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Fast objective coupled planar illumination
microscopy

Cody J. Greer® ™ & Timothy E. Holy!

Among optical imaging techniques light sheet fluorescence microscopy is one of the most
attractive for capturing high-speed biological dynamics unfolding in three dimensions. The
technique is potentially millions of times faster than point-scanning techniques such as two-
photon microscopy. However light sheet microscopes are limited by volume scanning rate
and/or camera speed. We present speed-optimized Objective Coupled Planar Illumination
(OCPI) microscopy, a fast light sheet technique that avoids compromising image quality or
photon efficiency. Our fast scan system supports 40 Hz imaging of 700 pm-thick volumes if
camera speed is sufficient. We also address the camera speed limitation by introducing
Distributed Planar Imaging (DPI), a scaleable technique that parallelizes image acquisition
across cameras. Finally, we demonstrate fast calcium imaging of the larval zebrafish brain and
find a heartbeat-induced artifact, removable when the imaging rate exceeds 15 Hz. These
advances extend the reach of fluorescence microscopy for monitoring fast processes in large
volumes.
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mprovements in calcium! and voltage?? indicators have

opened up the possibility of using fluorescence microscopy to

observe interactions between neurons in the brain. Because
neuronal computations occur on short timescales and are dis-
tributed over large tissue volumes, capturing these three-
dimensional dynamics presents a major acquisition challenge.
Motivated by this goal, many groups have developed or refined
microscopy techniques that increase the scale and/or speed of
fluorescence microscopy?~24. These fast techniques can be
broadly categorized by the way that they collect pixel information
to form an image: point-scanning (confocal and two-photon)
methods collect one or a few!® pixels at a time, while line-
scanning and widefield methods parallelize acquisition over
hundreds to millions of pixels on a camera sensor.

Fundamental physics—specifically, limits on the relaxation
time of fluorophores, leading to a phenomenon known as fluor-
ophore saturation?>—dictates that single point-scanning imaging
techniques have lesser potential speed than techniques that image
many points in parallel. Traditional widefield imaging methods
such as epifluorescence excel at this parallelization but pay a cost
in axial resolution: they produce 2-dimensional images contain-
ing a mixture of fluorescent sources from multiple depths in the
sample.

Recently several approaches have been developed to separate
signals by depth-referred to as optical sectioning-while imaging
many points in parallel. Light-sheet fluorescence microscopy
(LSFM) is one of the most popular of these approaches. Con-
ventional LSFM performs optical sectioning by way of specialized
hardware that limits excitation light to a single plane at a time
while capturing an image of that plane with a camera. Thus the
illuminated region is coincident with the image plane, allowing
the entire image to be captured in parallel, while also avoiding
unnecessary light exposure and affording LSFM with exception-
ally low phototoxicity. Other techniques, as well as some LSFM
variants use a combination of specialized hardware and decon-
volution software>12141517.24 ‘While such techniques are among
the fastest available, they make tradeoffs in image quality, and the
computationally intensive postprocessing can become impractical
for large datasets. In this study we sought to develop a hardware-
only LSFM that avoids these tradeoffs when imaging large
volumes of tissue.

If one is only interested in imaging a single plane of tissue with
LSFM, then the typical 0.1 us to 1.0 us voxel dwell time implies
the potential for acquiring 10°-107 frames/s; in practice, for
sustained imaging the rate of all current microscopes is limited
by the frame rate of the camera. However when imaging a
3-dimensional volume another rate-limiting factor may come into
play: the speed of the mechanism by which the image and illu-
mination planes are repositioned within the sample to compose a
stack of images. We will refer hereafter to this potential bottle-
neck as the volume scanning bottleneck to distinguish it from the
camera frame rate bottleneck.

Several variants of LSFM have been developed, and they differ
in the extent to which they suffer from the scanning bottleneck.
Classic LSFM variants such as Selective Plane Illumination
Microscopy* (SPIM) and OCPI microscopy® are limited more
severely by the volume scanning bottleneck than the camera
frame rate bottleneck. Some newer techniques support
almost unlimited volume scanning speed, but we show
that relative to OCPI and SPIM all of these designs
compromise photon efficiency®10%:1>17.22,23,26-28 and/or spatial
resolution!0:1517:19:26.27.29 * Ag a consequence, none of these is
capable of scanning volumes hundreds of microns on a side
without compromising optical quality.

In this study, we identify and analyze the factors that give rise
to the scan bottleneck in OCPI microscopy and resolve them in a

way that avoids making such sacrifices. Having overcome the
volume scanning bottleneck, we then alleviate the camera frame
rate bottleneck by debuting DPI to parallelize imaging across
multiple cameras. These contributions are not specific to OCPI
microscopy: other systems can exploit our mechanical scanning
optimizations, and any system that images a plane onto a camera
sensor can be sped up with DPIL. To facilitate adoption of our
specific microscope by other research groups, we provide detailed
hardware schematics and open-source software. This microscope
serves more than a dozen users in a centralized imaging facility,
demonstrating its flexibility and robustness.

Finally we provide two imaging demonstrations using our
microscope: imaging neural activity in the whole brain of a larval
zebrafish at 10 Hz, as well as imaging just the forebrain at 20 Hz,
in both cases with a lateral sampling rate of 0.65 pm pixel~1. We
analyze the forebrain recording and show that neuronal traces are
contaminated with an artifact arising from the heartbeat of the
fish. We demonstrate that this artifact introduces spurious cor-
relations between neurons, and that a sampling rate of at least
15 Hz is required in order to remove the artifact. Expunging this
artifact will be an important processing step for future large-scale
studies of zebrafish brain activity.

Results

Factors limiting imaging rate and image quality with LSFM
microscopy. Recent work has emphasized remote focusing30-3!
methods that image voxels outside of the objective’s native focal
plane, avoiding mechanical translation in order to scan faster.
These methods have a critical disadvantage relative to SPIM or
OCPI: they trade away image quality in favor of scan speed. Some
suffer from reduced photon efficiency®10:15:17:22.23,26-28 " yith a
representative example?$ losing 79% of light collected by the
objective lens. Some contend with aberrated ima-
ges!015:17,19,2627.29 " Thege aberrations are primarily spherical,
and their severity increases with distance from the native focal
plane, magnification, and numerical aperture (NA) of the system.
The aberrations are not a technical limitation of existing lenses: in
Supplementary Note 1, we present a proof that they follow
directly from the Abbe sine condition and apply to any magni-
fying system that collects images away from the classical focal
plane. Figure la shows the theoretical performance of such a
remote focusing system using three common microscope objec-
tives at various magnifications and NA values (derived in Sup-
plementary Note 1). At NA 0.3, diffraction-limited axial
resolution is limited to an area within 385 pm from the focal
plane. At NA 0.5 (2.9x the photon efficiency of NA 0.3) this is
reduced to 47 pm, and then falls to only 6 um at NA 0.8. OCPI
and SPIM do not suffer this tradeoff, enabling them to scale to
axial spans of hundreds of microns while enjoying the resolution
and efficiency of higher NAs.

