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Individual-based models, ‘IBMs’, describe naturally the dynamics of interacting organisms or

social or financial agents. They are considered too complex for mathematical analysis, but

computer simulations of them cannot give the general insights required. Here, we resolve this

problem with a general mathematical framework for IBMs containing interactions of an

unlimited level of complexity, and derive equations that reliably approximate the effects of

space and stochasticity. We provide software, specified in an accessible and intuitive gra-

phical way, so any researcher can obtain analytical and simulation results for any particular

IBM without algebraic manipulation. We illustrate the framework with examples from

movement ecology, conservation biology, and evolutionary ecology. This framework will

provide unprecedented insights into a hitherto intractable panoply of complex models across

many scientific fields.
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There are many systems in biology1, the social sciences2 and
other disciplines comprising populations of individuals
that move and interact with each other, but where the

properties of focal interest arise at the whole-population level. In
ecology and evolution1,3,4, for instance, large-scale patterns, such
as coexistence, biodiversity, and the evolution of novel types
emerge from individual-level processes, such as births, deaths and
inter-agent interactions. Historically, however, many funda-
mental ideas in ecology were developed using differential equa-
tion models that treat populations as continuous numbers.

The mathematical transparency of these models means that we
understand their predictions completely and can propose general
principles, e.g., regarding the number of resources needed by
competing species5 or the processes that destabilise host–parasite
dynamics6. However, it has long been recognised that these
simple models are inadequate for describing many biological
phenomena7. For example, the conditions for competitors to
coexist, and for predator–prey cycles to occur, are altered when
space and individual discreteness are considered8. Space and
stochasticity can similarly play an important role in the dynamics
of chemical species 9. Individual-based (or agent-) based models10

faithfully capture the discrete and spatial nature of population
dynamics, but these are usually studied by computer simulation1,
which only tells us about a limited set of parameter values and not
the general model behaviour. They therefore do not yield the sort
of general understanding that would be given by mathematical
analysis, which encapsulates behaviour across all possible para-
meter combinations8.

To use individual-based models to develop general principles,
of the sort derived from classic differential equation models,
requires a method for analysing them mathematically. Individual-
based models can be formulated by spatiotemporal point pro-
cesses11, where individuals (or, more generally, entity types, such
as juveniles or infected individuals, see Fig. 1a) are created,
destroyed and move at rates that can depend on the positions of
other individuals in the system, see Fig. 1b. In principle, the
dynamics of such systems are described exactly by equations for
the time evolution of spatial moments, representing mean density
of individuals (first-order moment), spatial covariance (second-
order moment) and so on (Fig. 1c). However, in practice there are
two obstacles to using these to predict model behaviour. First,
they need to be laboriously derived separately for each model, and
for each order of moment12. Second, the moment equations form
an unclosed hierarchy, with the dynamics of each moment
depending on the higher order moments, so if the equations for
all orders of moment were known it would still not be possible to
solve them—even numerically13. ‘Moment closure’ is a widely
used approximation scheme that closes the hierarchy by an ad-
hoc assumption relating moments of different order12, but this is
an uncontrolled approximation that is not guaranteed to perform
well in any particular limit8,14. A more reliable alternative based
on a perturbation expansion has been proposed, which gives
asymptotically exact results when agents interact over large
enough scales, but the algebraic burden for this method remains
prohibitive because it requires arduous derivations for each par-
ticular model11,13 (Fig. 1d).

Here, we overcome these difficulties by formulating a unified
theoretical framework for a wide class of systems, which allows us
to derive general analytical results. The results for any particular
model within this general class can be obtained directly without
further analysis. We make analytical results available to the non-
specialist by providing software, which generates mathematical
expressions describing a model that the user specifies in an
accessible and intuitive way. We first describe our framework and
the mathematical results leading to it, and then give three
applications that illustrate how our method allows us to answer

questions that are not addressable by a simulation
approach alone.

Results
The framework. We begin by classifying the participants in
demographic processes into three types of individuals (borrowing
terminology from chemistry): (i) reactants (that are destroyed by
the process); (ii) products (that are created by the process) and
(iii) catalysts (that are unaffected by the process, but whose
presence affects the rate at which it occurs). For example: a death
event has a single reactant and no products or catalysts; dioecious
birth has two catalysts (the mother and the father) and one
product (the offspring) and movement can be represented by a
reactant at the initial position and a product at the final position.
This representation can describe processes with an arbitrarily
high degree of complexity: the number of reactants, catalysts and
products that can participate in any event is unlimited, as is the
number of entity types within the system. We could, for instance,
model a population where individuals can consume a food item,
thereby increasing their energy level, provided they are in the
shelter of a tree and that there is another individual helping to
capture the prey. In this case, there would be two catalysts (tree
and helper), two reactants (original individual and food item) and
one product (an individual with a higher energy level than the
original), and different entity types would be used to represent
trees, food items and individuals of the focal species with different
energy levels. This general classification allows us to derive our
first main result: an exact expression for the moment equations to
all orders for the general model containing processes with arbi-
trary sets of reactants, products and catalysts and interactions
between them (see the Methods section Eq. (3)).

Then, using this exact expression for the general model, we
apply a perturbation scheme13,15 to derive a robust approxima-
tion for the dynamics of this general class of model. If the
interactions between individuals take place over very large spatial
scales, the demographic rates depend only on globally averaged
population densities. In that case, the moment equations reduce
to ‘mean-field’ equations—ordinary differential equations of the
type used in classical population dynamics. If the interactions are
more local, then stochastic and spatial fluctuations cause the
model to deviate from the mean-field behaviour. We assume that
spatial interactions between individuals depend on their separa-
tion x (in d-dimensional space) according to interaction ‘kernels’
of the form ϵdf ðϵxÞ, where 1=ϵ is the typical length scale of
interactions, and prove mathematically (Supplementary Note 1)
that the mean densities and spatial covariance (including
autocovariance) satisfy an expansion

density ¼ qþ ϵdpþ oðϵdÞ;
spatial covariance¼ ϵdgðϵxÞ þ oðϵdÞ;

where q is the density computed by the mean-field model, p is the
correction to the mean-field density due to spatial stochastic
fluctuations and g is the dominant contribution to the spatial
covariance that describes the degree to which individuals are
aggregated or segregated in space (oðϵdÞ denotes a term that,
when divided by ϵd , vanishes when ϵ ! 0). For simplicity, in the
above expression we have assumed translational invariance so
that the density does not depend on position and the spatial
covariance depends only on spatial separation, but our underlying
mathematical framework does not have this limitation, see Fig. 1e
and Eq. (1) therein. Depending on the scientific question being
asked, it may be enough to study the mean-field behaviour
described by q alone, whereas p or g will need to be calculated if
we are interested in the nature and consequences of spatial
patterns that emerge from local interactions. This perturbation
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scheme has been applied to some specific ecological models
before, and has been found to perform as well as or better than
alternative moment closure approaches13,15. The framework
described here allows us to apply this technique to a much wider
class of models.

Our second main result is an expression for differential
equations for q, p and g for the general reactant–catalyst–product
process (Fig. 1e and Eq. (2) therein, and Eqs. (4), (5), (6) in the
Methods section). This allows us to construct directly the
perturbation expansion for any model containing any number
of processes in our general reactant–catalyst–product class
because, even though the interactions between individuals may
be nonlinear, the differential equations for q, p and g contain

sums of independent contributions from each process. Our
results make mathematical analysis available for systems that
would be prohibitively complex using other approaches, and,
while Eqs. (4), (5), (6) may appear daunting, we have automated
this process by writing Mathematica code that computes
analytical expressions for general reactant–catalyst–product
models (see Supplementary Note 2). To complement and verify
the analytical results, we have also written computer code in C
that simulates a very broad class of reactant–catalyst–product
models (see Supplementary Note 2). This provides a unified
framework for analysis and simulation (illustrated in Fig. 2),
where the user wanting to study a particular model has only to
convert the verbal model description into a graphical model

a

c

d

e

b

Fig. 1 Agent-based models in ecology and evolution: the problem, and our solution. Agent-based models consist of entities of different types (panel a) that
can interact in space in many ways (panel b). At any time, the state of the model can be quantified by spatial moments, such as density or spatial
correlations (panel c). Agent-based models are generally considered too complicated to analyse mathematically (panel d). We address this problem by
defining a general class of models and processes, for which we provide computer code that yields analytical solutions and runs stochastic simulations
(panel e)
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description, which can easily be translated to the syntax
understood by the computer code. For simplicity, our software
assumes a translational invariant initial condition, because there
are many ways in which the underlying geometry could be
spatially heterogeneous (see the Methods section for more
discussion of this point). Below we provide a step-by-step
description of the application of the framework to derive the
underlying equations for a dynamic landscape patch occupancy
metapopulation model. We then use three case studies drawn
from different areas of ecology and evolution to illustrate how the
framework of Fig. 2 allows researchers to obtain deep analytical
insights into important problems.

