
ARTICLE

Dome patterns in pelagic size spectra reveal strong
trophic cascades
Axel G. Rossberg 1,2,3*, Ursula Gaedke4 & Pavel Kratina 1*

In ecological communities, especially the pelagic zones of aquatic ecosystems, certain body-

size ranges are often over-represented compared to others. Community size spectra, the

distributions of community biomass over the logarithmic body-mass axis, tend to exhibit

regularly spaced local maxima, called “domes”, separated by steep troughs. Contrasting

established theory, we explain these dome patterns as manifestations of top-down trophic

cascades along aquatic food chains. Compiling high quality size-spectrum data and com-

paring these with a size-spectrum model introduced in this study, we test this theory and

develop a detailed picture of the mechanisms by which bottom-up and top-down effects

interact to generate dome patterns. Results imply that strong top-down trophic cascades are

common in freshwater communities, much more than hitherto demonstrated, and may arise

in nutrient rich marine systems as well. Transferring insights from the general theory of non-

linear pattern formation to domes patterns, we provide new interpretations of past lake-

manipulation experiments.
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S ize spectra and food chains belong to the many concepts
ecologists have invoked in order to understand structure
and dynamics of complex ecological communities. The

common conceptualisation of communities as simple food
chains1–4 formed by groups of organisms assigned to discrete
trophic levels predicts existence of top-down trophic cascades2–7,
where pressures on top predators propagate to lower trophic
levels, leading to alternating increases and decreases of biomass
along the food chain. Such cascades are well documented8. Their
strengths, however, vary considerably among study systems6.
Differences in nutrient supply might contribute to this variation,
in particular in pelagic ecosystems, where nutrients are known to
play a crucial ecological role. This idea, however, has remained
controversial. A review from 2010 presented evidence in support
of three competing hypotheses9: that pelagic cascades are stron-
gest at the highest nutrient concentrations, that they are strongest
at intermediate nutrient concentrations, and that cascade strength
is largely independent of nutrient availability and primary pro-
duction. More recent reviews10,11 do not see nutrient supply
amongst the factors affecting cascade strengths. This is surprising,
since increasingly sophisticated food-chain models have predicted
stronger cascades for more productive systems4,12,13. Does this
discrepancy indicate inherent limitations of food-chain theory?

An alternative way of looking at the structure of an ecological
community is its size spectrum, the distribution of community
biomass over the logarithmic body size axis14–18, which can span
a factor >1014 in body mass (Fig. 1a). Size-spectrum theory
underlies the use of size-based indicators in status assessments of
aquatic ecosystems19. In pelagic size spectra one often observes
distinct body-size ranges of high biomass density20, known as
domes21, and depleted troughs between domes (Fig. 1a, b). The
question what causes these domes remains subject of ongoing
speculation22–26, but the most common explanation invoked in
recent empirical literature27–29 and reviews15,17 implies that the
domes represent subsequent members of the aquatic food
chain21. The dome structure arises through a bottom-up cascade,
where the position and height of each dome is controlled by that
to its left on the size axis30,31. For the left-most dome, another
explanation would be required.

Here, we provide evidence for an alternative interpretation of
domes, which, by combining ideas from food-chain and size-
spectrum theory, resolves open questions pertinent to both. We
demonstrate that domes are manifestations of top-down trophic
cascades, enhanced by eutrophication (Fig. 1c). From the size-
spectrum perspective, the result is a pronounced periodic mod-
ulation of the density of community biomass (large domes, deep
troughs) along the logarithmic body size axis that becomes
weaker with lower nutrient availability32 (smaller domes and
shallower troughs) and, in the oligotrophic open ocean, might
disappear entirely14,33 (Fig. 1a, b). At intermediate to high
nutrient concentrations, however, non-linear effects can lead to
deviations from classical food-chain theory in how size-spectra
respond to pressures.

Self-organised periodic (i.e., regularly spaced) patterns, such as
stripe patterns on animal skins, are a common natural phe-
nomenon. It has long been speculated that such structures can
arise not only in physical space but also in abstract spaces, for
example, when competition generates patterns in ecological trait
spaces34–41. However, any attempt to explain periodic patterns in
nature must be mindful that general mathematical principles
alone already predict periodic patterns as a common phenom-
enon42. Indeed, size-spectrum models can generate modulations
through a variety of mechanisms22–25,43. Echoing a similar con-
undrum surrounding regularities in planetary orbits44, determi-
nation of how domes arise in nature therefore requires more
detailed agreement between data and model than the mere fact

that modulations are found. Insufficient demonstration of such
agreement for existing process-based models is the reason why
the dome pattern remains enigmatic. The need for detailed
comparisons also limits what can be learned from minimal food-
chain4,13 or size-spectrum22,45 models, despite their important
role in illuminating basic mechanisms. Our comparison of model
and data therefore considers specific patterns in the responses of
size spectra and domes to nutrient enrichment.

Our working model, the non-linear Species Size Spectrum
Model (SSSM), is designed to incorporate crucial elements of
ecological realism while preserving mathematical simplicity and
computational efficiency. This permits us to overcome limitations
of earlier modelling approaches16–18. Using this model, we
identify the mechanisms controlling the dependence of dome
structure on nutrients, thus permitting us to delineate the con-
ditions required for these patterns to arise.