This analysis suggests that approaches collecting images using
only the native focal plane of the objective, as performed in SPIM
and OCPI microscopy, merit re-examination. Scaleable to large
samples with uniform resolution and minimal photodamage,
these methods are well-suited to address a current challenge in
optical neurophysiology: repeatedly imaging thousands of living
neurons.

Figure 1b illustrates the basic OCPI microscope design and
shows that both the imaging objective and the lightsheet optics
are translated (scanned) together in the axial direction. Scanning
with OCPI is accomplished with a linear actuator, usually a
piezoelectric device. Due to the use of infinity-focused optics, this
translation does not affect imaging quality or efficiency, allowing
diffraction-limited imaging throughout the range of the actuator.
An empirical measurement of the OCPI axial point spread
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function (PSF) (Fig. 1c) confirms that the system is essentially
diffraction-limited (NAgeec =0.5 and NAjm, =0.11; sheet
thickness was roughly matched to the objective depth-of-field).
Unfortunately, volume imaging with SPIM and OCPI is usually
rate-limited by the inertia of the sample or the optics,
respectively. Due to this inertia the piezo positioner fails to
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follow high frequency commands (Fig. 1d). This failure can have
catastrophic consequences for 3D imaging at high rates.
Unwanted oscillations in the scan system can result in both
undersampling and oversampling in the axial dimension. Optical
sections may also appear out-of-order since the axial position
may not be strictly increasing/decreasing between sections.
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Fig. 1 Volume imaging advantages and rate bottlenecks of OCPI microscopy. a Theoretically-estimated axial spherical aberrations for a microscope
employing remote focusing without aberration correction (see Supplementary Note 1 derivation). Plotted are spot sizes (in object space) for three objective
lenses (Olympus UMPLFLN family). OCPI microscopy is limited only by the diffraction limit (dashed lines, Gaussian approximation, see Methods section).
b Schematic of an OCPI microscope with minor modifications to the design described in previous work®”. Optical sectioning is achieved by translating the
optics for generating the light sheet together with the detection objective (boxed components). PC pigtailed collimator, LLP light sheet lens pair, OBJ
objective, BM broadband mirror, EF emission filter, TL tube lens. ¢ OCPI microscopes achieve diffraction-limited axial resolution throughout the scan range
because scanning changes only the infinity-focused portion of the light path. Shown is an OCPI point spread function found by averaging images of
fluorescent beads throughout a volume. The axial intensity distribution matches closely the diffraction limit predicted by Gaussian optical theory (compare
blue and orange curves, NAget = 0.5, NA;jum = 0.11, details in methods). d Inertia of the boxed components in (b) limits volume scanning rate with OCPI.
Shown are triangle wave scan commands (dashed lines) and measured responses (solid lines) from the piezoelectric positioner of an unoptimized OCPI
microscope. One full scan cycle is shown at each of the three scan rates. The scan waveform response is distorted at higher scan rates due to inertia and
imperfect closed-loop control. e If volume scanning were not rate-limiting, OCPI microscopy volume imaging rate would scale with the height of each
camera image, as well as the thickness of the imaged volume (shown for x10 magnification with 5 pm spacing of optical sections, PCO.Edge 4.2 camera).
We sought to optimize the scan system so that scan rate was not limiting in most of the parameter space shown. f Maximum pixel rates of popular 16-bit
scientific CMOS cameras are shown. These maximum data rates limit all current widefield microscopy methods. No high-sensitivity camera released within

the past 6 years has improved upon the rates shown, motivating us to circumvent this limitation

Particular high-frequency commands may even send the piezo
system’s closed-loop controller into an unstable regime that
destroys the device. If not for the scanning bottleneck, volume
imaging rate scales with the frame rate of the camera (this is
true for all LSFM methods, not only for OCPI). The achievable
volume rate is inversely proportional to the size of the volume
and the density at which the volume is sampled. This scaling is
illustrated for a modern scientific CMOS camera (PCO.Edge 4.2)
in Fig. le, and other scientific camera models perform similarly
(Fig. 1f). To our knowledge the fastest volume imaging
demonstrated with OCPI or SPIM was 5 Hz with a 200 um scan
range32 (an average scanning speed of 2 mm s~! when consider-
ing both the forward and reverse scan sweeps). Thus scanning
limitations prevent realization of most of the imaging rates shown
in Fig. le, and we sought to access this unused camera capacity.

Fast mechanical scanning. In order to address the scanning
bottleneck we enacted five design strategies: (1) minimizing the
mass of all translated components, (2) optimizing the command
signals that drive the piezoelectric actuator, (3) calibrating the
timing of camera exposures, (4) pulsing the illumination laser
during the global exposure period of the camera, and (5)
acquiring image stacks during both the forward and reverse
sweeps of the scan. A photo of our mass-optimized scan assembly
is shown in Fig. 2a. Rather than create the lightsheet with a
second objective we used custom optics of minimal size®, and
mounting and alignment hardware was machined to minimize
mass while maintaining rigidity.

Our chosen positioner was able to generate push and pull
forces of up to 100N, more than enough force to achieve the
accelerations necessary to scan at frequencies up to 20 Hz. To
counteract the piezoelectric phenomena of creep and hysteresis33,
we elected to use this with a closed-loop controller. However, the
performance of a closed-loop piezo system is particularly sensitive
to the mass of translated components, center of gravity, and
translation angle relative to gravity. The controller in our system
is of the proportional integral derivative (PID) variety. We
requested that the vendor optimize the three tunable PID
parameters for the mass of our assembly and angle of translation.
Additional tuning was performed manually so that the system’s
response matched high-frequency scanning commands as closely
as possible (see Methods section). We also verified that the
response of the piezo system to a cyclic command was highly
consistent across cycles (Supplementary Fig. 1), which is crucial
for stable multi-stack recordings.

PID control is quite sensitive to large accelerations in the
command signal such as those at the extrema of a triangle wave,

causing the system to exhibit unfavorable higher frequency
oscillations (Fig. 1d). We addressed this issue by utilizing a
lowpass filtered triangle wave command, where the filter had a
cutoff of 3.25x the command frequency (see Methods section).
We also performed a brief iterative optimization of the amplitude
and offset of the command signal to achieve the desired scan
range as measured by the sensor (see Methods section). Thus by
tuning both the PID and the command waveform we were able to
drive the piezo smoothly through a range of up to 700 um at
frequencies up to 20 Hz (Fig. 2b).

Sensor-guided exposure timing. For later analysis steps such as
image registration, it is desirable for the slices of an image stack to
be equally spaced in the axial direction. Because of the non-
uniform piezo speed, collecting camera frames with a fixed frame
rate would result in image stacks that do not meet this require-
ment. Therefore we utilized the measured piezo waveform to time
the acquisition of individual slices so that they were equally
spaced along the scan axis (Fig. 2¢, shown with 5 pm slice spa-
cing). Notably the time intervals between slices are not uniform:
slices near the extrema of the range are separated by longer
intervals due to reduced scan velocity. Resonant galvanometer-
based imaging systems exhibit similar nonuniformity in the
angular velocity of the mirror, and these systems set pixel timing
similarly34. Since piezo cycles are consistent after a brief initi-
alization (Supplementary Fig. 1), a single measured cycle was
sufficient to determine the timing of camera exposures
throughout a multi-stack recording.