Using the framework. The use of our framework follows the
workflow illustrated in Fig. 2. We demonstrate this with an
example for which the perturbation expansion has previously
been derived via other methods: a dynamic landscape patch
occupancy metapopulation15. For simplicity, we will here
consider the case without landscape correlations (the limit ν ! 0,
αν ¼ constant in ref. 15).

We begin by deriving the equations for the sub-model that
describes the dynamics of the habitat patches themselves (without

considering whether they are occupied), which is explicitly
solvable. We assume that individual patches are created, at
random, at rate per unit area r, and destroyed (at random) at rate
μ. Within our framework, this can be represented by a
spatiotemporal point process with a single-entity type (habitat
patches, which we denote as species type ‘1’). The formal
mathematical representation of this model is the generator

L ¼ LIM1 ðrÞ þ LD1 ðμÞ;
where the generators LIM and LD have technical definitions in the
Supplementary Note 1, section 1.3, and can be understood
intuitively as representing an immigration process (patch
creation) with intensity r, and a density-independent death
process (patch destruction) with rate μ. The subscript ‘1’ states
the species to which the process applies (in this case, habitat
patches are the only ‘species’). These are two examples of the
reactant–catalyst–product processes that, for convenience, we
have defined in Supplementary Note 1 section 1.3, but note that
we have derivations for the general reactant–catalyst–product
process (Supplementary Note 1 section 1.4)—we could specify the
model explicitly in terms of such general processes, but this would
be somewhat more long-winded than using the above shorthand.

ba

c

e

f

g

h

d

Fig. 2 Steps in our framework for constructing models and calculating their predictions. These are illustrated using our dynamic landscape metapopulation
case study. The user wanting to study a particular model has only to convert the verbal model description (a) into a graphical model description (b),
formulated in terms of a list of possible events and the rates at which they occur. An unambiguous mathematical statement of the model as a
spatiotemporal point process is obtained from the operators L for these components11; the superscripts denote the corresponding class of
reactant–catalyst–product process, namely immigration (IM), infection (I), change of type (CT), density-independent death (D). The colour denotes the
type of individual (blue: occupied patch; pink: unoccupied patch). A computer-readable statement of the components (c) can be used to generate code for
simulating the model (d), or to derive the equations describing the perturbation expansion using computer symbolic algebra (e). The differential equations
for the mean-field q, correction p and spatial covariance g in the perturbation expansion comprise a sum of terms contributed by each of the model
components. These expressions can then be evaluated numerically (f), or analysed further by human or machine (g). The predictions from simulations and
mathematical methods can then be compared (h) and used in many ways to gain insights into the focal problem (see Figs. 3, 4 and 5)
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We will now show the steps for deriving the equations for this
model using our Model Constructor (Supplementary Note
2 section 2.3). First, load the Mathematica packages containing
the pre-defined list of processes and for deriving the equations:

get["SSPPlibraryOfProcesses‘"]
get["SSPPanalyticalExpressions‘"]

and define the Mathematica vector describing the processes in
the model:

processes={Immigration[1,r,1],DensityIndepen
dentDeath[1,mu,1]}

The two functions Immigration[] and DensityIndependentDeath
[] are pre-defined representations of the corresponding processes
(see Supplementary Table 3 for the full list of pre-defined processes,
and Supplementary Note 2 sections 2.1.3 and 2.3.4 for details on
how to define specific reactant–catalyst–product processes). The
first argument ‘1’ is the species label, the second argument (r or mu)
is the corresponding rate and the third process is a (redundant)
overall prefactor for the rates, included for consistency with other
processes.

The quantity Hq (the right-hand side for the differential
equation for the mean-field patch density) is given by the
Mathematica command:

HQfALL[{q, p, g},processes,1]
>r - mu q[1]

where {q,p,g} specifies the names of the variables Mathematica
will use to denote the mean-field density, stochastic correction
and correlation functions, processes is the vector defining the
model given above, and ‘1’ is the species label. To obtain the
quantities Hp, which requires an integration in Fourier space, and
Hg , we need to define the spatial dimension, and specify the name
of the integration variable and the name for the frequency which
is the argument of g:

HPfALL[{q,p,g}, processes, 1, k, 2]
>0
HGfALL[{q,p,g}, processes, 1, 1, k]
>0

For HPfALL, the argument ‘1’ refers to the species label (of
which there is only one in this simple model), and the argument
‘2’ refers to the spatial dimension (which needs to be specified
because HPfALL will in general include an integral over space). In
HGfALL, both arguments ‘1’ denote species labels, of which there
need to be two because this quantity relates to correlation
functions. The argument ‘k’ in both functions specifies the name
of the variable that denotes the frequency, which appears as an
argument to the Fourier transforms. Thus, our framework has
derived the following equations for the model:

dq
dt

¼ r � μq

dp
dt

¼ 0

dg
dt

¼ 0;

which are exact because this model is a simple immigration-death
model, with no nonlinear processes (and hence no correction to
mean-field) and no processes that introduce spatiotemporal
correlations.

Adding metapopulation dynamics to this dynamic landscape,
we now have two entity types: unoccupied patches (type 1), that
can be colonised by occupied patches (type 2) (Fig. 2a, b). The
dynamics are now represented by the following generator

L ¼ LIM1 ðrÞ þ LI21ðcÞ þ LCT12 ðeÞ þ LD1 ðμÞ þ LD2 ðμÞ;
where the last two terms represent patch of either type being
destroyed (with the same rate μ), and the first one represents the
fact that patches are unoccupied (type 1) when they are created.
The second and third terms describe the metapopulation
dynamics. The second term represents colonisation, where
occupied patches turning an unoccupied patch into an occupied
patch with kernel c (i.e., the colonisation rate is cðrÞ if the two
patches are separated by distance r), and has superscript ‘I’
(denoting ‘Infection’) because this is functionally equivalent to
type 2 patches ‘infecting’ type 1 patches. The third term
corresponds to spontaneous changes in type (superscript ‘CT’)
from type 2 to type 1, representing extinction of occupied patches.

These processes are represented in Model Constructor by the
Mathematica process variable

processes={Immigration[1,r,1],Infection[2,1,
c,$c,1],
ChangeInType[1,2,e,1],
DensityIndependentDeath[1,mu,1],DensityInde
pendentDeath[2,mu,1]}

where the argument to the Infection process represents the
kernel c, and the argument $c represents its Fourier transform.
The equations for the quantities q; g; p can again be obtained
using the HQfALL, HGfALL, HPfALL functions. For example,
dq1=dt, dp2=dt and dg12ðkÞ=dt are, respectively, given by the
outputs of the following commands:

HQfALL[{q, p, g},processes,1]
>r - mu q[1] + e q[2] - q[1] q[2] $c[0]
HPfALL[{q, p, g},processes,2,k,2]
>2π ∫∞0 k g [1, 2, k] $c [k] dk - e p [2] - mu p [2]
+ (p[2] q[1] + p[1] q[2]) $c[0]
HGfALL[{q, p, g},processes,1,2,k]
>-e g[1, 2, k] - 2 mu g[1, 2, k] + e g[2, 2, k]
+ g[1, 1, k] q[2] $c[0] - g[1, 2, k] q[2] $c[0]
+ g[1, 2, k] q[1] $c[k] - g[2, 2, k] q[1] $c[k]
- q[1] q[2] $c[k]

These equations are identical to those derived in ref. 15 for the
case of an uncorrelated landscape (see the Methods section for the
full set of differential equations). Our Mathematica toolbox
contains tools for readily computing expressions for these
quantities at equilibrium, as well as evaluating them numerically
(see Supplementary Note 2 section 2.3).