Results and Discussion
The non-linear SSSM. We found that a generalisation of the
linear SSSM25 to a full, non-linear model is capable of reprodu-
cing the observed phenomenology of domes (Fig. 1). The SSSM
belongs to a family of similar models24,46,47 going back to the Fish
Community Size-Resolved Model48–50. Structure and motivation
of the SSSM are best understood in the wider context of size-
spectrum theory16.

In the simplest dynamic size-spectrum models, individuals
interacting in a community are distinguished only by their body
masses22,23,45. New individuals are added at a constant rate or
abundance at the lower end of the modelled size range.
Individuals then grow by feeding on each other (or on small
planktonic organisms that are not explicitly modelled) and
converting the biomass of their prey into their own—at some
given efficiency. These feeding interactions lead to corresponding
predation mortality. The strength of feeding interactions is
controlled by a predator–prey mass-ratio window function; it
depends only on the body masses of predator and prey. Life-
history parameters and physiological rates scale allometrically
with body size. The resulting size-spectrum dynamics is described
by a flux-divergence equation for the density of individuals along
the size axis, known as the McKendrick—von Foerster
Equation22,51.

More advanced models16,48 distinguish indiviudals not only by
body mass but also by species identity, permitting these models to
give a full account of the reproductive cycle. Each species has an
associated maturation body mass, above which indiviuals invest a
large proportion of food intake into reproduction rather than
ontogenetic growth. The reproductive investment determines the
rate at which individuals of each species are added at the lower
end of the modelled size range of that species. In this model class,
community dynamics are described by a system of coupled
McKendrick—von Foerster Equations, one for each species. Any
species’ population biomass can grow or decline, and species
experiencing low food availability and high predation mortality
throughout their life cycles can go extinct.

Indeed, when modelling feeding interactions as depending only
on the body masses of predators and prey, very few species
coexist in these models52. A natural way to overcome this
limitation is to acknowledge that, while body mass is an
important trait affecting feeding interactions, the combined
influence of all other traits can be even stronger53,54. In models
this is implemented by either equipping species with abstract
secondary traits54,55 (usually assigned at random) that affect the
strength of feeding interactions56,57, or by directly multiplying the
size-dependent interaction strength with a non-negative factor
sampled at random for each species pair48,50. Both approaches
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lead to food-web models in which species of similar size can have
very different prey and predators, implying reduced competition
and a lower likelihood of competitive exclusion. While in these
models many species can coexist, the original simplicity of
the size-spectrum approach is lost. Species-rich models of this
type become computationally expensive.

An important observation made studying such models is that
the community size spectrum, obtained by adding the size spectra
of all modelled species, is dominated for any given size class by
species with maturation body sizes close to this size class48—
consistent with analytic theory25,51 and field data58,59. Structure
and dynamics of community size spectra over large size ranges
are therefore determined predominantly by variations in the
population biomasses of species of different sizes, rather than by
variations in intraspecific size structure59,60.

The SSSM builds on this observation. Using an analytic
technique called quasi-neutral approximation61 (QNA), the
species-level McKendrick—von Foerster Equations are replaced
by a system of coupled ordinary differential equations for the
dynamics of the species’ population biomasses. The QNA is a
powerful technique that permits us to retain implicitly descrip-
tions of individual-level processes. In particular, the SSSM
captures the Type II functional responses of individuals to food

availability from the underlying size-structured food-web
model48, and so the possibility of consumer satiation.

Because the SSSM aims to describe species-rich communities in
a computationally efficient way, species are thought of as being
grouped into narrow maturation body mass classes, revealing the
distribution of community biomass over the logarithmic matura-
tion body mass axis: the species size spectrum. The SSSM
primarily models the dynamics of this species size spectrum.
From this, the community size spectrum is reconstructed
following the QNA methodology. However, as a results of
lumping species into maturation body mass classes, their
differentiation by secondary traits, found to be essential for
food-web models of size-structured populations, gets lost. To
counteract the resulting artificial competitive exclusion dynamics
for species of similar size, the SSSM contains a phenomenological
correction term25, which accounts for differentiation of species by
secondary traits. The structure of this term is similar to the
intraspecific competition terms included in Lotka–Volterra
models for niche differentiation along a single trait axis37, but
in the SSSM it is constructed such as to avoid unaccounted
biomass losses.

Rather than explicitly distinguishing between primary produ-
cers and consumers in size spectra, the SSSM imposes a lower
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Fig. 1 Illustration of dome formation in size spectra. Empirical size spectra in panel a are, in order of increasing nutrient enrichment (lowest to highest line),
from the North Pacific33 (blue), Lake Superior27 (orange), Lake Ontario86 (green) and Lake Müggelsee83 (red). See Methods for the representation of size
spectra used. Comparable simulation data in panel b are steady states of the Species Size Spectrum Model (SSSM) with varying eutrophication parameter
x (lowest to highest line; blue: x= 1, orange: 100.2= 1.58, green: 101.6= 39.8, red: 102.4= 251). Panel c illustrates the causal chain generating domes in the
SSSM. ① At low nutrient supply, the size-spectrum forms an approximate straight line on double-logarithmic axes (blue line). ② Increasing nutrient supply
increases abundance of primary producers, and, through bottom-up trophic amplification, induces an upward-bending of the entire size-spectrum (orange
line and arrows). ③ As a result, consumers become more satiated and more abundant relative to their resources, which both acts to amplify top-down
cascades4,13. Low-predation mortality of the top predators induces such a cascade. This leads to formation of several domes along the size spectrum
(green line and arrows)
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boundary condition that fixes the abundances of the smallest
species modelled. Nutrient enrichment is modelled by scaling
these abundances by a eutrophication parameter x, assumed to be
proportional to chlorophyll-a concentration. Model equations are
listed in Supplementary Note 1 together with a detailed
discussion, including our correction to account for secondary
traits. Details of simulation methods are described in Supple-
mentary Note 3. The code we used to simulate the SSSM is
provided as Supplementary Software 1.