Image-guided exposure timing. However, we found that the
sensor-guided approach to exposure timing was insufficient to
yield images in the correct slice plane. Figure 2d (left panel)
compares two images—one taken during fast scanning and the
other taken statically—that were collected at nominally the same
plane. Despite the fact that the measured piezo position was
the same in both cases, there is a poor correspondence between
the images. Initially we expected this to be explained by lag in the
mixed analog and digital circuit that conveyed the piezo sensor
signal. However to our surprise we could not explain the inac-
curacy with a simple lag, gain, or offset of the sensor signal. We
therefore developed a procedure to determine the correct timing
for each image slice empirically by acquiring images at various
temporal offsets from the naive sensor-based timing and choosing
the optimal offset for each plane (Supplementary Fig. 2, meth-
ods). The right panel of Fig. 2d demonstrates that this image-
guided refinement of the exposure timing corrects the alignment
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of the image planes. We found that the difference between the
piezo sensor value and the true focal plane position was predicted
by the acceleration of the scan system, suggesting that the error
may be related to mechanical forces acting on the system (Sup-
plementary Fig. 3).
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Pulsed illumination. We also employed an optimized illumina-
tion protocol to achieve precise optical sectioning during fast
scanning. Constant illumination is problematic for CMOS cam-
eras operating with a rolling shutter because the start and stop
time of the exposure differs for each row of pixels in a frame.
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Fig. 2 Improving the volume scanning rate of OCPI microscopy. a Photo of the scanning assembly (boxed region of Fig. 1b). Custom optics and machining
minimize inertia. b Distortion of the piezo response is reduced relative to Fig. 1d by using a lowpass-filtered command. Dashed lines illustrate that the

measured amplitude does not match the command. The command was optimized iteratively to generate the desired 700 pm range at a 20 Hz scanning
rate. ¢ A 10 Hz scan of a 200 pm volume overlaid with dashed lines marking depths at which to acquire images with 5 pm spacing between optical sections.
When sensor output is used to guide image acquisition, an image is acquired at each intersection of the sensor trace with a dashed line (marked with x's).
Note the uneven spacing of the x's along the time axis. d Sensor-guided image acquisition timing is insufficient to specify the correct image plane during a
fast recording. A dynamically-acquired image of fluorescent beads is overlaid with an image taken when the scanner was stationary and, according to the
piezo sensor, in the same image plane. An additional image-guided timing calibration corrected this inaccuracy and ensured that each slice of the stack was
located in the correct plane (see Methods section, Supplementary Fig. 2). Scalebar: 5 pm. e Volume imaging rate was increased by an additional factor of
two by imaging each plane twice per scan cycle. Thus a 20 Hz imaging rate is achieved for a scanning rate of 10 Hz. We compensated for non-simultaneous
and non-uniform temporal spacing by interpolating each adjacent pair of stacks, resulting in virtual stacks aligned with the transitions between colored

regions

Since the scan system is constantly in motion this implies that
each row of pixels samples a slightly different axial plane. In order
to prevent this contamination of an image with information from
multiple axial planes we utilized pulsed illumination. By using a
brief, well-timed pulse we were able to ensure that photon inte-
gration occurred only during the global exposure period during
which all rows of pixels on the camera chip are exposed simul-
taneously (see Methods section).

Bidirectional imaging. Typical volume scanning systems acquire
images while sweeping the scanner in one direction, but they do
not acquire during the subsequent flyback segment of the com-
mand cycle. We chose instead to acquire images while sweeping
in both directions. Since each depth in the volume is visited twice
per command cycle, our volume scanning rate is 2x the com-
mand frequency. Thus we acquire a forward stack and a reverse
stack within a single command cycle. Image-guided timing
was optimized separately for slices of the forward and reverse
stacks (Supplementary Fig. 2). Figure 2e diagrams four image
stacks acquired in this manner during two scan cycles. Under this
bidirectional paradigm the time interval between consecutive
images is constant only for the plane in the center of the scan and
becomes less uniform in planes closer to the extrema of the scan
cycle. However the average sampling interval of all planes is a
constant, equal to half the duration of the piezo command cycle.
An equivalent statement is that bidirectional imaging doubles the
average sampling rate.

Non-uniform sampling rate may affect the accuracy of
timeseries analyses. More generally, timeseries analyses often
consider each image stack as a single timepoint even though slices
within each stack are acquired in sequence, not simultaneously
(light field microscopy is an exception). We addressed both of
these pitfalls by interpolating each consecutive pair of stacks in
time, yielding stacks with a constant virtual sampling time
corresponding to the lines of color transition in Fig. 2e (see
Methods section). While inferior to truly simultaneous sampling,
we expect that this correction will improve the fidelity of timing-
sensitive analyses. Taken together with the scan capability shown
in Fig. 2b, our system supports an average volume imaging rate of
40 Hz when scanning a 700 pm axial range (a scanning speed of
28 mm s~ 1). This is 14x faster than previously demonstrated with
OCPI or SPIM32. Thus, OCPI microscopy is no longer limited by
scan rate when imaging medium-to-large volumes.

Distributed planar imaging. After overcoming the scan rate
bottleneck, further speed improvements for LSFM must come
from mitigating the camera frame rate bottleneck. Maximum
readout rates of scientific CMOS cameras are all similar (Fig. 1f),
and these rates have not improved within 6 years. Rather than
waiting for faster cameras we devised DPI to parallelize

acquisition across multiple cameras by exploiting a feature of
CMOS camera design: maximum frame rate depends on the size
of only one dimension of the image (Image Height in Fig. le) and
thus volume imaging rate scales with only two of the three image
dimensions. Our strategy was to divide the image volume into
two halves along the rate-limiting axis of the camera, and relay
the halves to different cameras. Each half-image can then
be imaged at twice the maximal rate that a single camera can
capture the full volume (Fig. 3a). We cut the images by posi-
tioning the apex of a knife-edged mirror (KEM) in the focal plane
of the tube lens, introducing a 90° fold along the center of the
focal plane. The two halves of the focal plane were then relayed to
the two cameras. The exposures of the two cameras were syn-
chronized, and their images were later stitched back into a single
image with custom software (see Methods section). If the apex of
the KEM is not precisely in the focal plane of the tube lens then a
strip of the image will be captured redundantly (but with reduced
intensity) on both cameras. Figure 3b, ¢ demonstrates in pseu-
docolor the alignment and overlap of stitched images of a
fluorescent bead sample, revealing that beads along the edge of
the KEM were imaged on both cameras. We aligned our system
so that the redundantly imaged region was only 10 pixels wide,
meaning that 99.5% of pixels sample an independent region of
space when each camera exposes half of its available pixel region
(Fig. 3d). We utilized an off-the-shelf KEM that exhibited
roughness at the very edge of the mirror surface due to manu-
facturing limitations. This roughness scatters incident light and
leaves a subtle stripe in the stitched image of a densely fluorescent
sample, barely visible in the grayscale image of a larval zebrafish
brain slice (Fig. 3e).