Simulation code is obtained by the ‘Model simulator’ toolbox
(Supplementary Note 2 section 2.2). The model is specified using
a very similar markup to that for ‘Model Constructor’, except that
parameters are given numerical values rather than symbolic
names, and kernels have to be assigned specific functional forms.
For instance, when colonisation has a top hat kernel with strength
~cð0Þ ¼ 1:5 and length scale 3, and the other parameters are
ðr; μ; eÞ ¼ ð1:1; 0:9; 0:5Þ, the syntax for Model Simulator is
specified in file modelCaseStudy1.txt containing the text:

Immigration[1.1, 1]
Infection[2, 1, tophat[1.5, 3]]
ChangeInType[1, 2, 0.5]
DensityIndependentDeath[1, 0.9]
DensityIndependentDeath[2, 0.9]
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Simulations of the model are run by passing, as a command-
line argument, the name of the file containing this model
definition to the simulation programme ppsimulator we provide
(Supplementary Note 2 section 2.2).

Other kernel shapes are implemented within ppsimulator, but
for the sake of computational efficiency kernels that represent
interactions between individuals are truncated so as to be zero
beyond a threshold distance. For example if ‘tophat[1.5,3]’ were
replaced by ‘truncatedGaussian[1.5,3]’ then the colonisation
strength would still be ~cð0Þ ¼ 1:5, but the kernel would be a
truncated Gaussian (i.e., zero beyond a certain threshold distance,
by default three standard deviations and Gaussian otherwise)
with standard deviation 3. For more details, see Supplementary
Note 2 section 2.2.

Optimal landscape connectivity. Our first case study concerns
the question in conservation biology of how to identify the most
important habitat to conserve. A commonly used metric to assess
the value of habitat patch to a network, and aid the design of
nature reserves, is ‘connectivity’16. A critical open question is how
well connectivity predicts patch occupancy—that is, whether
connectivity is a good way to identify valuable habitat. Con-
nectivity is expressed as a weighted sum of the proximity to other

habitat patches in the form16 SðxiÞ ¼
P

jhðxi � xjÞ; where h is a
‘connectivity kernel’, and xi and xj are positions of the ith patch
and jth patch, respectively. Commonly, h is taken to be an
exponential function h ¼ expð� ½distance between patches� =λÞ,
where λ is usually chosen to equal the species’ average dispersal
distance. While this is inspired from metapopulation ideas, there
is no underlying theory for how well connectivity S predicts
habitat occupancy, or whether this kernel is the optimal choice17.
Our framework allows us to solve this problem and find the best-
performing connectivity measure.

We start with the dynamic landscape patch occupancy
metapopulation model on a landscape where habitat patches
are ephemeral (Figs. 2a, b, c; 3a)15. We showed above in ‘Using
the framework’ how to use our ‘model constructor’ software to
compute the quantities q, p and g for this model. We used this to
derive an analytical expression for the correlation between patch
occupancy and connectivity S for a general connectivity kernel h
(see the Methods section), which can be expressed in terms of
spatial moments and therefore in terms of our quantities q, p and
g. Considering first an exponential connectivity kernel, we find
that the standard choice of the length scale λ is not optimal as it
gives a much lower correlation than when λ is 3–4 times
larger (Fig. 3b). We further derived an expression for the
optimal connectivity kernel, i.e., the one that maximises the
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Fig. 3 Occupancy–connectivity correlation in the dynamic landscape metapopulation. The model is defined in Fig. 2b. Snapshot a illustrates that patches are
more likely to be occupied (blue symbols) rather than unoccupied (pink symbols) when they are close to other patches b. Connectivity–occupancy
correlation depends strongly on the ratio of the length scale λ of the connectivity kernel to the length scale lc of the colonisation kernel. Lines show
analytical predictions and symbols are simulation results. Colonisation and connectivity kernels are chosen to have the same standard deviation when
λ ¼ lc. The highest correlation occurs when λ is 3–4 times larger that lc. The optimal length scale depends only weakly on whether the landscape is static
(solid lines, circles) or dynamic (dashed lines, triangles), or whether occupancy P0 is high (P0 ¼ 0:667, cyan) or low (P0 ¼ 0:167, black). The correlation
for the exponential connectivity kernel with the optimal choice of length scale is within 10–20% of the horizontal lines, which represent the
occupancy–connectivity correlation for the optimal connectivity kernel shape ~h?. The choice λ ¼ λ� (vertical lines), where the connectivity kernel has the
same standard deviation as the optimal connectivity kernel h�, gives a higher occupancy–connectivity correlation than λ ¼ lc. c Occupancy–connectivity
correlation decreases when rate of patch turnover μ increases relative to patch extinction rate e. Lines are analytical approximation, and symbols are the
results of simulations. Parameters r and μ are chosen so that patch density =1 and mean-field occupancy P0 is kept constant as μ=e changes; colour
denotes P0 ¼ 0:167 (black); P0 ¼ 0:333 (magenta); P0 ¼ 0:667 (cyan). Error bars not shown as standard errors are smaller than the plotting symbols.
Parameter values and kernels are given in the Methods section

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12172-y

6 NATURE COMMUNICATIONS |         (2019) 10:4716 | https://doi.org/10.1038/s41467-019-12172-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


connectivity–occupancy correlation:

~h?ðωÞ ¼
~cðωÞ

~cð0Þ ~cð0Þr þ μ2ð Þ � μðeþ μÞ~cðωÞ :

Here and throughout this paper, a tilde represents Fourier
transform; ~h?ðωÞ is the Fourier transform of the optimal
connectivity kernel, ~cðωÞ is the Fourier transform of the
colonisation kernel and ω is a frequency (the Fourier conjugate
variable to space). The parameters r; μ and e are defined in
the caption of Fig. 2 and have the same meanings as in ‘Using the
framework’ above (i.e., rates of patch creation, destruction and
extinction respectively). It is clear from this expression that, in
general, this kernel will have a different shape from either the
exponential function or the colonisation kernel. However, we find
that an exponential connectivity kernel with the optimal choice of
λ performs nearly as well (Fig. 3b). Thus, we show that an
exponential connectivity kernel is a reasonable choice for
landscape design, but we suggest that its ability to identify
important habitat would be improved if its standard deviation
were set to match that of the optimal kernel (Fig. 3).

This means that the connectivity kernel should not just depend
on the dispersal properties as is usually assumed16, but also on the
metapopulation occupancy and landscape turnover as well
(Fig. 3b). Moreover, we find that connectivity–occupancy
correlation becomes weaker when the landscape becomes more
dynamic (i.e., patches are created and destroyed more rapidly,
Fig. 3c)18. Also, for static landscapes (left side of Fig. 3c), the
correlation is stronger when the mean patch occupancy is lower,
but this trend is reversed for dynamic landscapes (right side of
Fig. 3c). Thus, connectivity is of less use to biological
conservation when either occupancy or habitat turnover is high19.

Genetic similarity. Our second case study is in the field of
population genetics. Molecular ecologists study patterns of
genetic similarity and differentiation between populations or
across space to infer the underlying processes that cause and
maintain that genetic structure. A long-standing problem is to
find tractable models where local density is regulated so that
population dynamics are stable20. Many ingenious solutions to
this problem include imposing constant local density artifi-
cially21–23. However, since the aim of these models is to relate
pattern to process, a much preferable solution would be to do this
via local density-dependent population dynamics. Such models
are regarded as too ‘hopelessly complicated’24,25 to study using
standard methods: even in the simplest models, it is highly
nontrivial to obtain analytical expressions for genetic similarity,
and the incorporation of more realistic processes (e.g., such as
selection) poses even greater difficulty24,25. Our framework
overcomes these obstacles, allowing us to consider local density-
dependent population regulation explicitly, and to derive analy-
tical expressions for how genetic similarity varies in space. We
illustrate this with an example including local competition and
limited dispersal, selection and mutation between alleles in neu-
tral and non-neutral loci, and also adaptation to heterogeneous
environments, which is important for example for tropical
forests22.

The model involves two habitat types, and haploid individuals
with four different genotypes (one selective and one neutral locus,
two alleles at each). Habitat patches appear independently as a
Poisson process with rate κ and vanish with rate μ. All individuals
have density-independent mortality (rate m) and density-
dependent mortality with the same interaction kernel c between
all genotypes. Birth is density-independent and offspring are
distributed relative to their parents with kernel d, but the
fecundity depends on habitat availability (via the patch kernel r)

and the match between the habitat type and the genotype of the
individual via the function ϕτ ¼ f 0 � ð1 ± τÞ, where f 0 is a
constant base fecundity and τ is the strength of selection.
Therefore, each habitat patch a distance x away from the
individual contributes rðxÞ � f 0 � ð1þ τÞ to the fecundity of that
individual if allele in selective locus matches the type of habitat,
and rðxÞ � f 0 � ð1� τÞ otherwise. Offspring inherits their parent’s
genotype (i.e., reproduction is clonal) unless there is a mutation,
which happens independently at each allele at rate ν per birth and
specified by the function ψν . All model components are shown in
Fig. 4a, and a typical snapshot of the dynamics is illustrated in
Fig. 4b.