Basic model behaviour. Model simulations with an ecologically
plausible parameterisation (Supplementary Note 2) demonstrate
that nutrient enrichment and the resulting increases in x and
overall community biomass do indeed result in strong dome
formation (Fig. 1b).

As a simple demonstration that dome formation in this model
is governed by a top-down cascading effect, we removed species
from two domes at opposite ends of the size spectrum. First, we
simulated harvesting of species from the dome with the largest
body sizes, by increasing their mortality. This substantially
reduced the size-spectrum modulation along the entire body size
axis (Fig. 2a), as expected for a top-down cascade. If the domes
would represent subsequent members of a food chain, the naive
expectation would be that release from predation allows the
intermediate dome to rise when the right-most dome is
suppressed, but this is not what we found in simulations.

Second, we harvested species from the dome at the smallest
body size. This removed that dome, but had little effect on the
modulation of rest of the size spectrum (Fig. 2b, red dashes).
The effect it had on larger-bodied individuals is explained by the
overall removal of biomass from the system; it is identical to that
resulting from a reduction of the eutrophication parameter from
x= 1.58 to 1.38 (Fig. 2b, blue dots).

Comparison with data. In addition to generating domes in
process-based simulations, our model reproduces much of the
rich phenomenology associated with nutrient enrichment in
pelagic ecosystems, providing further strong support for the
theory. To demonstrate this, we compiled 25 high-quality size
spectrum data sets from the empirical literature. We only inclu-
ded data sets spanning at least six orders of magnitude in body
mass that provided volumetric biomass density measures and
where trophic status has been quantified as total phosphorus (TP)
or chlorophyll-a concentration (which we then expressed as TP
using a published regression). To allow quantitative comparison
of size spectra across studies, we expressed them in units of gram
carbon62 and as biomass densities along the ln(body mass)-
axis25,33. Visual inspection of this data (Fig. 1a, Supplementary
Note 4) confirms previous reports62 that, on double-logarithmic
axes, pelagic size spectra exhibit a linear relation that tends to be
overlayed with a secondary structure of uniformly spaced domes.
To quantify these features, we fitted both empirical and simulated
size spectra to a combination of a linear relation and sinusoidal
modulation of the form

log10ðbiomass densityÞ ¼ S log10
bodymass
1μgC

� �
þ B0

þA sin
2π log10ðbodymassÞ

D
� P

� �
:

ð1Þ

The parameter S, representing the overall slope of the size spec-
trum, indicates to what extent community biomass is dominated
by small organisms (S < 0) or large organisms (S > 0). Sheldon’s
hypothesis14, that biomass is roughly equally distributed over all
logarithmic body size classes, corresponds to S= 0. The para-
meter B0 is the intercept at 1 μgC; it corresponds approximately

to the logarithmic biomass of organisms in the size range of
herbivorous crustaceans58. A ≥ 0 is the amplitude of modulations.
For perfectly sinusoidal dome patterns, 102A would be the ratio
between the biomasses of organisms in the size classes at the peak
of domes and on the bottom of neighbouring troughs. Because of
deviations from the sinusoidal form, however, the actual ratio
tends to be larger. The parameter D ≥ 0 quantifies the separation
of domes on the one log10 body mass axis; the body mass ratio of
organisms occupying neighbouring domes is 10D. The parameter
P controls the phase of modulations. It shifts the position of
domes along the size axis. Below we do not consider it, because its
direct comparison across data sets is difficult when D is not fixed.
To avoid overparameterization, Eq. (1) does not consider the
theoretical possibility of increases or decreases of modulation
amplitude along the size axis.

Both empirical and model size spectra occasionally contain
gaps, i.e., body size ranges without detectable biomass62–64

(Fig. 1a, b). We used non-linear median regression to fit Eq.
(1), which allowed us to represent these gaps by arbitrary,
numerically small biomass densities without biasing the fits. In
Supplementary Note 4, we present graphs of all 25 data sets and
corresponding fits.