Multiple DPI modules can be chained to further divide the
image and relay the partial images to additional cameras.
Chaining vyields a linear increase in frame rate with each
additional camera. This increase comes at the cost of a modest
linear increase in image redundancy and a decrease in photon
efficiency with each additional camera, with the efficiency most
sensitive to the transmission efficiency of the relay lens system
(Supplementary Fig. 4). We estimate that a 16-camera system
(nearly 16x speedup) with 90%-efficient relay lenses would have a
total transmission efficiency of 60%(Supplementary Fig. 4c).

Identification and removal of heartbeat artifact. In order to
demonstrate the impact of overcoming both the scanning and
frame rate bottlenecks, we used the new system to record neural
network dynamics in a zebrafish brain expressing GCaMP6f!
(Fig. 4). We chose to image at x10 magnification in order to
maximize camera frame rate. Note that magnification (and field
of view) can easily be changed by swapping in a different
objective lens. We imaged a volume encompassing 40 slice planes
in the forebrain (223 x127x200pm) of a zebrafish larva
with a 20 Hz volume rate and 0.65 x 0.65 X 5 um voxel size over a
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Fig. 3 Mitigating the camera bottleneck. a A two-camera shared-image OCPI system. A knife-edged prism mirror (KEM) takes the place of the camera
sensor in Fig. 1b. The mirror is aligned so that half of the image is reflected and relayed to a camera above while half passes unimpeded and is relayed to a
second camera. Cameras are aligned so that they image a centered horizontal band in the field of view. The two cameras expose synchronously, and their
images are later stitched together into a full image. Since the frame rate of a CMOS camera depends only on image height (Fig. Te) this doubles the imaging
speed of the system. b Example stitched image of fluorescent beads (0.2 pm diameter) with one camera’s image in magenta and the other in green. Scale
bar: 20 pm. € Zoomed view of the rectangular region marked in panel b showing a pair of beads in the narrow region imaged by both cameras,

corresponding to the apex of the KEM. d Quantification of a stitched image of fluorescene dye solution with the same width and location as shown in panel
¢. The width of the redundant image region is approximately 10 pixels (less than 0.3% of the camera chip width). e Pseudocolored and grayscale views of
the same stitched slice of a larval (5 dpf, HUC:GCaMPés) zebrafish brain. Scale bar: 20 pm
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20-min period. In addition we imaged the whole brain of the fish
(1020 x 348 x 200 um) with the same voxel size at a rate of 10 Hz
(Supplementary Movie 1, playback slowed 10x). Figure 4 focuses
on the 20 Hz recording of the highly-active forebrain. Figure 4a
shows a maximum intensity projection of the voxelwise change
in fluorescence relative to baseline (AF/F) signal at a single

8

Neuron index

timepoint (see Methods section). Activity within individual slices
is visualized in realtime in Supplementary Movie 2. We seg-
mented a subset of 629 neurons by manually selecting regions of
interest (ROIs), and we extracted AF/F timeseries (see Methods
section). A raster plot of cellular activity during the first 4 min
of the recording is shown in Fig. 4b. Figure 4c shows a
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Fig. 4 20 Hz imaging of zebrafish forebrain. a Maximum intensity projection of voxelwise F (grayscale) and AF/F (magenta) along the dorsal-ventral axis of
the larval zebrafish forebrain (5 dpf) with pan-neuronal GCaMP6f expression (HuC:GCaMP6f) acquired at 20 stacks/s at 10x magnification (Supplementary
Movie 2). Only voxels with greater than 15% AF/F are colored. b Raster plot of AF/F within 629 manually segmented neuron ROIs over a 4 min period.
Shown is an excerpt from a 20 min recording. ROls were drawn smaller than the size of each cell in an attempt to minimize the effects of motion artifacts
and cross-talk between nearby neurons. € Neurons exhibit a range of pairwise correlations in the AF signal. Correlations were computed with highpass-
filtered neuron traces (1.0 Hz cutoff) in order to focus on relationships revealed by high sampling rate. Neurons are ordered by axial depth in the forebrain
(dorsal to ventral). d Power spectra of the AF signals for a subset of neurons show that power diminishes gradually with increasing frequency. These and
many other neurons exhibit peaks in their spectra at 2.5 Hz and 7.5 Hz that correspond with the larval zebrafish heart rhythm3°. e Bandstop filters were
applied to remove the heartbeat frequency bands (see Methods section) before recomputing correlations. Shown is the matrix of differences in correlation
values obtained before and after heartbeat artifact removal (corraper — COfperore). Thus this matrix highlights spurious correlations due to heartbeat that

could contaminate a naive analysis of neuronal activity

commonplace analysis of neuronal timeseries, a matrix of pair-
wise correlations, computed over the entire 20-min recording.
Before computing correlations, neuron traces were highpass fil-
tered with a cutoff of 1.0Hz in order to emphasize corre-
spondences over short timescales.

Genetically encoded calcium indicators have long decay times,
on the order of 400 ms for GCaMP6f, calling into question
whether additional information is gained by increasing the
sampling rate. However since the indicator rise times are much
shorter (about 50 ms for GCaMP6f') we hypothesized that higher
sampling rates will be informative. In order to estimate the
information gain from sampling at 20 Hz we computed the power
spectral density (PSD) of the AF signal in each neuron. PSDs for
15 neurons are plotted in Fig. 4d. Indeed we found that power
diminishes only gradually up to the maximum frequency (10 Hz)
permitted by the Nyquist sampling theorem. Moreover we noted
peaks at 2.5Hz and 7.5Hz in the spectra of many individual
neurons. These peaks underlie correlations much larger in
magnitude than neighboring frequency bands of the signal
(Supplementary Fig. 5a), and the size of the 2.5 Hz peak is highly
correlated with the size of the 5.0 Hz and 7.5 Hz peaks relative to
other frequency pairs (Supplementary Fig. 5b). These attributes
suggest that the peaks are frequency components of a signal with
a fundamental frequency of 2.5 Hz, and that this signal is mixed
into the signals of many neurons. The frequencies of the peaks lie
within the range of frequencies found in a fluorescence-based
motion-tracking study of the fish’s beating heart3°. Therefore we
suspected that the peaks reflect motion artifacts induced by
the beating heart of the fish. In order to explore this further we
imaged a fish before and after administering a high dose of
anesthetic (tricaine) to stop the fish’s heart. In this fish we imaged
a single plane at a higher sampling rate and observed peaks at a
fundamental frequency of 1.8Hz and the 3.6Hz harmonic
(Supplementary Fig. 6a). After administering anesthetic these
peaks were fully attenuated (Supplementary Fig. 6b), strongly
suggesting that this is a physiological artifact related to the
heartbeat. Moreover the artifact is induced by specimen motion;
pixel displacements found through image registration also exhibit
peaks at 1.8 Hz and at higher harmonics (Supplementary Fig. 6¢).