We are interested in the similarity functions FnðxÞ and FsðxÞ at
the neutral and selective loci, respectively, i.e., the probability that
two individuals separated by distance x have the same allele at the
locus in question. These can be computed from the probability
densities to find specific individuals at this spatial separation.
Using the following function

FiðxÞ ¼
probability density for individuals at y and x þ ywith allele i
probability density for any two individuals at y and x þ y

;

where i ¼ 1; 2 denote alleles in neutral locus, and i ¼ A;B denote
alleles in selective locus, the similarity functions become FnðxÞ ¼
F1ðxÞ þ F2ðxÞ; FsðxÞ ¼ FAðxÞ þ FBðxÞ: The probability densities
in the equation above can be expressed in terms of the two-point

correlation functions (second spatial moments) kð2Þi;j ðxi; xjÞ that in
turn can be expressed in terms of the quantities q, p and g in the

perturbation expansion11, i.e., kð2Þi;j ðxÞ ¼ qiqj þ ϵdðgi;jðxÞ þ qipj þ
piqjÞ þ o ϵd

� �
:

Using our framework, we obtained analytical expressions for
how genetic similarity depends on the distance between
individuals (Methods) which show good agreement with
numerical simulations, Fig. 4c. Genetic similarity at the selective
locus is always higher than at the neutral locus, and also extends
further in space due to having different length scales ln and ls
(Fig. 4c), where ls; ln are, respectively, the length scales of genetic
similarity at the selective and neutral loci. Our analytical
expressions for genetic similarity (shown in the Methods section)
enable us to understand what controls the differences in these
length scales. The results become particularly simple under the
plausible assumption that mutation is rare (ν � 1, see the
Methods section):

ls
ln
¼

1þ τ2R
2ν

M
μ ð1� r2Þ

1þ τ2R
2ν

M
μ ð1� rÞ ;

where R ¼ Ne
2qh

is the ratio of the total density of individuals Ne to

the total density of habitat patches, M ¼ 4νqh f 0erð0Þedð0Þ is the
per-capita creation rate of mutants in the population, μ is the
turnover rate of habitat patches and r ¼ ð1þ μ=MÞ�1=2. We see
that the ratio of these length scales is controlled by just two
parameter combinations: μ=M, which quantifies how ephemeral the
landscape is relative to the appearance of mutants, and τ2R

2ν , which
will be numerically large when ν � 1 unless selection is very weak
or habitat patches vastly outnumber the organism. Similarity at the
selective locus will resemble that at the neutral locus if mutation is
common or selection weak, but will extend up to twice as far when
habitat turnover is slow relative to mutation (Fig. 4d).

Optimal foraging. Our third case study originates from the field
of movement ecology, in which a long-standing challenge is to
understand the causes and consequences of movement behaviour
on foraging efficiency26,27. In environments with patchily
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distributed resources, commonly observed behaviours involve
slow foraging movements within patches, interrupted by fast
exploratory movements between the patches28. Individual-based
models are needed to account for stochasticity and resource
heterogeneity in foraging29, but there are several processes at
work so it is very difficult from simulations to understand the key
evolutionary drivers and ecological consequences of variation in
foraging behaviour. Our framework solves this problem by pro-
viding simple analytical expressions that quantify the ecological
factors determining the optimal foraging strategy.

We used the graphical model description (Fig. 5a) to construct
a model in which aggregates of resources are continuously
generated at new locations, while existing resource units decay,
resulting from the consumer’s point of view in an unpredictable
resource distribution. The model consists of resources (targets),
which are generated in clusters as follows. Target ‘generators’
appear as a Poisson process with intensity b, and disappear at rate
h. During their lifetime, target generators create targets at rate hλ

at a distance from the generator determined by kernel r
(normalised so ~rð0Þ ¼ 1). We assume h ! 1 such that hλ is
constant, so that each generator instantaneously creates a Poisson
distributed number of targets with mean �λ). Targets vanish at
rate μ. The forager moves as a jump process with jump kernel c at
rates mS and mF, respectively, when in slow or fast mode.
Foragers consume targets at rate γ with kernel f . We assume the
consumer has evolved to switch to a fast movement mode (at a
rate we denote by α) when it does not encounter new resources,
and to switch back to slow movement mode after encountering a
resource unit (Fig. 5a, b).

Our mathematical formalism yields a simple closed-form
expression for the mean consumption rate (Fig. 5c),
ρ � ρ0 þ ϵdρ1, where ρ0 ¼ γβ=μ is the mean-field consumption
rate, β ¼ λb; and the first-order correction to ρ is

ρ1 ¼
βγ2ðαλμI1 � βγI2Þ
μðβγþ αμÞðαþ μÞ ; ð1Þ
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with I1 ¼
R
~f
2ðωÞ~r2ðωÞdω and I2 ¼

R
~f
2ðωÞdω. This expression

behaves non-monotonically as a function of the switching rate,
and is maximised at an intermediate value α� (vertical line in
Fig. 5c). This is because a consumer that remains continuously in
the slow mode is not efficient in finding new resource aggregates,
whereas a consumer that remains continuously in the fast mode
misses the opportunity of elevated resource availability within
aggregates.

We also find a simple expression for the optimal switching rate:

α� ¼ μf ρ0
μ ;

1
λI

� �
;where f ðx; yÞ ¼ xy þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x 1þ xyð Þ 1þ yð Þp
, λ is

the mean number of resource items per cluster, and I ¼ I1=I2
(0< I < 1) quantifies the spatial scale of the resource detection
process relative to the resource cluster size. Thus, although we
started with a model with nine processes, the optimal foraging
strategy is only determined by the two parameter combinations ρ0

μ

and λI (Fig. 5d)—for example, an increase in resource acquisition
rate has the same effect on the switching rate as the same
proportionate increase in resource production rate. It therefore
pays to spend a long time in the slow foraging mode (small α�) if
the resources are highly aggregated (large λ) or if the consumer’s
resource detection efficiency (γ) is low, Fig. 5d. However, if fast
movement requires more energy than the slow mode, we find that

α� ¼ 0 when these energetic costs per unit time exceed a
threshold (see the Methods section). This threshold value shows
that it may be better to stay put and wait for resources to be
generated locally, rather than to roam widely, when the resource
consumption rate (ρ0) is low, resource clusters contain few items
(λ small), or the spatial scale of clusters and/or resource detection
is large.

Discussion
Our framework is game-changing because (i) it makes mathe-
matical approximations available for a very wide class of
individual-based models, and (ii) this approximation is available
to the non-specialist because it requires no laborious derivations
on the part of the researcher. Since we have derived expressions
for general reactant–catalyst–product model, and implemented
these in Mathematica, a researcher interested in a particular
model has only to convert their model into the markup under-
stood by our software (see the Methods section and Fig. 2a–c) and
the approximation is generated for them automatically. Without
our method, mathematical results for a new model would only be
available to a researcher with the skill and patience to spend
weeks performing algebra without error. Our software also gen-
erates code for simulating the same model. The mathematical
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validity of our approach is proved in Supplementary Note 1, and
the validity of the approximation in these examples is shown by
its close agreement with simulations in Figs. 3–5. Since our fra-
mework is based on a perturbation expansion, it is guaranteed to
give a good approximation when the length scale of interaction
kernels is large enough compared to the separation between
individuals in the system15. One way to assess the accuracy of the
approximation is to compare p to q: if the first-order correction p
is comparable in magnitude to the mean-field density q, then
approximation may not be very accurate for those parameter
values because higher order corrections are likely to be important.

Our examples illustrate the conceptual and methodological
advantages of analytical methods over simulations. In the first
case study, we have a general expression for the best-performing
connectivity kernel, valid for any colonisation kernel, whereas
simulations can only explore specified examples and functional
forms. In the third case study, we obtained directly an expression
for the optimal foraging strategy, whereas in a simulation study
the optimal strategy would have to be searched for separately for
each parameter combination. We found in the second and third
examples that the behaviour depends on a small number of
parameter combinations, which effectively reduces the dimension
of the parameter space of the problem. This means that the model
behaviour can be explored more economically, and explained
more intuitively, than in a simulation study in which each set of
parameter values needs to be investigated independently. While
simulations will always play an important role in studying spatial
and stochastic models, our mathematical framework will facilitate
much deeper understanding by making analytical results readily
available for models that were previously thought to be too
complex.