Our data comprise a wide range of ecosystems differing in
respect to latitude, size and depth, which affect phenomena not
modelled in the SSSM, such as prey defence and allochthonous
inputs. To validate the SSSM, we therefore do not attempt a
quantitative fit to data but constrain ourselves to the objectives of
pattern-oriented modelling65. That is, we aim to reproduce
qualitative patterns in the empirical responses of the size-
spectrum characteristics B0, S, A and D to enrichment, and the
order of magnitude of these effects. As shown in Fig. 3, the SSSM
reproduces well the overall increase in system biomass with
enrichment62 (Fig. 3a). Also in good agreement with observations,
enrichment in the model leads to an increasing (less negative) size-
spectrum slope32 S, with the increase becoming less pronounced at
higher nutrient levels (Fig. 3b). Importantly, both data32 and model
follow our theoretical expectation (Fig. 1c) that size-spectrum
modulations become stronger with enrichment (Fig. 3c). At
low nutrient concentrations and resulting small modulation
amplitudes, the separation between domes D is ill-defined for both
data and model. Once pronounced dome patterns arise, data and
model agree in that the separation between domes D is not much
affected by trophic status (Fig. 3d, Supplementary Note 7). Thus, all
major patterns in the data are reproduced by the SSSM, validating it
as a good description of pelagic size spectra.

Mechanisms. As is common in the study of self-organised peri-
odic patterns42,66, key insights into the mechanisms driving dome
formation in size spectra can be gained from studying the linear
response of the system to small perturbations. From a previous
mathematical analysis25, it is known that pelagic size spectra
exhibit a superposition of three mathematically distinct linear
responses to pressure on a single body size class (Fig. 4, Methods,
Supplementary Note 6): (i) the top-down cascade, modulating the
size spectrum towards lower body size classes22,24, i.e., leading to
alternating enhancement and depletion of biomass along the size
axis; (ii) a modulated bottom-up cascade21,24,30 and (iii) the
conventional, unmodulated bottom-up effect, consistently either
enhancing or depleting the biomasses of all larger-bodied species.
Depending on system parameters, the two modulated responses
can be either amplifying or attenuating (in terms of proportional
changes in abundance) as they propagate away from the pressure
along the size axis25 (Fig. 4). The conventional bottom-up effect
always increases as it travels up the size axis25, a phenomenon
called trophic amplification67,68.
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Dome formation in the SSSM corresponds to a transition from
attenuating to amplifying top-down cascades with increasing
enrichment, as we demonstrate in a mathematical analysis of the
mechanisms at work in Supplementary Note 7. The analysis
identifies two distinct mechanisms driving this transition. The
first depends on the fact that, due to trophic amplification, the
size spectrum slope S increases with enrichment (Fig. 3b).
Because consumers tend to be larger than their resources, this
increases the abundance of consumers relative to their resources
in enriched systems. As a result, a given proportional change in
consumer abundance can affect a larger proportional change in
resource abundances. The second mechanism is driven by the
overall increase of community biomass in enriched systems. As
detailed in S7, this leads to partial satiation of consumers and
reduces their ability to control their resources, because (i) their
food intake rate becomes less dependent on resource abundance
and (ii) resources of satiated consumers experiences a safety-in-
numbers effect69. Both enhance top-down cascades, as is the case
in simple mathematical models of infinite13 and finite4 food
chains.

It should be noted that the ‘top-down’ and ‘bottom-up’
terminology above refers only to the direction of propagation of
effects in size spectra. At the food-web level, the underlying
processes can be more complicated25,70,71. This may explain why,
despite providing some indications for top-down cascades70,71,
empirical studies of feeding interactions in size spectra did not
fully reveal the nature of dome formation.

Generic arguments developed in the study of self-organised
periodic modulation patterns in physics42,66 imply that, for
system parameters far beyond the onset of modulations, the phase

of modulation patterns still easily responds to pressures, but not
the amplitude. Instead, the modulation amplitude is controlled by
inherent non-linear regulation66,72. For size spectra, this means
that harvesting biomass from one dome does not affect the height
of other domes (relative to neighbouring troughs), only their
positions along the log(body mass) axis. This could explain why
experimental manipulations of the top trophic levels in pelagic
communities sometimes do not comply with predictions from
simple food-chain theory2; often producing pronounced changes
in mean zooplankton body size rather than in total zooplankton
biomass2,3. We demonstrate this effect in Fig. 2c. This sensitivity
of dome positions to pressures might also lead to a tendency for
domes to form in biologically favoured size ranges, for which
there is some empirical evidence20.

A mechanistic explanation. Above, we have explained dome
formation as a consequence of nutrient enrichment in three
complementary ways73: first, by obtaining the empirical relation
between dome amplitude and nutrient concentration directly
from observation data (Fig. 1a; black circles in Fig. 3c); second, by
simulating a process-based model, which demonstrates that
individual-level processes lead to dome formation with increasing
primary production (Fig. 1b; red crosses in Fig. 3c) and third,
through a mathematical analysis of this model, which reveals
step-by-step the causal chain leading from enhanced primary
production to the onset of dome formation in a transition from
attenuating to amplifying top-down cascades (Fig. 1c; Supple-
mentary Note 7). The present work thus adds to the small
number of cases in community ecology where an analytically

−6

−3

H = 0
H = 12.2

a

−6

−3

H = 0
H = 2
H = 0 with x = 1.38

b

−3

H = 0
H = 7

H = 14
H = 21 H = 28

c

−9 −6 −3 0 3

lo
g 1

0(
bi

om
as

s 
de

ns
ity

) [
gC

 m
−3

]

log10(body mass) [gC]