Such heartbeat artifacts could bias the results of analyses of
neuronal dynamics, just as motion artifacts have been found to
bias the results of human brain imaging studies®®. In order to
determine the effect of this artifact on the pairwise correlation
measure, we first removed the artifact by applying bandstop filters
to remove the heartbeat frequency bands from each neuronal
signal. We then computed new pairwise correlations, and for each
pair of neurons we recorded the change in correlation magnitude
pre vs. post artifact removal (Fig. 4e). This analysis suggests that
correlation values were overestimated or underestimated by as
much as 0.1, highlighting the danger that the beating heart could
induce spurious correlations into neuronal network analyses. We
conclude that many future zebrafish neuroscience studies would

benefit from adopting sampling rates of at least 15Hz (the
Nyquist frequency of the highest observed frequency component,
7.5Hz) so that the artifact can be filtered out (as we
demonstrated) or else removed by regression of pixel intensity
against the motion vectors found by image registration. The latter
approach would be more robust to variation in the heart rate of
the fish during recording.

Discussion

OCPI is similar in principle to SPIM#, one of the earliest LSFM
implementations, but there are crucial differences. OCPI was the
first implementation to achieve volumetric imaging by translating
the optics instead of the sample®. OCPI also introduced a 30-45° tilt
in the optics to facilitate observation of extended horizontal sam-
ples, such as neuronal tissue slices or in vivo preparations, while
minimizing the path length of both the illumination and emission
light through the sample. Finally, from the outset OCPI reduced
weight and the geometric hindrances that would arise from having
two objective lenses by generating the light sheet using custom
optics. Note that the speeds of these techniques are more similar
than they seem; most are camera-limited and the variation in
demonstrated rates arises from differing choices in camera ROI size.
However, OCPI was historically unable to achieve the volumetric
scanning speeds demonstrated by several more recent LSFM tech-
niques (1.1 mms~!, 20mms~!, 44 mms~1, 2mms~}, 2mms~1,
32mms- 1, 53 mms1)101517.23,2627,32.

Our results demonstrate that improvements in hardware and
software design allow OCPI microscopy to meet or exceed these
scanning rates (28 mms~! demonstrated) and also to achieve
commensurate imaging rates provided that a sufficient number of
cameras are used in a DPI configuration. Considering all tradeoffs
(discussed below), we anticipate that fast OCPI will be a
technique-of-choice for many experiments requiring maximal
imaging speed of large volumes.

When compared to other fast direct-imaging LSFM variants,
OCPI avoids aberrations caused by imaging outside of the native
focal plane of the objective!®?’. While some oblique imaging
methods®2223:28 avoid these aberrations, they are not photon-
efficient: only a fraction of light collected by the objective reaches
the image sensor. Efficiency is of central importance for neuro-
physiology as the field transitions from calcium to voltage indi-
cators?3, which demand a much higher sampling rate and thus
more imaging repetitions without inducing phototoxicity®’. The
highest efficiency demonstrated in an aberration-free oblique
configuration is 21%28. Recently an efficiency of 73% was
achieved in an oblique configuration8 at the expense of aberra-
tions: diffraction-limited imaging was confined to a 70 x 20 x
100 um region. OCPI utilizes all light collected by the objective
lens and makes no compromise with regard to aberrations.
Oblique systems also require a relatively high-NA objective, but
moderate NAs are often desirable with LSFM: increasing NA
improves light efficiency but also worsens aberrations due to
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refractive index mismatches between tissue and media. Higher
NA also implies reduced depth-of-field, which demands a thinner
light sheet with a shorter Rayleigh range, corresponding with a
smaller field-of-view*. Thus the optimal choice of detection NA is
application-specific. We find that NAs of 0.3-0.5 trade favorably
between efficiency, resolution, and field-of-view when imaging
large numbers of neurons in living specimens. In cases where a
different tradeoff is desirable our design allows for easy swapping
of standard objective lenses. Future work could mitigate the field-
of-view tradeoff by incorporating a propagation-invariant light
sheet3%:40,

The original SPIM implementation*, perhaps the closest rela-
tive to OCPI microscopy, shares the optical advantages of OCPI
but scans by translating the sample rather than the optics. This is
a crucial difference at high scanning rates: OCPI avoids jostling
the sample, and it’s possible to optimize the response of the scan
system without regard for the mass of the sample being imaged.
However OCPI scanning may still disturb delicate specimens, and
thus may be incompatible with some mounting procedures*!.
Our rigid mounting procedure (see Methods section) limits access
to the fish’s body, but has the advantage that we need not paralyze
the fish; we avoid swim motion artifacts because the fish rarely
attempts to swim.

OCPI and SPIM also have the unique advantage that the size of
the imaged volume is limited only by the range of the linear
actuator, whereas other techniques are limited to a volume set by
the field of view of the objective. This advantage is currently
underutilized because the opacity of samples limits imaging
depth. A two-photon light sheet® improves imaging depth, but in
practice 2P LSFM does not offer the same depth advantage as
point-scanning 2P. This is because with 2P LSFM, as with 1P
LSEM, scattered emission cannot be attributed to a precise
location in the sample2. Greater depth may also be achieved by
incorporating structured illumination*3#* or multi-view ima-
ging® into future OCPI microscopes, but these solutions decrease
imaging rate. Alternatively one could modify tissues to match the
refractive index of the media (i.e., reduce scattering), but as of
now this is only possible in fixed tissue?®-48. Another promising
direction for future work would be to alter the OCPI scan
direction to be parallel to the sample surface, avoiding scanning
deep in the tissue.

Outside of LSFM, computational techniques such as light field
microscopy offer extremely fast 3D image acquisition, but the
computational complexity of image deconvolution can be pro-
hibitive, especially for lengthy imaging sessions. Relative to light
field microscopy, direct imaging methods such as OCPI also
exhibit a more favorable tradeoff between resolution and imaging
rate, and they permit real-time analysis of imaging data%?->0.

Our scanning optimizations can accelerate OCPI, as well as any
microscope that relies on mechanical scanning. In particular the
optimizations will apply to LSFM variants that scan the light
sheet using a galvanometer while synchronously scanning the
detection objective’l. The only caveat with this application is that
synchronizing the illumination and detection scans may be
challenging at high speeds. Galvo-scanning the light sheet also
requires larger illumination optics, meaning that larger specimens
(such as a behaving mouse) cannot fit under the microscope.
OCPT’s miniaturized static illumination path is better suited for
these applications.

