CD4/CD8
bias as the log2 ratio of its mean cell score in CD4+ and CD8+ T cells.

To discover common patterns of expression across tissues and donors, we
performed unsupervised clustering of all factors for tissue-derived cells. First, we
calculated Pearson correlation on the union of the fifty highest and lowest scoring
genes in each factor for each tissue factorization (2291 genes total) using the
Python pandas package’s DataFrame.corr function. Next, we hierarchically
clustered the factor-factor correlation matrix using scipy.cluster.hierarchy.linkage
with method= ‘average’ and scipy.cluster.hierarchy.dendrogram (Supplementary
Fig. 8a). This defined clusters of tightly correlated expression patterns, which we
call expression modules. We focused on seven modules (out of nine) whose factors
had mean pairwise correlations greater than 0.25. Most modules contained at least
one factor from each tissue and donor. To identify the top genes in each module
(Fig. 4a, Supplementary Data 5), we ranked genes by their mean gene score across
all constituent factors. The CD4 IFN response module contained two factors from
Donor 2 BM; however, one of the two factors was far more tightly correlated with
the rest of the factors in the module than the other. As the top genes in the module

were nearly identical with and without the less tightly-correlated factor, we
excluded it from the module in downstream analyses for clarity.

Activation trajectory analysis. We used the factorizations described above to
compute T cell activation trajectories by diffusion component analysis. We first
converted the cell score matrix obtained from the factorization of each resting/
activated merged tissue or blood sample into a cell-by-cell Euclidean distance
matrix. We then extracted the distance submatrices corresponding to the CD4 and
CD8 clusters in each sample as defined from the merged analysis of all samples
from each donor described above. We used the two resulting distance submatrices
to compute diffusion components for CD4 and CD8 activation with the C++
Accelerated Python Diffusion Maps Library (DMAPS) with a kernel bandwidth of
four. The diffusion maps shown in Fig. 4b–e each show the first two diffusion
components which we define as the two diffusion eigenvectors with the second-
and third-highest eigenvalues scaled by the diffusion eigenvector with the largest
eigenvalue.

Flow cytometry and proliferation assays. To evaluate the expression of T cell
surface markers by flow cytometry, we incubated tissue and blood cell suspensions
with Human TruStain FcX (BioLegend) and stained with following fluorochrome-
conjugated antibodies: CD3 (UCHT1, BD Biosciences; OKT3, BioLegend), CD4
(SK3, BD Biosciences; SK3, Tonbo Biosciences), CD8 (SK1, BioLegend; RPA-T8,
BD Biosciences), CCR7 (G043H7; BioLegend), CD45RA (HI100; BioLegend),
CD25 (BC96; BioLegend), CD127 (A019D5; BioLegend), CD69 (FN50; BioLe-
gend), CD103 (Ber-ACT8; BioLegend), CD45 (HI30; BioLegend), and Fixable
Viability Dye eFluor 780 (eBioscience). For stimulation/proliferation assays, we
magnetically enriched for CD3+ T cells from single cell suspensions, stained cells
with Cell Proliferation Dye eFluor 450 (eBioscience), and cultured cells for up to
120 h with or without TCR stimulation as above. At indicated time points, we
performed intercellular staining of NME1 (11615-H07E; Sino Biological) using a
Foxp3/Transcription Factor Staining Buffer Kit (Tonbo Biosciences) for fixation
and permeabilization of cells according to manufacturer’s instructions. We
acquired cell fluorescence data using a BD LSR II flow cytometer and used FCS
Express (De Novo Software) for analysis. The results are summarized in Supple-
mentary Fig. 2 and the gating strategy is shown in Supplementary Fig. 18a.

Quantitative real-time PCR. PBMC were magnetically enriched for CD3+ T cells,
and sorted for live CD4+ and CD8+ T cells (singlets, FSClowSSClow, and Viability
Dye-) using a BD Influx cell sorter (Supplementary Fig. 18b). Sorted cells were
cultured in complete medium with or without anti-CD3/anti-CD28 stimulation as
above for 2–72 h. For dissecting the contribution of type I and type II IFN signaling
to gene expression, cells were pre-incubated with Human Type 1 IFN Neutralizing
Antibody Mixture (PBL Assay Science, Cat# 39000-1) according to manufacturer’s
instructions, or 1 µg/mL of both anti-IFNγ (R&D Systems, MAB285, clone #
25718) and anti-IFNγR1 (R&D Systems, MAB6731, clone # 92101). As a control,
CD4+ T cells were activated with 1000 units/mL of recombinant human IFNα2
(PBL Assay Science, Cat#11101-1) or 10 ng/mL recombinant human IFNγ
(Peprotech, Cat# 300-02). Control and stimulated CD4+ and CD8+ T cells were
harvested at indicated time points and RNA isolated using a RNeasy Micro Kit
(Qiagen) with on-column DNase digestion. We converted RNA to cDNA via
SuperScript IV VILO Master Mix (Invitrogen) and performed quantitative real-
time PCR (qPCR) on a Viia 7 Real-Time PCR system (Applied Biosystems) using
TaqMan Gene Expression Assays (NME1 Hs00264824_m1; IL2RA
Hs00907777_m1; IFIT3 Hs00155468_m1; TBP Hs00427620_m1) and TaqMan
Fast Advanced Master Mix, all from ThermoFisher Scientific. Quntitative PCR
(qPCR) reactions were set up according to manufacturer’s instructions and fold
changes between stimulated and unstimulated cells at each time point were cal-
culated using the ΔΔ cycle threshold method in ExpressionSuite Software (Ther-
moFisher Scientific) with TBP as a reference gene.