There are already platforms that allow simulation of spatial,
stochastic individual-based models specified in a user-friendly
way10,30, but ours is the first framework that automatically per-
forms mathematical analyses as well. We have formulated, ana-
lysed mathematically and written computer code for the general
model containing any combination of reactant–catalyst–product
processes. This general model can be used to describe a very large
array of processes, so that a wide variety of models of interest in
ecology and evolution are straightforward to construct and ana-
lyse using the unified framework presented here. Thus, our fra-
mework provides a long-sought analytical tool8 with which many
classical questions in ecology, evolution and other fields can be
revisited to understand the role of space and stochasticity.

Methods
Derivation of the analytical framework. Here, we give a summary of the
approach and key results of our analytical framework; full details of the calculations
are given in the Supplementary Notes.

We begin by classifying the participants in demographic processes into three
types of individuals: (i) reactants (that are destroyed by the process); (ii) products
(that are created by the process) and (iii) catalysts (that are unaffected by the
process but whose presence affects the rate at which it occurs). A given
demographic process is therefore characterised by integer numbers denoted by P; R
and C that give number of agents in the groups ‘reactants’, ‘products’ and
‘catalysts’. The group ‘products’ is characterised by the set P consisting of pairs of
the type of agent i and the location x (from d�dimensional space x 2 R

d) assigned
to the agent: P ¼ ffi1; xi1g; fi2; xi2g; ¼ ; fiP ; xiPgg: Similarly, reactants are
described by R ¼ ffj1; xj1g; fj2; xj2g; ¼ ; fjR; xjRgg; and catalysts are described by
C ¼ ffk1; xk1g; fk2; xk2g; ¼ ; fkC ; xkCgg: We introduce the function r P;R;Cð Þ,
which depends on types of agents and on distances between locations of agents
used in P, R and C. The function r determines interactions between agents by
specifying those coordinates and indices which are the same in P, R, C. For
example, the ‘Change in type’ process where agents of type j1 transform with rate r0
into agents of type i1 without changing their locations is described by: P ¼
ffi1; xi1gg; R ¼ ffj1; xj1gg, C ¼ +, and r P;R;Cð Þ ¼ r0δðxi1 � xj1 Þ.

For the purpose of this paper, it is convenient to work with cumulants u instead
of moments, as cumulants carry the same information as moments but lead to a
more simple perturbation expansion11. We define the operator QΔ that determines

the full hierarchy of equations for cumulants:

∂

∂t
u η; tð Þ ¼ QΔu

� �
η; tð Þ: ð2Þ

Here, all orders of cumulants are denoted by uðη; tÞ, where η denotes any finite
number of points in d�dimensional continuous space Rd occupied by agents of a
specified type. For example, for a one-point configuration for an agent of type m
one has η ¼ fx;mg, and the expression uðη; tÞ gives a first-order cumulant

uð1Þm ðx; tÞ which is the density of agents m at location x, denoted as

Dmðx; tÞ ¼ uð1Þm ðx; tÞ. For a two-point configuration η ¼ fx;m; y; ng one obtains a

second cumulant uðη; tÞ ¼ uð2Þm;nðx; y; tÞ that determines spatial covariance denoted

Covm;nðx; y; tÞ ¼ uð2Þm;nðx; y; tÞ.
Following ref. 11, we made the following steps in the derivation (for detailed

derivations see Supplementary Note 1): (1) using notions of locally finite
configurations, transform an agent-based model description into the dynamics of
spatial moments; (2) using the correspondence between correlation functions and
cumulants, obtain operator QΔ for the evolution of cumulants. We obtained:

ðQΔuÞðη; tÞ ¼
 R

R
dðPþRþCÞ dxi1 ¼ dxiPdxj1 ¼ dxjRdxk1 ¼ dxkC rðP;R;CÞ

´
QkC
k¼k1

1þ DyðkÞ
xk

� � QiP
i¼i1

ð1þ DyðiÞ
xi

Þ � QjR
j¼j1

ð1þ DyðjÞ
xj

Þ
" #

V

!
ðη; tÞ;

ð3Þ
where we used the following operations DðmÞ

xm
and DyðmÞ

xm
, that can be considered as

related to creation and annihilation operators:

ðDðmÞ
xm

uÞðηÞ :¼ uðη∪ xðmÞ
m Þ;

DyðmÞ
xm

u
� �

ðηÞ :¼
X
yðmÞ
m 2η

δ xðmÞ
m � yðmÞ

m

� �
u ηnxðmÞ

m

� �
;

here xðmÞ
m denotes an agent of type m at location xm . In Eq. (3), V can be thought of

as a generating function:

V :¼ ðexp��1uÞ � Dðj1Þ
xj1

¼DðjRÞ
xjR

Dðk1Þ
xk1

¼DðkC Þ
xkC

exp�u
� �

;

where we used the operation � that is defined below, also see ref. 11. First, let Γ0
denotes the set of all finite subsets η of Rd . For any functions u; v on Γ0, the �
operation is defined as:

ðu � vÞðηÞ :¼
X

η1tη2¼η

uðη1Þvðη2Þ;

where the symbol
F

denotes a disjoint union defined asX
η1tη2¼η

uðη1Þvðη2Þ ¼
X
ξ	η

uðξÞvðηnξÞ;

thus, the symbol � defines a convolution. Using these notations, the function
ðexp�uÞðηÞ is

ðexp�uÞðηÞ :¼
X1
n¼0

1
n!
u�nðηÞ ¼ 1�ðηÞ þ

X1
n¼1

1
n!

X
η1t¼tηn¼η

uðη1Þ¼ uðηnÞ;

where

1�ðηÞ ¼ 0jηj ¼ 1jηj¼0 ¼
1; η ¼ +;

0; η≠+:

�
The function exp��1u is the inverse with respect to the � convolution, i.e., as was
shown in e.g., 31, for any u with uð+Þ ¼ 0, there exist a function exp��1u such
that exp��1uð Þ � exp�uð Þ ¼ 1�;

exp��1u
� �ðηÞ :¼X1

n¼0

�1ð Þn exp�uð Þ � 1�ð Þ�nðηÞ:

The system of Eq. (2) cannot be solved exactly, because an equation for a
cumulant of any order depends on higher order cumulants. In our derivations we
follow the method from11, which assumes that interaction between individuals is
long ranged; details of derivations are presented in Supplementary Note 1, sections
1.1–1.3. Using this exact expression of the full hierarchy of moment equations for
the general model, we apply the perturbation scheme11,13 to derive a controlled
approximation that gives asymptotically exact results when agents interact over
large enough scales. It is assumed that spatial interactions between individuals
depend on their separation x (in d-dimensional space) according to interaction
‘kernels’ of the form ϵdf ðϵxÞ where 1=ϵ is the typical length scale of interactions. In
models with long-ranged interactions (i.e., where typical scale of interaction is
large), the parameter ϵ is a small parameter that can be used to develop a
perturbation expansion. It is this small parameter ϵ that makes this approximation
controlled: the smaller ϵ, the better leading terms in a perturbation expansion
describe the exact solution.
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We showed mathematically that for a model made up of a set general process
defined by P, R, C and the interaction function rκðP;R;CÞ, the mean densities and
spatial covariance (including autocovariance) satisfy the following expansion:

density of speciesm¼ qmðϵx; tÞ þ ϵdpmðϵx; tÞ þ oðϵdÞ;
spatial covariance between speciesm and n ¼ ϵdgm;nðϵx1; ϵx2; tÞ þ oðϵdÞ;

where

dqmðx; tÞ
dt

¼
X

κ2model components

HðκÞ
qm
ðx; tÞ

dpmðx; tÞ
dt

¼
X

κ2model components

HðκÞ
pm ðx; tÞ

dgm;nðx1; x2; tÞ
dt

¼
X

κ2model components

HðκÞ
gm;n

ðx1; x2; tÞ

For a general (arbitrary) product–reactant–catalyst process κ, we derived the

corresponding contributions HðκÞ
qm
, HðκÞ

pm and HðκÞ
gm;n

to the differential equations for

qm; pm and gm;n , see Eq. (2) in Fig. 1e. The expression HðκÞ
qm

for the mean-field
density qmðx; tÞ of an agent of type m for an arbitrary spatially heterogeneous
product–reactant–catalyst process is shown below:

HðκÞ
qm
ðx; tÞ ¼ R

R
dðPþRþCÞ dxi1 ¼ dxiPdxj1 ¼ dxjRdxk1 ¼ dxkC rκðP;R;CÞ

´
PiP
i¼i1

δmiδðxi � xÞ �PjR
j¼j1

δmjδðxj � xÞ
 ! Q

βζ2fj1 ;¼ ;kCg
qβζ ðxβζ Þ

: ð4Þ

Expression for HðκÞ
pm ðx; tÞ and HðκÞ

gm;n
ðx1; x2; tÞ are shown below, while their

derivations are presented in Supplementary Note 1.