Our scan system was tuned manually in an attempt to simul-
taneously satisfy multiple scan rates, ranges, and amplitudes, and
we conservatively utilized only a fraction of its 100 N maximum
force output (Supplementary Fig. 3). In the future an automated
procedure will allow one to choose optimal parameters for each
recording session and to more easily swap in an objective lens
with a different mass. The procedure should optimize the control

system so that the piezo response is closer to an ideal triangle
wave. A triangle wave is optimal because image slices can be
distributed uniformly in both space and time. When images
are not spaced uniformly in time, as diagrammed in Fig. 2c, the
camera spends a fraction of each stack idle and thus its maximum
frame rate is not fully utilized. The achievable frame rate of the
camera depends on the shortest interval between frames, 0.8 ms
in Fig. 2c. When compared to the 1.25 ms interval that would be
possible with a true triangle wave it is apparent that the camera
spent 37% of the time idle. Future optimizations will prioritize
reducing this idle time.

DPI addresses the bottleneck resulting from limits in camera
frame rate, providing an increase in frame rate proportional to
the number of cameras used. DPI can be integrated into any
LSFM design (and more generally any widefield plane-to-plane
imaging technique) because only the components downstream of
the tube lens need to be modified. Techniques that do not image a
plane to a plane may also benefit from DPI. For instance, light
field microscopy could benefit by combining multiple camera
sensors into one large virtual sensor to improve resolution and/or
imaging rate. Parallel LSFM>2 (pSPIM) also combines multiple
cameras to speed up imaging, but this technique is less scaleable
and less general: pSPIM parallelizes image acquisition across a
limited number of axially-distributed planes and requires
deconvolution to recover focused images. Moreover pSPIM
requires thin samples imaged with a tilt large enough to provide
disjoint beam/sample intersections. An alternative approach®? is
to use burst imaging cameras that operate at much higher frame
rates than the scientific CMOS cameras commonly used for
LSFM. Unfortunately these cameras exhibit much greater noise
and less efficiency (23 e~ vs. 1.4 e~ rms noise and 50% vs. 82%
efficiency when comparing PCO.Edge vs. PCO.dimax cameras).
Thus the faster camera requires ~26x more light to achieve the
same signal-to-noise ratio as the scientific camera. This ineffi-
ciency becomes prohibitive for longer recordings in demanding
applications such as voltage imaging. Furthermore these cameras
are limited to brief imaging sessions because the onboard camera
memory fills faster than the images can be transferred to a
computer.

Another artifact that can bias analyses is the striping artifact
common to most LSFM implementations. Resonant scanning of
the light sheet prevents the artifact4, but newer approaches using
static optics®>°® are more compatible with the miniature illumi-
nation path of OCPI and will be integrated in future work.

Fast mechanical scanning and DPI establish a solid foundation
for studying fast dynamic processes—such as signal transmission
between neurons—at scale. We also demonstrated that a high
sampling rate allows one to remove physiological artifacts such as
heartbeat that could bias fluorescence timeseries analyses. We
expect that heartbeat artifact removal will become a standard
preprocessing step when analyzing zebrafish imaging timeseries.
In combination with advances in fluorescent indicators and in
large-scale image analysis, these improvements to microscope
hardware bring us closer to a more comprehensive understanding
of brain-wide activity.

Methods

Calculation of image quality in non-native focal planes. See Supplementary
Note 1.

Theoretical resolution calculations. Resolution expectations shown in Fig. 1a, ¢
were calculated based on established Gaussian approximations of the PSF/. The
theoretical axial light sheet PSF in Fig. 1c was found by multiplying two such
Gaussian approximations: the axial detection PSF (set by the detection NA) and the
illumination PSF at the waist of the light sheet (set by the illumination NA).
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PSF fitting. The empirical PSF shown in Fig. 1c was found by first embedding
multi-color fluorescent beads (0.2 pum diameter) in agarose gel and acquiring an
image stack at 0.1 um axial spacing (imaged in the 500 nm to 550 nm emission
band). A custom algorithm then found bead locations based on local maxima

in image intensity. Image ROIs around each maximum were extracted and a
Gaussian function was fit to the axial intensity distribution. The axial offset of the
Gaussian was a free parameter, allowing for sub-voxel estimation of the bead
location. Fits more than 5x larger than the diffraction limit were assumed to be
clusters/clumps of beads and excluded from analysis. Using only the remaining fits,
the median PSF size was calculated within a 10 um-wide sliding window (slid along
the direction of light sheet propagation). The location of the waist of the light sheet
was inferred as the offset where the windowed median was minimized. The 20 bead
ROIs nearest to the waist were aligned using the fitted center coordinates,
resampled at 0.1 um isotropic spacing, and averaged to generate the image in
Fig. 1c. The curve to the right of the figure is the measured axial intensity dis-
tribution of this average bead.

Off-the-shelf components. A laser system (Spectral LMM 5) output a collimated
gaussian beam via a pigtailed fiber-optic collimator (1 mm to 3.3 mm diameter,
variable via an attached iris). This beam was passed first through an achromatic
doublet lens (either Edmund Optics 45-262 or 45-207) and then a cylindrical lens
(see next section), and finally a coverslip before reaching the sample. The lenses
were sealed inside a housing so that water could not enter into the lens space when
submersed in the sample dish. The alignment of the light sheet was adjusted with a
set of small stages (Elliot Scientific MDE266 and MDE269). Either the Olympus
UMPLFLN10X/W, UMPLFLN20X/W, or LUMPLFLN40X/W objective collected
emission from the sample. The light sheet and objective were mounted 60° from
the horizontal axis and scanned together (Piezosystem Jena NanoSX800 piezo-
electric positioner, 30DV300 amplifier). A stationary broadband mirror reflected
the output from the objective horizontally to a 200 mm tube lens (Thorlabs
ITL200) placed at the 1f distance from the objective’s back focal plane. The KEM
(Thorlabs MRAK25-G01) was placed in the image plane behind the tube lens, and
sometimes swapped with a 50/50 beamsplitter (Thorlabs BSW10R) for alignment
purposes (see below). Two telecentric relay lenses (Edmund Optics 62-902) relayed
the divided image to the cameras (PCO Edge 4.2). Analog and digital I/O to the
positioner, cameras, and laser was managed by a PCI data acquisition device
(National Instruments PCI-6259) with a single sample clock shared across all
signals. A PC with two RAID arrays (10 hard drives each) streamed the output of
the cameras to disk (up to 1 GBs~! per camera at maximum frame rate). The
sample was positioned on a physiology breadboard (Thorlabs PHYS24BB)
mounted to a lab jack (Newport 281) and XY stage (Scientifica).

Custom components. The only custom optics were the small cylindrical lenses
used to form the light sheet. Two different lens configurations were used to focus
the light sheet either to a 5.3 um waist (roughly matching depth-of-field of the NA
0.3 objective) or to a 2 um waist (roughly matching depth-of-field of the NA 0.5
objective). The thicker sheet was formed by pairing Edmund Optics 45-262 with a
custom cylinder lens (Tower Optical) with focal length of —6.25 mm and diameter
of 3 mm. The thinner sheet was formed by pairing Edmund Optics 45-207 with
Edmund Optics 48-373 (diameter of 48-373 was customized to 5 mm). Full lens
specifications are included in Supplementary Note 2. Custom mechanical com-
ponents were designed collaboratively and refined iteratively in collaboration with
the Washington University Medical School Machine Shop. Hardware for the scan
system was designed to minimize weight. A parts list, schematics, and labeled
photos are also included in Supplementary Note 2. We found that the small
dovetail stages used to align the lightsheet exhibited a few microns of motion in
their joints when scanning at high rates. This motion defocused the image and
required correction by modifying the dovetail slides to add a locking screw. A
magnetic swappable Thorlabs filter cube insert (Thorlabs DFMT1) was modified to
hold the knife-edged prism mirror. The 1” apertures of the filter cube itself
(Thorlabs DFM) were widened to 1.1” with a standard boring tool to prevent
vignetting of the relayed image.