Fig. 2 Demonstration of top-down and bottom-up effects in SSSM simulations. Species with body mass at first maturation m* in the ranges indicated by the
horizontal bars (panels a, c m*≥ 10−1.9 gC; panel b 10−7.5 gC≤m*≤ 10−5.5 gC) are harvested at an allometrically scaled rate (m*/gC)−1/4H with H as given
in the legend. Panels a, b show community size spectra for moderate nutrient supply (eutrophication parameter x= 100.2= 1.58). The dome structure can
be top-down controlled (a) but not bottom-up controlled (b). In panel c, nutrient supply is higher (x= 10) and dome size controlled through inherent non-
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tractable, process-based model semi-quantitatively explains a rich
empirical phenomenology74–76. This became possible not only by
the judicious construction of our model from simple components
(Supplementary Note 1), but also by developing mathematical
methods that allowed us to analyse the model despite its com-
plexity (Methods, Supplementary Notes 6 and 7).

The mechanistic analysis permits us to address questions
regarding the generality of the process of dome formation. For
example, one might ask to what extent dome formation is affected
by life-history parameters such as the relative sizes of new
offspring, individuals at first maturation, and the largest adults of
a species—especially since these proportions vary considerably
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among species and along the size gradient. Our analysis suggests
this dependence is weak: these proportions do not enter the
expressions that control the transition to dome formation
(Supplementary Note 7). The approximate analytic expression
that we derive for the distance D between domes along the
logarithmic body mass axis [Eq. (29) of Supplementary Note 7]
depends only on two parameters characterising the typical range
of body mass ratios between individual predators and their prey,
and an allometric scaling exponent.

Another implication of the mechanistic theory follows from the
fact that it makes heavy use of the assumption that predators feed
on living prey smaller than themselves. The mechanisms
identified are unlikely to operate effectively in food webs that
are not as strongly size structured as pelagic communities. In
benthic communities size structure is less pronounced77. One can
therefore plausibly expect that the dome patterns found in
benthic size spectra78,79 are controlled by different kinds of
mechanisms79,80, and thus respond differently to enrichment
than those found in pelagic communities.

Our explanation of dome formation as a transition from
attenuating to amplifying top-down cascades is consistent with
the conclusion of an earlier meta-analysis that top-down cascades
tend to be attenuating in marine pelagic systems but have no such
general tendency in the nutrient richer lake pelagic communities6.
As explained above, the general theory of pattern formation
suggests that far beyond the onset of dome formation the dome
amplitude is controlled by inherent non-linear regulation66,72,
rather than by the amplitudes of neighbouring domes. When top-
down cascades are amplifying in a linear model, as we find for
nutrient rich pelagic systems, non-linear effects thus constrain the
maximum height that domes eventually attain72. This explains
why, on average, trophic cascades observed in lake pelagic
communities are neither amplifying nor attenuating6.

Our analytic calculations (Supplementary Note 7) constrain the
transition point from attenuating to amplifying cascades to the
range 1 < x < 8 for the model’s eutrophication parameter,
corresponding to 0.6 μgL−1 < TP < 4.4 μg L−1 or chlorophyll-a
concentrations in the range 0.2–1.6 μg L−1, with lower values
preferred when size-spectra span longer body-size ranges. Coastal
marine waters often lie in this transition range (which is below
levels where harmful algal blooms tend to occur81,82). On this
basis, we predict the occurrence of dome patterns in nutrient rich
coastal marine waters. Climate warming can increase coastal
surface nutrient concentrations further68, thus intensifying this
effect, with potential implications for marine ecosystem manage-
ment. However, we caution that the transition from attenuating
to amplifying top-down cascades does not result in a sharp
qualitative transition in observed size spectra. For example, the
cascade in the unperturbed model size spectrum for x= 1.58
(Fig. 2a, black line) is still attenuating (compared to neighbouring
domes, the right trough is deeper than the left), yet it already
exhibits a clear dome structure.

The analytic calculations also reveal why models simpler than
the SSSM would struggle to convincingly explain dome forma-
tion. All details of the SSSM that distinguish it from previous,
simpler size-spectrum models have a role to play in reproducing
and explaining the phenomenology we report. Size-spectrum
models that do not distinguish individuals by maturation body
mass22,23,45 are unable to represent in their steady state the gaps
observed in size spectra62,63, because there is no biological
mechanism to generate individuals of body sizes larger than the
size class of a gap. Models without any representation of
intraspecific size structure31 would, amongst others25, over-
estimate the magnitude of domes and the prevalence of gaps.
Models representing communities as food chains13 rather than as
continua of species cannot represent shifts in the positions of

domes in response to pressures66, as seen in Fig. 2c. Models
without representations of consumer satiation22,23 omit a model
component that is essential for the transition to amplifying
cascades. Models that include non-linear stock-recruitment
relationships in addition to24 (rather than implied by50)
density-dependent feeding interactions are unlikely to generate
amplifying top-down cascades or bottom-up amplification,
because they tend to overestimate the strength of inherent
regulation of population size. Models that explicitly evaluate food
webs of size-structured populations without imposing artificial16

limits to recruitment48,50, i.e., the type of models that the SSSM
approximates, tend to be computationally too expensive for
simulations of species-rich communities over size ranges as large
as studied here. The SSSM’s demonstrated ability to describe
high-level phenomena in pelagic ecosystems over a wide range of
conditions suggests future applications in diverse areas such as
the testing of ecological indicators, development of management
strategies or ecological forecasting.