HðκÞ
pm ðx; tÞ ¼ R

R
dðPþRþCÞ dxi1 ¼ dxiPdxj1 ¼ dxjRdxk1 ¼ dxkC rκðP;R;CÞ

´
PiP
i¼i1

δmiδðxi � xÞ �PjR
j¼j1

δmjδðxj � xÞ
 !

´
P

β12fj1 ;¼ kCg
pβ1 ðxβ1 ; tÞ

Q
βζ2fj1 ;¼ kCgnβ1 qβζ ðxβζ ; tÞ

 

þ PkC
β1¼j1

PkC
β2¼β1þ1

gβ1β2 ðxβ1 ; xβ2 ; tÞ
Q

βζ2fj1 ;¼ kCgnβ1nβ2
qβζ ðxζ ; tÞ

!
:

ð5Þ

HðκÞ
gm;n

ðx1; x2; tÞ ¼ R
R
dðPþRþCÞ dxi1 ¼ dxiPdxj1 ¼ dxjRdxk1 ¼ dxkC rκðP;R;CÞ

´
PiP
i¼i1

PiP
i′>i

ðδmiδni′δðxi � x1Þδðxi′ � x2Þ þ δmi′δniδðxi � x2Þδðxi′ � x1ÞÞ
"(

�PjR
j¼j1

PjR
j′>j

ðδmjδnj′δðxj � x1Þδðxj′ � x2Þ þ δmj′δnjδðxj � x2Þδðxj′ � x1ÞÞ

þ PkC
k¼k1

δmkδðxk � x1Þ
PiP
i¼i1

δniδðxi � x2Þ þ
PiP
i¼i1

δmiδðxi � x1Þ
PkC
k¼k1

δnkδðxk � x2Þ

� PkC
k¼k1

δmkδðxk � x1Þ
PjR
j¼j1

δnjδðxj � x2Þ �
PjR
j¼j1

δmjδðxj � x1Þ
PkC
k¼k1

δnkδðxk � x2Þ
#

´ qj1 ðxj1 ; tÞ¼ qjR ðxjR ; tÞqk1 ðxk1 ; tÞ¼ qkC ðxkC ; tÞ

þPiP
i¼i1

P
β12fj1 ;¼ kCg

δmiδðxi � x1Þgβ1nðxβ1 ; x2Þ þ δniδðxi � x2Þgmβ1
ðx1; xβ1 Þ

h i
´

Q
βζ2fj1 ;¼ kCgnβ1

qβζ ðxβζ ; tÞ

�PjR
j¼j1

P
β12fj1 ;¼ kCg

δmjδðxj � x1Þgβ1nðxβ1 ; x2Þ þ δnjδðxj � x2Þgmβ1
ðx1; xβ1 Þ

h i
´

Q
βζ2fj1 ;¼ kCgnβ1

qβζ ðxβζ ; tÞ
)
:

ð6Þ
Using expressions HðκÞ

qm
ðx; tÞ, HðκÞ

pm ðx; tÞ and HðκÞ
gm;n

ðx1; x2; tÞ, it is straightforward
to show that values of quantities qmðϵx; tÞ, ϵdpmðϵx; tÞ and ϵdgm;nðϵx1; ϵx2; tÞ
calculated using the given kernels a are identical to the values of quantities qmðx; tÞ,
pmðx; tÞ and gm;nðx1; x2; tÞ calculated using the scaled kernels aϵ ,

aϵðx � yÞ ¼ ϵdaðϵðx � yÞÞ.

Computer code. The analytical software ‘Model Constructor’ is developed in
Mathematica32. The code first requires a user to specify the model in terms of
products, reactants and catalysts, and the interactions. Then, using Fourier trans-
form and a simplifying assumption of translational invariance, the code uses the

input data to obtain the analytical expressions for HðκÞ
qm
ðx; tÞ, HðκÞ

pm ðx; tÞ and
HðκÞ

gm;n
ðx1; x2; tÞ for a given system in 1D, 2D or 3D infinite space. Also, the code can

write down these analytical expressions in real space and in Fourier space into .tex
file. The analytical software has been checked to reproduce the results for 15 spe-
cific processes (see Supplementary Notes) that were derived analytically.

The expressions produced by Model Constructor assume translational
invariance, i.e., that the agents do not interact with a spatially heterogeneous

extrinsic environment, and the expressions are averaged over initial conditions that
are translationally invariant. This is not due to a limitation of the underlying
mathematical framework, as Eqs. (4), (5), (6) do not make this assumption.
However, in the absence of translational invariance the equations for g and p
involve two spatial co-ordinates rather than one, and as a result are much more
challenging to solve both analytically and numerically. Any analytical solution
would require exploiting whatever symmetries are present in the initial condition,
which depends on the details of each individual case. While we are studying some
specific cases without translational invariance (work in progress), software that
allows spatial heterogeneity to be specified in a general way is beyond the scope of
this paper.

The simulation software ‘Model simulator’ is a C-programme for simulating
continuous-time point processes. Each point is associated with a coordinate and a
discrete species attribute. Points are located either on 1D or 2D torus space. The
user defines the set of processes and the initial configuration after which the
simulator runs the Gillespie algorithm33 in such a way that the information of
point locations are taken into account, i.e., the system is not assumed to be well-
mixed. The state of the configuration can be outputted at user-defined constant
time intervals. Auxiliary R-functions are provided for calculating summary
statistics and creating figures and animations based on the simulation. Input for the
simulator is given by means of text files and few command line arguments. Output
of the simulator is written in text files. The simulation software has been checked to
replicate the results that we obtained earlier using more specific implementations
(e.g. ref. 11) that were fully independent of the current implementation (e.g., coded
in different programming languages).

In all systems studied in this paper results of both types of software, analytical
and simulation, match each other in the way that the mathematical theory suggests.
The detailed derivations of underlying mathematical expressions, and the detailed
tutorials for analytical and simulation software are shown in Supplementary Notes.

Case studies. Model Constructor was used to obtain the analytical results used in
the case studies, and for representative parameter values these were compared with
simulation results obtained using Model Simulator. The toolboxes and files con-
taining the markup for the case studies are included at Figshare, https://doi.org/
10.6084/m9.figshare.9633161. We give here the essential details for obtaining the
case study results used in the paper; further details are given in Supplementary
Notes 3, 4 and 5.

Optimal landscape connectivity model. For case study 1, the model is defined
verbally in Fig. 2a and the processes are listed in Fig. 2b.

Perturbation equations: The section ‘Using the framework’ in the main paper
contains a full description of the steps required to derive the following expressions
for qi and gij (pi is not needed for the rest of the calculation):

dq1
dt

¼ r � μq1 þ eq2 � q1q2~cð0Þ
dq2
dt

¼ �eq2 � μq2 � q1q2~cð0Þ
d~g11
dt

¼ �2μg11 þ 2eg12 � 2g11q2~cð0Þ � 2g12q1~cðωÞ
d~g12
dt

¼ ð~g11 � ~g12Þq2~cð0Þ þ ð~g22 � ~g12Þðe� q1~cð0ÞÞ � 2μ~g12 � q1q2~cðωÞ
d~g22
dt

¼ � d~g11
dt

� 2
d~g12
dt

;

Setting dq1=dt ¼ 0 ¼ dq2=dt ¼ d~g11=dt ¼ ¼ etc., and solving (which can be
performed by Mathematica), we find the following equilibrium densities and
correlation functions that will be needed later:

q�1 ¼ ð1� P0ÞQ0

q�2 ¼ P0Q0

g12 þ g22 ¼
Q0P0ð1� P0Þ

ϕðωÞð1 þ ρÞ � ð1 � P0Þ

where

P0 ¼ 1� μðe þ μÞ
~cð0Þr

Q0 ¼
r
μ

ϕðωÞ ¼ ~cð0Þ
~cðωÞ

ρ ¼ 1 � P0

1 þ e
μ

Derivation of connectivity–occupancy correlation: We are interested in the
product-moment correlation R between occupancy σðxÞ (¼ 1 if there is an
occupied patch at x and 0 if there is not) and connectivity SðxÞ ¼Py2γA hðx � yÞ,
where γA is the set of all patches in the landscape whether occupied or not. This
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can be defined as

