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Cancer-associated mutations in DICER1 RNase IIIa
and IIIb domains exert similar effects on miRNA
biogenesis
Jeffrey Vedanayagam 1, Walid K. Chatila2,3,4, Bülent Arman Aksoy 2,3,10, Sonali Majumdar1,

Anders Jacobsen Skanderup 2,11, Emek Demir2,5, Nikolaus Schultz4,6,7, Chris Sander 2,8,9 & Eric C. Lai 1,3

Somatic mutations in the RNase IIIb domain of DICER1 arise in cancer and disrupt the

cleavage of 5' pre-miRNA arms. Here, we characterize an unstudied, recurrent, mutation

(S1344L) in the DICER1 RNase IIIa domain in tumors from The Cancer Genome Atlas (TCGA)

project and MSK-IMPACT profiling. RNase IIIa/b hotspots are absent from most cancers, but

are notably enriched in uterine cancers. Systematic analysis of TCGA small RNA datasets

show that DICER1 RNase IIIa-S1344L tumors deplete 5p-miRNAs, analogous to RNase IIIb

hotspot samples. Structural and evolutionary coupling analyses reveal constrained proximity

of RNase IIIa-S1344 to the RNase IIIb catalytic site, rationalizing why mutation of this site

phenocopies known hotspot alterations. Finally, examination of DICER1 hotspot endometrial

tumors reveals derepression of specific miRNA target signatures. In summary, comprehen-

sive analyses of DICER1 somatic mutations and small RNA data reveal a mechanistic aspect

of pre-miRNA processing that manifests in specific cancer settings.
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M icroRNAs (miRNAs) are ~22 nucleotide (nt) RNAs that
mediate post transcriptional repression in diverse spe-
cies1. In animals, most miRNAs traverse a canonical

biogenesis pathway involving compartmentalized processing by
two RNase III enzymes2. In the nucleus, primary miRNA tran-
scripts bearing inverted repeats are cleaved by Drosha to release
pre-miRNA hairpins. In the cytoplasm, these are cleaved by Dicer
to yield miRNA/miRNA* duplexes, which load into Argonaute
effector proteins3. Following removal of miRNA* species, the
single-stranded miRNA-Argonaute complex, in association with
GW182/TNRC6 cofactors, seeks regulatory targets. In addition,
diverse non-canonical biogenesis pathways that bypass Drosha
and/or Dicer can also generate functional Argonaute-loaded
miRNAs2.

The most critical determinant for target recognition is
Watson–Crick base-pairing to the miRNA seed region, nts 2–8
from the 5' end1,4. Owing to—or perhaps facilitated by—the
modest amount of sequence complementarity needed for miRNA
regulation, most animal miRNAs appear to have been incorpo-
rated into large target networks. There is both computational5

and experimental6,7 evidence that individual miRNAs can reg-
ulate hundreds of genes. Although it remains challenging to
reconcile the evidence for such broad miRNA regulatory net-
works with the often nominal defects observed in individual
miRNA knockouts8, documented miRNA mutants exhibit
developmental, physiological, metabolic, and/or behavioral
defects9. Moreover, null mutants in core miRNA biogenesis fac-
tors are lethal in all animals10–13, and yield severe tissue-specific
defects when inactivated conditionally10,14–16. Strikingly, recent
studies reveal that mutation of human DICER1 is cell lethal in
human embryonic stem cells17. This serves as a testament to the
detrimental impact of ablating miRNA-mediated regulation.

Surprisingly, then, mutations in human DICER1 are recurrent
in diverse cancers18–24. Thus, although miRNAs are required for
normal cell fitness, selective inactivation of DICER1 can benefit
cancer cells. DICER1 hotspot mutations occur preferentially
within the RNase IIIb domain, and usually affect the metal ion-
binding residues25. Notably, mechanistic studies showed that
activity of the Dicer RNase III domains can be uncoupled26,27. In
particular, RNase IIIa cuts the 3p hairpin arm, while RNase IIIb
cuts the 5p hairpin arm. Accordingly, cancer hotspot mutant
variants of DICER1 exhibit selective defects in processing
miRNA-5p strands, leading to overall decreases in 5p:3p strand
ratios20,22–24,26.

DICER1 hotspot mutants were mostly characterized using cell
models and in vitro assays, but consequences of biased miRNA
processing on target regulation have not been studied extensively
within human tumors. For example, the relative contribution of
5p-strand depletion or increased 3p-strand accessibility in cancer
remains to clarified, as well as if particular miRNAs or families
drive the phenotype. In addition, although large numbers of
somatic DICER1 mutations appear in cancer genome sequencing,
it is relevant to know if additional driver alleles beyond RNase
IIIb hotspots can be distinguished.