Calibration of piezo closed-loop controller. Initial calibration of the piezo control
system (NanoSX800 with 30DV300 amplifier) was performed by the manufacturer
(Piezosystem Jena). We requested that they optimize the control system for the
highest achievable frequency and amplitude of operation with a triangle wave
command, 400 g load, and a translation angle of 30° from vertical. They tuned PID
parameters as follows: k, = —0.3, k; = 50, k;= 0.1. The load used in the experi-
ments detailed in this article was smaller (264 g), so we further refined the cali-
bration using the iterative procedure described in the product manual. One
parameter at a time was manually adjusted by serial command, and the response of
the system was measured. If a parameter update drove the system into oscillations,
then the system was immediately switched to open-loop mode and the parameters
reset. A detailed PID tuning procedure is available in the product manual. The final
PID parameters after this secondary tuning were: k, = —0.37, k; =50, k;=0.11.

Generation of smoothed triangle wave commands. A triangle wave with the
desired frequency, amplitude, and offset was lowpass filtered with a cutoff of 3.25x

the triangle wave frequency (32.5 Hz for a 10 Hz triangle wave). This resulted in
erosion of the triangle peaks and a reduction in the range of the command. In order
to compensate for this reduction the original triangle wave was expanded and
filtered again iteratively until the filtered wave matched the desired range.

Scan range tuning. The piezo command waveform was adjusted iteratively until
the maximum and minimum values of the piezo cycle (as measured by its built-in
sensor) matched those requested by the user. The initial guess for the command
range was set to 10% smaller than the target range to guard against potential
damage from overshoot. The piezo was then operated with this repeated waveform
for a 20 s initialization period before measuring the sensor response for a cycle. The
lower and upper limits were then updated independently based on sensor feedback
with the same procedure: error was calculated as (target-measured), a value equal
to 90% of this error was added to the limit used to generate the command signal,
and a new command signal was generated. This was continued until both the upper
and lower limits matched the user’s request within a 0.1 um margin of error. These
stopping criteria were met within 5 iterations or less.

Pulsed illumination. Since the cameras operate with a rolling shutter, only the
latter part of the exposure interval corresponded to simultaneous (global)
exposure of all CMOS sensor lines. Laser pulses were timed to occur only within
this global interval in order to prevent image information from bleeding into
adjacent slices of the stack. When the camera is operated at maximum frame rate
the duration of the global shutter period is only one line time (9.76 us for PCO.
Edge 4.2). At sub-maximal frame rates the global period is equal to difference
between the chosen exposure time and the shortest possible exposure time that
the camera can sustain. Therefore one can prevent bleeding of image informa-
tion into adjacent slices of a stack during dynamic recordings by using brief
illumination pulses aligned with the end of each frame and operating the camera
slightly below its maximum frame rate. We pulsed the illumination laser only
during the last 5% of the exposure interval, which required that the camera
operate 5% slower than its maximal frame rate. During the imaging session
shown in Fig. 4 the exposure time was 580 ps and the excitation pulse duration
was 30 ps. Peak laser power was set to 18 mW for an average sustained laser
power of 0.864 mW. Detailed diagrams of the camera’s timing system can be
found in the PCO.Edge 4.2 camera manual online.

Image timing calibration. After sensor-based timing of images proved inadequate
we adopted an approach utilizing the camera to perform further calibration of
the timing of each image of the stack separately so that the images corresponded to
the intended planes of the sample. First a ground-truth image stack of 0.2 um
fluorescent beads was acquired at a very slow (0.1 Hz) scan rate so that factors such
as dynamic forces and lag in the sensor circuit did not affect the appearance of
images. Then, a fast dynamic recording was performed in which each image in
both the forward and reverse stacks was acquired with various timing offsets
relative to the sensor-based timing. The search space of timing offsets ranged from
0 us to 1.2 ps at 50 ps intervals. Each dynamic slice image was then compared with
the corresponding ground-truth static image and scored by similarity. The timing
offset that produced the highest similarity score for a slice was chosen as the
corrected timing for that slice. We noticed that fast dynamic operation produces
not only an axial shift in each slice but also a lateral shift of less than 2 um that
varied by slice (likely due to compression and flexion of components). Therefore in
order to calculate the similarity score we first performed 2D rigid image registra-
tion to shift the trial image laterally into alignment with the ground-truth image.
After alignment the similarity score was calculated as the sum of squared differ-
ences between each pixel in the trial image and the ground-truth image normalized
by the sum of squared intensity of pixels in the overlap region between images.
Both the optimal temporal offset and the optimal lateral shift were recorded for
each slice in the forward and reverse stack and used to acquire and align images of
the zebrafish specimen. When using DPI, only the camera receiving the unreflected
image was used for this alignment procedure.

Interpolation of bidirectional images. Bidirectional image acquisition produces
image slices that are not uniformly spaced in time. A uniform sampling rate was
simulated by interpolating new slices from each forward and back slice pair in the
timeseries. Each interpolated timepoint was midway between the sample times, so
each interpolated pixel intensity was simply the mean of the corresponding
intensities of the two slices. This method also emulates simultaneous sampling of
each image slice in the stack.

KEM alignment with focal plane for DPI. The camera receiving the unreflected
image was aligned first using a procedure common to any OCPI microscope. The
knife-edged mirror was installed in a modified magnetic filter cube insert so that it
could be swapped easily with a 50/50 dichroic mirror (see image stitching method).
The filter cube was incorporated into a cage system to maintain its alignment with
the tube lens. This knife-edged mirror insert was placed in the cube and the
distance between the tube lens and the cube was set by translating the cube along
the cage axis and observing a dense bead sample on the camera receiving the
unreflected image. The cube was approximately aligned when the image of the bead
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sample on this camera was in focus and centered on the aperture of the cube (this
also required lateral repositioning of the camera). A finer alignment of the cube was
achieved by observing closely on both cameras the strip of the image corresponding
to the knife edge of the mirror: the farther the edge of the mirror is from the relay
image plane the larger the region of the image that is redundantly imaged on both
cameras. Alignment was complete when the width of the redundant image region
was minimized (Fig. 3).

Camera alignment for DPI. Since a row of pixels on the camera sensor is only
6.5 um wide, slight rotations of the relative image planes of the two cameras can
result in misalignment of the knife-edge line with the rows of the camera.
Therefore in addition to the focal alignment above we also adjusted the relative
rotations of the two cameras until the imaged knife edge line was horizontal. Since
the KEM was mounted in a highly-repeatable kinematic insert, it was only
necessary to perform this angular adjustment once.