The significance of our results lies not only in the
characterisation of dome patterns or top-down cascades, but
crucially in the identifications of the former as manifestations of
the latter. This became possible by understanding dome
formation as part of a wider scenario of community change with
increasing enrichment (Fig. 3). In particular, the results speak
against the widely cited idea that domes represent bottom-up
cascades21,30,31. While bottom-up cascades have indeed been
demonstrated in the SSSM and similar models24,25, our
mathematical analysis (Supplementary Notes 6 and 7) shows
that these cascades get damped by increasing enrichment,
opposite to the observed pattern (Fig. 3). Based on the classical
theory, we had also expected that the flattening of the dome with
smallest body size in model simulations (Fig. 2b) would similarly
reduce modulations along the entire size-spectrum, which was
not the case.

Relation to detailed empirical accounts. When comparing our
theory with detailed observations in specific ecological commu-
nities, it must be kept in mind that any size-spectrum model is a
simplified high-level description. It relates to low-level descrip-
tions in terms of populations and their interaction networks in an
analogous manner as a macroscopic description of sound waves
in an air-filled chamber relates to a microscopic description of the
air in terms of freely moving and occasionally colliding molecules.
Concepts that are central to a high-level description (domes and
sound waves) are unnecessary or even meaningless for a full
description and explanation of dynamics at the lower level. When
a detailed low-level description is available, one can, a posteriori
reconstruct the macroscopic phenomenon (modulation of com-
munity biomass along the size axis for domes, density waves for
sound), but this does not add information to that already pro-
vided at the lower level. To the contrary, since high-level
descriptions are generally approximations, their juxtaposition
with corresponding low-level descriptions will necessarily reveal
inaccuracies.

Such juxtapositions, relating the populations and interactions
of species and functional groups to the resulting size spectra, are
available, for example, for Lake Constance and Lake Müggel-
see58,59,70,83,84. One particular effect that size-spectrum models
cannot capture, which was identified in these studies, are changes
in the distributions of traits other than size85. Yet, such changes
must be expected as part of a re-organisation of community
structure, e.g., in response to nutrient enrichment. For example, it
has been observed that the size range covered by carnivorous
zooplankton may change58,83 and less edible phytoplankton may
pile up in certain size classes of the autotrophic size range, so
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reducing the flow of biomass towards larger consumers83.
Conversely, particularly efficient and competitive consumers
such as daphnids may obtain biomasses above the average
zooplankton due to their ability to exploit relatively small and
thus highly productive prey58,70.

Such low-level descriptions and the higher degree of detail they
provide do not, however, invalidate high-level descriptions, e.g.,
in terms of size-spectrum models. Low-level descriptions tend to
be system specific and would struggle, for example, to provide
simple explanations of trends seen across systems, such as those
documented in Fig. 3—while the SSSM achieves just this.

Conclusion. Along multiple lines of evidence we have demon-
strated that the dome patterns found in pelagic size spectra of
lakes are likely governed by top-down trophic cascades and
moderated by the availability of nutrients. The frequent obser-
vation of pronounced dome patterns20,27,31,63,70,83,86, where
variation in biomass often exceeds a factor 100 (Fig. 1a), therefore
suggests that strong top-down cascades are common in fresh-
water communities. These powerful trophic cascades, generating
domes, are active in pelagic systems without any manipulation of
top trophic levels2,3. Pelagic dome patterns might therefore be the
clearest cases yet of self-organised ecological pattern formation in
trait space.

The results of this study imply that measurement of the
strength of top-down cascades in lakes does not necessarily
require experimental manipulations or comparative studies.
Cascade strength can be estimated directly from the modulation
amplitude of size spectra (Fig. 3c). Application of this idea to the
old question of how cascade strength depends on nutrients
provides clear evidence for an overall increase of cascade strength
with increasing nutrient concentration in both model and data
(Fig. 3c) up to around 5–10 μg L−1 TP. Beyond this level there
might be plateau or even a slight decline in cascade strength with
TP. Thus, several of the patterns previously considered9 appear to
be combined. To further clarify the details of this dependence, we
call for systematic measurements of size spectra across nutrient
enrichment gradients, aided by the accurate automated methods
now available27. Monitoring of coastal marine size spectra might
guide the interpretation of ecosystem changes when domes form
unexpectedly.

For bio-manipulation of top predators2,3, we predict that
measurements of size spectra in lakes will, depending on trophic
status, reveal responses of the amplitude or the phase of the dome
pattern (Fig. 2). Responses to pressures on high-ranking

predators will therefore not always follow expectations from
simple food-chain theory2,3, but transfer of pressures to lower
trophic levels should generally be expected in the light of the new
theory. The general theory of non-linear pattern formation thus
provides new mechanistic insights into the structure and
dynamics of ecological communities.

Methods
Representation of size spectra. For the purpose of comparison across studies,
empirical size spectra are often represented on double-logarithmic axes in the so-
called normalised form87,88: the volume (or areal) density of biomass of organisms
measured in each body mass interval considered is divided by the linear width of
this interval (of dimension Mass). In the limit in which the width of these intervals
goes to zero, this represents the density of a community’s biomass (per unit
volume) along the linear body mass axis89. A disadvantage of this representation is
that normalised spectra tend to spread over a wide numerical ranges. Super-
imposed “dome” modulations are not easily visible.