Tumor-associated T cell projection analysis. We projected scRNA-seq profiles
of tumor-associated T cells from four different tumor types onto a UMAP
embedding of resting and activated T cells from our combined tissue and blood
data set using the methods described above for projecting blood T cells onto
embeddings of the tissues. Briefly, we used the highly variable gene set from
Supplementary Data 2 to generate a UMAP embedding of our tissue/blood data
from a Spearman’s correlation matrix. We did not find any qualitative differences
between UMAP embeddings when donor-specific genes were removed (Supple-
mentary Fig. 19). We then projected the tumor-associated T cell profiles onto this
embedding using the transform function in UMAP. Tumor-associated T cells from
non-small cell lung cancer (NSCLC)53 and breast cancer (BC)52, which were
profiled using the 10x Genomics Chromium platform, were obtained from https://
gbiomed.kuleuven.be/scRNAseq-NSCLC and GEO accession GSE114724 (samples
BC09, BC10, and BC11), respectively. For these two data sets, we used the UMI-
corrected molecular counts provided by the authors. T cells from colorectal cancer
(CRC)51 and melanoma (MEL)27, which were profiled using SMART-seq, were
obtained from GEO accessions GSE108989 and GSE120575 (pre-treated samples
only). For these two data sets, we used the TPM values provided by the authors. We
note that the tissue/blood embedding was re-computed for each projection and is
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therefore slightly different in each case because not all of the processed data sets
from the tumor studies contained all of the genes in Supplementary Data 2.

The resulting projections are displayed in Fig. 6 in three different ways. In the
top row, the projections are displayed as contour plots of estimated probability
density (kernel density estimates) with a maximum of 14 contours. In the second
row, we used a hexbin two-dimensional histogram of the number of cells in each
bin with the colorbars normalized such that the intensity can be compared across
samples (e.g., scaled so that the melanoma projection can be compared to the CRC
projection). Finally, we also show where individual tumor-associated T cells project
in subsequent rows along with gene expression values for several key markers. In
Fig. 7, we show the average expression of several canonical exhaustion markers in
individual cells. The markers used for this analysis were PDCD1, CTLA4, LAG3,
LAYN, TIM-3, CD244, and CD160. We applied the same methodology to project
the tumor-associated T cell profiles onto independent UMAP embeddings for each
donor as shown in Supplementary Figs. 11–14.

As above in Fig. 2, we validated the tumor-associated T cell projection analysis
using scmap34. Mapping the tumor-associated T cells onto our reference tissue and
blood T cell dataset using scmap generated projections that were consistent with
UMAP, with coordinates that were highly correlated (Supplementary Fig. 15).

Analysis of T cells from dengue virus-infected patients. To analyze the
expression of IFIT3 and NME1 in the context of virus infection, we analyzed
scRNA-seq profiles of peripheral blood from dengue virus-infected patients
(GSE116672). We clustered the data using the methodology described above and
isolated T cell clusters based on enrichment of TRAC expression. We then gen-
erated the UMAP embedding shown in Supplementary Fig. 10 using the metho-
dology described above and the same 315-gene set used throughout this study
(Supplementary Data 2).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All scRNA-seq data are available on the Gene Expression omnibus (GEO) under
accession number GSE126030 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE126030]. We have included a pre-processed and filterable data table containing
a matrix of molecular counts for all cells profiled in our study. Cell-identifying barcodes,
UMAP coordinates and other characteristics (tissue origin, stimulation condition, CD4
or CD8 status and CCL5 expression) for cells designated as T cells (as described in
Methods) are included in the Source Data file for Fig. 6 of this study. The source data
underlying Figs. 1c, 3a–e, 4a, 5a, c, d, e and 6 are provided in the Source Data file.

Code availability
The computer code for marker selection, clustering, and differential expression is
available at https://github.com/simslab/cluster_diffex2018; the code for scHPF is
available at www.github.com/simslab/scHPF. The code for umap projection analysis is
available at: https://github.com/simslab/umap_projection.
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