The following procedure was used whenever the vertical size of the camera’s
active pixel region was changed: With the KEM installed, the active pixel region of
both cameras was set as desired (settings on both cameras must match). Both
cameras were activated to stream live updates of an image of a dense fluorescent
bead sample. The camera receiving the unreflected image was translated up so that
the KEM edge in its live image feed corresponded with the bottom edge of the pixel
region. The other camera was likewise translated laterally so that the KEM edge
aligned with the bottom edge of the pixel region. Since the image is reflected this
edge corresponds to the top side of the unreflected image. For this reason all
reflected images were flipped in software before performing the alignment steps
described in the next section.

Stitching DPI images. After aligning the cameras and setting the desired pixel
region, both cameras recorded an image of the beads simultaneously. Then the
KEM was swapped with a 50:50 plate beamsplitter (Thorlabs BSW10R) mounted in
a kinematic filter cube insert, the pixel region of the camera receiving the reflected
image was set to full size (2060 x 2040 pixels), and another image was recorded. It
was critical that the bead sample remained stationary during the interim between
these image snapshots. The full-size image spans the region where the two smaller
images meet, and thus contains the information needed to align and stitch the
smaller images. The bead sample was then replaced with the sample of interest, and
the full imaging session was completed.

After all data were recorded, an image transformation was found to align the
smaller bead images, and this same transformation was applied offline to stitch all
images recorded in the zebrafish specimen. This transformation was found with the
following 3-step procedure. First, a rigid 2D transform was found to align the
smaller reflected image with the full image. This transformation was minimal in
magnitude because both images were acquired with the same camera and centered
on the same region of space (only the reflective surface was different). Second, a 2D
affine transformation was found to align the full image with the smaller reflected
image. A full affine transformation was allowed because subtle differences in
alignment or manufacturing of the cameras and relay lenses cannot be captured by
a rigid transform. The non-rigid component of the transformation was small (less
than 1% scaling factor) but important to maintain alignment of beads throughout
the image. In the third and final step the two transforms were composed into one
transform (rigid first, affine second). This composite transform was applied to each
reflected image of the zebrafish specimen to align it with the unreflected image.
Before combining the two images the camera’s constant bias intensity was
subtracted from each pixel (by design the black level is not zero but a constant
value).

Zebrafish imaging. HuC:GCaMP6f and HuC:GCaMP6s zebrafish larvae>8 were
crossed with Casper larvae®® for two generations to obtain transparent fluor-
escent larvae for imaging. Embryos were raised at 28.5C, screened for green
fluorescence at 3 dpf, and imaged at 5 dpf. All zebrafish imaging was performed
with the x10 NA 0.3 imaging objective and 5.3 um-thick light sheet. The larva
was transferred by pipette into a drop of 1.5% low-melting-point agarose gel
while the gel was still warm and in a liquid state. A syringe was used to suck the
larva tail-first into a segment of Fluorinated Ethylene Propylene (FEP) tubing,
and the gel was allowed to solidify. FEP was chosen because its refractive index
closely matches that of water, and therefore aberrations are minimized when
imaging through the material. The tubing segment was then mounted in a
custom water-filled chamber at an angle of 60° from horizontal so that the
rostrocaudal axis aligned with the light sheet. Excess tubing in front of and above
the fish’s head was cut away with a razor blade. All protocols were approved by
the Institutional Animal Care and Use Committee at the Washington University
School of Medicine.

Stripe removal. As is common with LSFM, we observed stripes in the zebrafish
images due to scattering, absorption, and interference as the light sheet propagated
through the sample. We applied a destriping filter to attenuate these stripes as a
preprocessing step for the images in Figs. 3e and 4a, and Supplementary Movies 1
and 2. Each image slice was first log-transformed to account for the multiplicative
(rather than additive) nature of the stripes. Next the slice was Fourier transformed,

and the magnitude of bins corresponding with the angle of the stripes was atte-
nuated until the stripes were no longer visible when the image was reconstructed
with an inverse Fourier transform. We did not apply the filter when performing
timeseries analyses due to concern that the filter could introduce subtle artifacts.
Most of the stripes observed were static and therefore could not be expected to
influence the AF/F calculation. Brain regions exhibiting dynamic stripe patterns
(for example regions behind the motile cilia of the olfactory rosettes) were not
analyzed.

Image registration. The zebrafish, embedded in agarose and FEP tubing, moved
little during the recording. However image registration was required to compensate
for slow drift of the specimen. A single image stack was chosen as a fixed reference
stack and each of the other stacks in the timeseries was registered to this stack. A
custom algorithm found the simple shift (translation) that maximized the overlap
between the fixed and moving stack.

Extraction of neuronal calcium traces. Neuron ROIs were selected by hand using
a graphical software tool. A single 2D rectangular region was marked for each
neuron in the plane that best appeared to capture the neuron’s activity. As expected
with LSFM, motion of cilia and blood cells in the fish’s body induces time-varying
stripe artifacts along the light sheet propagation axis in some image regions. We
avoided segmenting neurons in these regions. The outer edges of the cells were
excluded from ROIs in order to minimize crosstalk in the calcium traces of nearby
neurons and to reduce the effect of motion artifacts. For each timepoint of each
ROI the raw fluorescence value was calculated as the sum of voxel intensities within
the ROIL. AF/F was calculated by subtracting baseline fluorescence from this raw
value and dividing the result by baseline. Baseline for each timepoint was calculated
as the moving average of raw ROI fluorescence during the 60 s interval centered on
the timepoint (the first and last 30 s of the recording were not analyzed). A dif-
ferent procedure was used for the analysis in Supplementary Fig. 6 (see “Anesthesia
experiments” below).

Anesthesia experiments. Two 1-min-long calcium imaging sessions were per-
formed in a single plane of the larval zebrafish forebrain at 100 Hz frame rate. A
high dose (1.3 gL™!) of tricaine was administered after the first recording session,
and a second recording of the same plane was taken 15 min later. PSDs were
computed from the time-varying intensity within each image ROI, and the plots in
Supplementary Fig. 6 show averages across all ROIs. All ROIs were 5um square
regions, roughly matching the size of a neuron soma. In order to avoid any bias due
to hand-selection of ROISs, all possible ROIs within a 130 um square region were
included in the analysis: PSDs were computed in a sliding window.

Power spectral density and filtering of neuronal calcium traces. All PSDs were
computed with the Welch method with a rectangular window function on baseline-
subtracted fluorescence traces. When filtering the signals to remove heartbeat
frequency bands a Butterworth filter of order 5 was applied for each stopband. The
filters were applied in both the forward and reverse directions in order to
preserve phase.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during this study are available from the
corresponding author on reasonable request.

Code availability

We wrote several software modules to accomplish microscope control, PID adjustment,
image timing calibration, image stitching, PSF measurement, temporal interpolation, and
manual cell segmentation. Web links to these modules on Github are collected here:
https://github.com/HolyLab/FastScanningAndDPI.
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