R ¼
σðxÞ � σðxÞh ix2γA
� �

SðxÞ � SðxÞh ix2γA
� �D E

x2γA

ðσðxÞ � σðxÞh ix2γA Þ
2

D E
x2γA

ðSðxÞ � SðxÞh ix2γA Þ
2

D E
x2γA

� 	1=2 ;
where h�ix2γA denotes an average over all patches in the landscape, i.e.,

hZðxÞix2γA ¼
P

x2γA
ZðxÞ

jγA j . These averages were expressed as spatial moments

(Supplementary Note 3 section 3.4), which were expanded using the perturbation
expansion to leading order in ϵd were retained. Expressions for q and g above were
then substituted into the expression for R to give

R ¼
R
~hðωÞ g12ðωÞ þ g22ðωÞ

� �
dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q3
0P0ð1� P0Þ

R
~h
2ðωÞdω

q : ð7Þ

¼
R
R

d

~hðωÞQ0P0ð1� P0Þ
ϕðωÞð1þ ρÞ� ð1� P0Þ dω

Q3
0P0ð1� P0Þ

R
R

d
~h
2ðωÞdω

� �1
2

ð8Þ

Proof that landscape turnover weakens connectivity–occcupancy correlation:
From Eq. (7), we compute ∂R=∂ρ, keeping the mean patch occupancy P0 and mean
patch density Q0 constant:

∂R
∂ρ

¼ � 1

Q3
0P0ð1� P0Þ

R
R

d
~h
2ðωÞdω

� �1
2

Z
R

d

~hðωÞ ϕðωÞQ0P0ð1� P0Þ
ϕð1þ ρÞ � ð1� P0Þð Þ2 dω:

This expression is always negative.
Kernel that maximises correlation: We take a variational approach and write

~hðωÞ ¼ ~h?ðωÞ þ νδðjωj � jω1jÞ, where δ is a Dirac Delta function. If the
correlation is maximal when h ¼ h? , then ∂R=∂ν ¼ 0 for all ω1, which leads to

~h?ðωÞ ¼
1

ϕðωÞð1þ ρÞ � ð1� P0Þ
:

Variance and standard deviation of the optimal kernel: For any rotationally
symmetric function MðxÞ with variance VM ¼ R

R
d x2MðxÞdx=R

R
dMðxÞdx, the

Taylor expansion of the Fourier transform of M is

~MðωÞ ¼ ~Mð0Þ 1� aVMω
2 þ oðω2Þ� �

;

where a is a number that depends on spatial dimension, but not on M. Thus,
~cðωÞ ¼ ~cð0Þ 1� aVcω

2 þ oðω2Þð Þ, and expanding ~h? gives

~h?ðωÞ ¼
A

ρþ P0
1� aVcω

2 1þ ρ

ρþ P0
þ oðω2Þ

� 

:

Therefore, the variance of the optimal connectivity kernel h? is

V? ¼ Vc
1 þ ρ

ρ þ P0

� �
¼ Vc

~cð0Þr þ μ2

~cð0Þr � eμ

� �
Thus, the standard deviation of the optimal kernel is

λ� ¼ lc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið~cð0Þr þ μ2Þ=ð~cð0Þr � eμÞp

, where lc is the standard deviation of the
colonisation kernel.

Parameters used in Fig. 3: a r ¼ μ ¼ 0, c(x) = 4�Tophat(x,1) where Tophat
(x;R) is a normalised tophat kernel with radius R, e ¼ 1. b Connectivity kernel
hðxÞ ¼ expð�x=λÞ, colonisation kernel cðxÞ ¼ 4�Tophat(x,lc

ffiffiffiffiffi
12

p
) so that the

colonisation and connectivity kernels have the same standard deviation when
λ ¼ lc. Static landscape (solid lines, circles): μ ¼ r ¼ 0, e ¼ 2; dynamic landscape
(dashed lines, triangles) μ ¼ r ¼ 2, e ¼ 0; c r ¼ μ and e ¼ 2� μ so that patch

density =1 and mean-field occupancy P0 ¼ 1� eðμþ eÞ
r~cð0Þ is kept constant as μ=e

changes; cðxÞ ¼ 4� Tophat(x,4); h ¼ expð�x=4Þ.

Genetic similarity model. Full operator L defining the model: Denoting two
habitat types as species s1 and s2, and denoting species with four different geno-
types as s3; s4; s5 and s6, the graphical definition of the model presented in Fig. 4a
leads to the complete definition of the model by the following full operator L:

L ¼
X
i¼s1 ;s2

LIMi ðκÞ þ LDi ðμÞ
� �þ X

j¼s3 ;s4 ;s5 ;s6

LDj ðmÞ þ
X

k¼s3 ;s4 ;s5 ;s6

LDEjk ðcÞ
24 35

þ
X

i¼s3 ;s4 ;s5 ;s6

X
k1¼s3 ;s4 ;s5 ;s6

X
k2¼s1 ;s2

ϕτk1 ;k2ψ
ν
k1 ;i

LBTFik1k2
ðr; dÞ

0@ 1A24 35;
where abbreviations have the following meaning: IM stands for Immigration, D for
density-independent death, DE for death by external factor, BTF for birth to
another type by facilitation (these processes are defined in Supplementary Note
1 section 1.3).

Probability densities: Using notations introduced in the main text, the
probability density for any two individuals at locations y and x þ y is considered asP

i;i′k
ð2Þ
i;i′ ðy; x þ yÞ, where the sum is taken over all possible pairs ði; i′Þ of genotypes

(there are four possible genotypes: fA1;A2;B1;B2g). Probability density for
individuals at y and x þ y with allele j in neutral locus (i.e., j ¼ 1; 2) is defined as

kð2ÞAj;Ajð
Þ þ kð2ÞAj;Bjð
Þ þ kð2ÞBj;Ajð
Þ þ kð2ÞBj;Bjð
Þ
� �

; and with allele β in selective locus

(i.e., β ¼ A;B) is defined as kð2Þβ1;β1ð
Þ þ kð2Þβ1;β2ð
Þ þ kð2Þβ2;β1ð
Þ þ kð2Þβ2;β2ð
Þ
� �

; where

in both cases 
 denotes locations of individuals 
 ¼ fy; x þ yg.
Analytical expressions of similarity functions: We use Model Constructor to

obtain expressions for q, p and g for the model, and hence expressions for the
leading terms in the expansion for the two-point correlation functions (second

spatial moments) kð2Þi;j . To first-order in ϵd , and from now on assuming we are in
spatial dimension d ¼ 2, the similarity functions FnðxÞ and FsðxÞ take the form

FnðxÞ ¼
1
2
þ π

4q�

Z 1

0

ð1� 2νÞedðωÞedð0Þ � ð1� 2νÞedðωÞ J0ð2πxωÞωdω;
FsðxÞ ¼ FnðxÞ þ τ2

Z 1

0

ð1� 2νÞedðωÞedð0Þ � ð1� 2νÞedðωÞ
 !

πð1� 2νÞf 0μedðωÞer2ðωÞ=erð0Þ
2f 0κ½edð0Þ � ð1� 2νÞedðωÞ�erð0Þ þ μ2

´ J0ð2πxωÞωdω;
where J0ðωÞ is Bessel function of the first kind of order zero and

q� ¼ 2f 0κ
edð0Þerð0Þ �mμ

4μecð0Þ
is the mean-field density for any single genotype.