To overcome this disadvantage while maintaining comparability of spectra
across studies, we computed not the density of biomass (per unit volume) along a
linear but along a logarithmic body mass axis. Specifically, the natural logarithm of
body mass was used, which permits a simple conversion of traditional normalised
size spectra to this density-along-the-log-axis form: one just needs to multiply each
normalised size spectrum value by the corresponding body mass. To obtain
unbiased estimates of the continuous size spectrum from empirical data for discrete
size intervals one multiplies with the geometric mean of upper and lower interval
boundary25. This is the representation used throughout the present study:

size spectrum at pointmi¼
Bimi

Δmi
; ð2Þ

with mi denoting the geometric mean of the boundaries of body mass interval i (i.e.,
the mid point on a log axis), Δmi its linear width, and Bi the measured biomass
volume density of individuals with body mass lying in this interval. Equation (2) is
formally equivalent to a known heuristic “denormalisation” procedure for size
spectra33,87,88.

Data sets. Searching for the keywords “size spectrum” and “size-spectrum” in
literature databases and following relevant citations, we identified 25 pelagic size-
spectrum datasets that satisfied our inclusion criteria (good technical quality,
coverage of a 106 body mass range, and quantification of trophic status). Except for
a data sets from Lake Malawi, all sampling locations lie within the latitudinal band
28°–54°N (Fig. 5).

In some cases, uneven sensitivity of sampling and use of different sampling
methods over different size ranges can lead to structures in the data that resemble
dome patterns. Occurrence of such artefacts, however, can be recognised by
comparing method boundaries along the size axis and dips or discontinuities in
spectra, and usually such issues are acknowledged by study authors. We excluded
two studies because of such concerns90,91. While uneven sampling might also have
contributed to some of the unevenness in other spectra (just as any empirical
method has potential biases), the fact that we find a clear signal of increasing dome
amplitude A with increasing nutrient richness (Fig. 3) in accordance with earlier
observations32 would be hard to explain if sampling artefacts where generally the
dominating contribution to size-spectrum modulations.

We converted chlorophyll-a concentrations [Chl-a] to total phosphorus (TP)
concentrations TP using the relation92 [“This study (all lakes)” in the source]

Fig. 5 Locations of study sites included in analysis
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log10[Chl-a]=−0.455+ 1.026 log10(TP), i.e., log10(TP)= (log10[Chl-a]+ 0.455)/
1.026, with [Chl-a] and TP given in μg L−1. The conversion was used mostly for
marine systems, where nutrients other than phosphorus may be (co-)limiting. The
TP values so obtained have therefore purely nominal character as expressions of
overall nutrient availability.

The following lists the systems underlying the empirical data in Figs. 1 and 3,
together with data sources for size spectra and, if different, sources for TP or [Chl-a]
(expressed in μg L−1): North Pacific Central Gyre33 with93 [Chl-a]= 0.0945
(corresponding to TP= 0.28); stations Purple 10 ([Chl-a]= 0.17, TP= 0.49), Purple
11 ([Chl-a]= 0.18, TP= 0.52), Yakutat ([Chl-a]= 0.25, TP= 0.72), Nashville
([Chl-a]= 0.25, TP= 0.72) and Indigo ([Chl-a]= 0.26, TP= 0.75) in the New
England Seamounts Area94 and stations Sargasso 12 ([Chl-a]= 0.25, TP= 0.72),
Sargasso 14 ([Chl-a]= 0.29, TP= 0.83) and Sargasso 13 ([Chl-a]= 0.33, TP= 0.94)
in the Sargasso Sea94, where data points below 5 ⋅ 10−13 gC body mass were
discarded due to acknowledged methodological artefacts94; Lake Superior27 with95

TP= 2.5 (average of years 2006 and 2011, numerical data by Peder M. Yurista, priv.
comm.); the averaged spectrum of 37 inland lakes in central Ontario20,62 with
median TP= 420,62; Lake Michigan96 with TP= 5.597; the six Irish lakes98 Loughs
Maumwee (TP= 6.6), Carra (TP= 11.2), Gara (TP= 24.7), Gur (TP= 37.9),
Mullagh (TP= 72.6) and Ramor (TP= 77.1, numerical data by Elvira de Eyto, priv.
comm.); Lake Ontario86 with TP= 7.595; Lake Malawi86 with TP= 9.399; Lake St.
Clair32 (average over 14 stations, TP= 10.4); Lake Constance58 averaged over years
1987–1996 (unpublished data by U.G.) with TP= 52.5100; Fuente de Piedra101

([Chl-a]= 25102, TP= 64.0); Arendsee63 (TP= 106); and Müggelsee83 averaged
over years 1988–1990 (numerical data by U.G., TP= 223). Size-spectrum data were
extracted from referenced published graphs if not stated otherwise. When
publications contained multiple graphs with size spectra for a given system, we
selected the spectra averaging over the longest time interval and the largest number
of stations. CSV files of the size-spectra analysed in this study are included as
Supplementary Data 1.