In the limit of very rare mutations: ν ! 0, the denominator in the integrals
above is dominated by the behaviour for ω small. In small-ω limit in 2D one
obtains edðωÞ � edð0Þ 1� 2π2σ2ω2ð Þ þ oðω3Þ, where σ2 is the variance of the kernel
d. As a result, we have

FnðxÞ�
1
2
þ 1
8πq�σ2

Z 1

0

J0ð2πxωÞωdω
R2
ν þ ω2

¼ 1
2
þ 1
8πq�σ2

K0ð2πxRνÞ

¼ 1
2
þ 1
2Neπσ

2
K0ðx=xnÞ; xn ¼ σ

2
ffiffiffi
ν

p

where

R2
ν ¼ ν

π2σ2
;

Ne ¼ 4q� , and we have assumed x � σ; K0 is a modified Bessel function of the
second kind of order zero. Similarly, when ν ! 0, the similarity at the selective
locus is

FsðxÞ � FnðxÞ þ
τ2

8νqhπσ
2

K0ðx=xnÞ � K0ðx=xsÞ
μ=M

; xs ¼
xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μ=M
p ;

where qh ¼ κ=μ is the density of habitat patches of a single type, and M ¼
4νqh f 0erð0Þedð0Þ is the rate with which an existing individual produces a new
mutant.

Derivation of length scales: We define the length scale for a similarity function
as the mean distance over which it decays to its asymptotic value at large distances
limx!1FðxÞ ¼ 1

2

� �
:

l ¼
R1
0 x FðxÞ � 1

2

� �
dxR1

0 FðxÞ � 1
2

� �
dx

:

According to this definition, using the small-ν expressions for Fn and Fs in terms
of Bessel functions, we obtain the expression for the ratio of length scales presented
in the main text.

Parameters used in Fig. 4: b ν ¼ 0:01, κ ¼ 0:05, μ ¼ 1, τ ¼ 1, f 0 ¼ 1, m ¼ 1;
rðxÞ ¼ 3:5 ´Tophat(x; 2); dðxÞ ¼ 3 ´Tophat(x; 2); cðxÞ ¼ 1:25 ´Tophat(x; 3=20),
where Tophat(x;R) is a normalised tophat kernel with radius R. c
dðxÞ ¼ rðxÞ ¼Tophatðx; 6Þ, and cðxÞ ¼Tophat(x; 20).

Optimal foraging model. The model is specified in section ‘Optimal foraging’ in
the paper and Fig. 5a, and is defined by the operator

L ¼ LIM1 ðbÞ þ LD1 ðhÞ þ LBT21 ðhλrÞ þ LD2 ðμÞ
þ LJ3ðmScÞ þ LJ4ðmFcÞ þ LCT43 ðαÞ þ LDE23 ðγf Þ þ LCTC342 ðγf Þ;

where the entity types are defined as follows: 1: resource target generators; 2:
resource targets; 3: slow-moving consumer; 4: fast-moving consumer; the abbre-
viation BT stands for birth to another type, J for jump, CTC for change in type by
consumption, other abbreviations were already explained above (the full definition
is presented in Supplementary Note 1 section 1.3, see also Supplementary Tables
1–3). Parameter h determines the rate at which target generators disappear; we will
study the case where clusters of targets are created simultaneously by taking the
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limit h ! 1. Since each target generator creates resources at rate hλ, and has mean
lifetime 1=h, it generates a Poisson distributed number of resource targets with
mean λ. This is a convenient method for generating clusters of individuals from an
underlying process that generates individuals; a similar approach was used in ref. 15

to generate clusters of habitat patches.
Our interest is in the equilibrium rate ρ� by which each searcher consumes

targets. This can be computed by solving the stationary state of the system under
the condition that the density of searchers, denoted here by A, is constant. This
yields ρ� ¼ ðβ=k�2 � μÞk�2=A, where β ¼ λb is the appearance rate of targets, k�2 is
the stationary density of targets and the expression in brackets is the rate at which a
randomly selected target disappears due to consumption. As we are not interested
in resource competition among multiple searchers, we consider the case of a single
searcher, obtained technically by taking the limit A ! 0. Note that, in the main
text, we have set ϵ ¼ 1, i.e., the length scale of the kernels f and r is the true
biological one and has not been rescaled by ϵ.

Resource consumption rate: Using Model constructor, the stationary density of
targets in the mean-field approximation is k�2 � q�2 ¼ β=ðAγþ μÞ, and thus the
consumption rate of targets by a single searcher is ρ� � ρ0 ¼ γβ=μ independently
of the parameter α.

In the first-order approximation, the stationary density of targets is
k�2 � q�2 þ ϵdp�2. The general expression for p�2 is given using ‘The model
constructor’ toolbox: p�2 ¼

R1
0 IntFðωÞdω, where the integrand function IntFðωÞ is

IntFðωÞ ¼ � 2γπω~f ðωÞ
ðAγþ μÞ ~g23ðωÞ þ ~g24ðωÞ

� �
:

Using ‘The model constructor’ toolbox to calculate the limit h ! 1 (after
which the results no longer depend on h) and to extract the leading term in the
limit A ! 0; which is achieved by the following Mathematica commands:

IntF = IntF /. h -> (1/ih);
IntF = Normal[Series[IntF, {A, 0, 1}]];
IntF = Limit[IntF, ih -> 0]

We thus obtain:

IntFðωÞ ¼ 2YAbγ2ωπ~f ðωÞ2
μ2 bγλþ αμð ÞZ ;

where

Y ¼ b2γ2λ3 þ bγλ2μ 2αþmF þ μð Þ þ λαμ2 αþmS þ μð Þ
þ �mF þmSð Þ~rðωÞ2μ2α α� ~cðωÞl2� �
� μ~cðωÞλ bγλmF þ αmSμð Þ;

Z ¼ bγλ mS þ μð Þ þ μ mF þ μð Þ αþmS þ μð Þ
� bγλmS þ μ αmF þ 2mFmS þmFμþmSμð Þð Þ~cðωÞ
þmFmSμ~cðωÞ2:

The expressions for ~gij are still rather unwieldy, but we can simplify them by
considering the limit where in the fast movement mode the movements are very
fast (mF ! 1), and the slow movements are very slow (mS ¼ 0). This is achieved
by the Mathematica command

Simplify[Limit[IntF, mf -> Infinity]] /. ms -> 0

resulting in

IntFðωÞ ¼ 2Abγ2ωπ~f ðωÞ2 bγλ2 � α2μ~rðωÞ2� �
μ2 αþ μð Þ bγλþ αμð Þ :

At this limit, the first-order approximation for the consumption rate of targets is
ρ� � ρ0 þ ϵdρ1, where

ρ1 ¼
βγ2ðαλμI1 � βγI2Þ
μðβγþ αμÞðαþ μÞ ;

and I1 ¼
R1
0 2πω~f ðωÞ2~rðωÞ2dω and I2 ¼

R1
0 2πω~f ðωÞ2dω.

Optimal switching rate: The optimal switching rate is found by the value of α
where ∂ρ1=∂α ¼ 0, which from the above expression for ρ1 is

α� ¼ ρ0
I2
λI1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μρ0 1þ ρ0

μ

I2
λI1

� �
1þ I2

λI1

� �s
:

Threshold cost of fast foraging: During the fast-foraging mode, the resource
acquisition rate is ρ0, so it takes a time 1=ρ0 before the consumer finds a resource and
switches to the slow mode. If the fast mode costs κ resource units per unit time, then
the rate of resource expenditure due to fast foraging is ακ=ρ0. The net resource gain is

ρ0 þ ϵdρ1 � ακ=ρ0 ¼ ρ0 þ ϵd
ρ0γðαλI1 � ρ0I2Þ
ðρ0 þ αÞðαþ μÞ � ακ

ρ0
;

where we used ρ0 ¼ γβ=μ: This function has a maximum at α> 0 (and,

correspondingly, its derivative with respect to α at α ¼ 0 is positive) unless

κ> ϵd
ρ0γ

μ
λ

Z
Rd

~f ðωÞ~rðωÞ
n o2

dωþ 1þ ρ0
μ

� �Z
Rd

~f
2ðωÞdω

� 	
;

in which case the fastest net resource acquisition is at α ¼ 0.
Parameters used in Fig. 5: Parameters not varied in the panels are set to γ ¼ 1,

β ¼ 0:01, μ ¼ 0:1, λ ¼ 10, f ðxÞ ¼ rðxÞ ¼ cðxÞ ¼Tophatðx; 5Þ. For panel c, the
theoretical curve is calculated for h ¼ mF ¼ 1=mS ! 1, whereas the simulations
used h ¼ mF ¼ 1=mS ¼ 1000.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Simulation data used to generate Figs. 3, 4 and 5, created using the Model Simulator
toolkit, are available from Figshare at https://doi.org/10.6084/m9.figshare.9632531.

Code availability
Model Constructor and Model Simulator are released under the GNU Public License v. 2
and are available from Figshare at https://doi.org/10.6084/m9.figshare.9633161. Included
with the software are sample files and code for running the case studies in this paper.
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