Missing empirical values. Size-spectrum values of zero are sometimes suppressed
in empirical data. In published size-spectrum data sets, we therefore identified as a
‘gap’ any occurrence of a large interval between subsequent reported size-class
midpoints. Precisely, any spacing on the log-body mass axis between subsequent
reported size-class midpoints that was over 1.8 times wider than both the previous
and the subsequent spacing was considered a gap. Each such gap was filled by a
single size-spectrum value of zero at the centre of the gap. All reported values of
zero were retained, except for those at the upper end of reported body mass ranges,
since these might be due to insufficient sample volumes. Before taking logarithms,
size spectrum values of zero were replaced by 10−100 times the smallest reported
non-zero value. The thus processed size spectra are included in Supplementary
Data 1 as an R object.

Size range used to determine characteristics. For most empirical data sets
(84%), the body size range covered does not extend beyond 0.1gC. For compar-
ability across empirical data sets and between data and simulations, only size-
spectrum data up to 0.1 gC were therefore used when fitting Eq. (1) to extract the
characteristics B0, S, A and D. We stress that this restriction of the size range is a
decision about how to characterise the size spectra. It does not imply a statement
about what size range is dynamically relevant in either models or reality. The role
of the distinction between models and characterisations in the development of
ecological theory is discussed in ref. 13.

Non-linear median regression. To fit Eq. (1) to size spectrum data, we used the
function nlrq from the package quantreg (v. 5.36) of the R programming
language, v. 3.5.3103, which implements an interior point method for non-linear
quantile regression104. The function requires initial parameter values for a non-
linear optimisation routine, which we set to B0=−2.5, S=−0.1, A= 1, and all
combinations of D= 4, 6 and P= 0, 0.4π, 0.8π, 1.2π, 1.6π. When different initial
values resulted in different fits, the result best satisfying the quantitative optimi-
sation criterion of the fitting method was selected. However, values for dome
separation were constrained to the range D= 2–9, because size spectrum mod-
ulations with very small or very large wavelengths were not phenomena of interest
to the present analysis. Standard error estimates for the empirical fitting parameters
were computed using the jackknife method.

LOESS smoothes. Smoothes in Fig. 3 are first-order LOESS based on the closest 2/
3 of data points (1/3 for simulations), weighted by tricubic distance and for
empirical data in addition by inverse squared estimated standard error. To improve
the robustness of the smoothes, they were computed using M-estimation with
Tukey’s biweight using the function loess of R.

Mathematical analysis. We outline the mathematical methods used to establish
the mechanisms driving the transition from attenuating to amplifying top-down
cascades in the SSSM. For details see Supplementary Notes 6 and 7.

The standard methods42 to identify the conditions and driving mechanisms
for the formation of self-organised periodic patterns, i.e., spatial modulation of
some system property, relies on the computation of the linear growth rate (in

time) of small, sinusoidal perturbations of the unmodulated base state of
the study system. When modulations grow through time, patterns form. But
this method is not applicable here. Because of allometric scaling of physiological
rates, the dynamics of small species tend to be much faster than that of large
species, so that periodic modulations do not have well-defined linear growth
rates (they are not eigenfunctions of the linearised dynamics). The method
used here25, therefore, considers instead the static, equilibrium linear response
of the system to small, sustained and localised press perturbations. For this,
the allometric scaling plays no essential role. Patterns form when the
equilibrium response increases with the distance from the perturbation along
the size axis. In Supplementary Note 6, we demonstrate for an exactly solvable
example that in cases where both methods are applicable they give equivalent
results.

In size-spectrum models, the equilibrium response to localised pressures can be
decomposed into a sum of sinusoidal responses that, starting from the perturbed
size class, grow or decline exponentially along the logarithmic size axis, plus
unmodulated exponentially growing or declining components (as in Fig. 4). In
addition to these exponential components, the static response may have a localised
core residual that declines faster than exponential with the distance from the
perturbation25. Each component of the sum has a characteristic complex-valued
wave number, the real part of which is 2π divided by the wavelength of the
sinusoidal modulation, and the imaginary part the rate of exponential growth or
decay along the logarithmic size axis.

To determine these wave numbers, one first needs to compute the effective
interaction kernel for species along the size spectrum. This function describes the
dynamic linear response of species in all size classes to changes in the abundance of
species in one given size class. The interaction kernel thus encapsulates the
underlying ecology. The wave numbers of the linear modes of the size spectrum are
give by the zeros, in the complex plane, of the analytic continuation of the Fourier
transform of this interaction kernel.

While for the SSSM this Fourier transform is a rather complicated mathematical
expression, it turns out that at most points in the complex plane just a few terms of
this expression (associated with specific ecological phenomena) dominate
numerically. Hence, the locations of the zeros can be understood from the
properties of just a few terms.

In our mathematical analysis, changes in the interaction kernel due to nutrient
enrichment are described by a heuristic modification of the kernel that corresponds
to an overall increase in food availability. Using this to study the effects of
enrichment on the Fourier transform of the interaction kernel, the mechanisms
driving the transition from attenuating to amplifying top-down cascades are then
identified.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data analysed in this study are included in a Supplementary information file.

Code availability
The simulation code used in this study is included in a Supplementary information file.
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