Here, we perform integrative studies on genome sequence,
small RNA and RNA-seq data from the Cancer Genome Atlas
(TCGA) PanCancer (PanCan) project28,29 [https://portal.gdc.
cancer.gov/] and Memorial Sloan-Kettering Integrated Mutation
Profiling of Actionable Cancer Targets (MSK-IMPACT) clinical
profiling30 [https://www.mskcc.org/msk-impact]. These analyses
yield insights into tumor-specificity of DICER1 mutations and
their consequences on miRNA and mRNA profiles. Surprisingly,
we reveal that recurrent DICER1 RNase IIIa-S1344L mutants
impede miRNA-5p biogenesis and activity, similar to known
RNase IIIb mutants. Evolutionary and structural evidence shows
that RNase IIIa-S1344 is functionally coupled to RNase IIIb

catalytic residues. Finally, we exploit prevalent DICER1 RNase III
hotspot mutations in endometrial cancer to identify targets of
specific miRNAs that are derepressed in this setting.

Results
Recurrent DICER1 RNase IIIa and IIIb mutations in tumors.
Ever since the finding that certain tumors accumulate DICER1
lesions, especially point mutations within its RNase IIIb domain,
many studies analyzed DICER1 alleles in diverse cancers and
pathologies25. Here, we summarize the landscape of somatic
DICER1 mutations from 9919 TCGA PanCan datasets28,29, and
31,029 IMPACT datasets acquired from targeted sequencing of
MSK patients30. While TCGA data comprises primary tumors
from untreated patients, IMPACT systematically profiles all MSK
patients, and includes advanced and metastatic cancers. Thus, we
have the opportunity to compare features of DICER1 mutations
between these large and functionally independent cohorts.

While overall infrequent, the known RNase IIIb mutations
comprise clear hotspots in these cross-cancer profilings (Fig. 1a).
Mutations in the metal ion-binding residues at the catalytic center
(E1705, D1709, D1810, and E1813) constitute the most frequent
hits in RNase IIIb. Cancer-associated mutation of G1809 partially
impairs RNase IIIb activity31; this allele was present only once in
the TCGA dataset but was clearly recurrent in the IMPACT data
with eight cases. There were 79 hits in these five residues across
the two datasets (Fig. 1a). More recently, mutation of RNase IIIb-
D1713 was reported in anaplastic kidney sarcoma and shown to
impair RNase IIIb activity23. However, only a single case occurred
in TCGA data and none appeared in IMPACT (Supplementary
Data 1 and 2); thus, we did not consider this a hotspot.

In stark contrast to these RNase IIIb mutations, there is a
paucity of RNase IIIa mutations affecting catalysis. Despite
845 somatic hits in the aggregate DICER1 data, three of the
RNase IIIa metal-binding residues (E1316, D1561, and E1564)
were never mutated, and only single instances affected the fourth
residue (D1320N) in TCGA and IMPACT data (Supplementary
Data 1 and 2). Thus, there does not appear to be any selective
advantage to inactivate DICER1 RNase IIIa in cancer. Never-
theless, we were intrigued by a recurrent mutation in RNase IIIa
(S1344L, and one instance of S1344T), represented in both TCGA
and IMPACT cohorts (Fig. 1a). Two prior studies each recorded
single instances of S1344L in Wilms' tumor20,32, although
no specific tests of this allele were reported. Interestingly, we
observed that among TCGA cases, alterations of S1344 were
similar in frequency to individual RNase IIIb catalytic site
mutants. We also note some other uncharacterized somatic
mutations shared by both datasets, including ones affecting the
PAZ domain (R944Q) and RNase IIIb domain (D1699N/D/
Xsplice). Notably, while only RNase IIIb mutations were
previously classified as hotspots33, accumulating tumor sequen-
cing data now enables classification of RNase IIIa-S1344L/T
as a statistically significant recurrent cancer mutation34. The
current iteration of Cancer Hotspots analysis places a q-value for
S1344L/T (0.0281) on par with RNase IIIb-D1709N (0.0130),
although q-values for other RNase IIIb hotspots are lower
(e.g., D1810 mutations, 8.22E-5; E1813 mutations, 1.04E-10;
Supplementary Fig. 1). No other DICER1 residues are currently
imputed as statistically significant recurrent targets (https://www.
cancerhotspots.org).

Biallelic DICER1 cases involve RNase IIIa and IIIb hotspots.
Evidence was reported from mouse models that Dicer is hap-
loinsufficient in certain cancer contexts35,36, and heterozygous
germline mutations in DICER1 were first detected in pleur-
opulmonary blastoma18. However, other studies indicate that
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DICER1 hotspot mutations are biallelic in cancer, and act in trans
to nonsense or inactivating alleles of DICER120,21,37. Surprisingly,
certain murine cancer models are supported38 or indeed driven39

by full conditional inactivation of Dicer, suggesting that it can act
as a conventional tumor suppressor in certain contexts. This may
be the case in human pineoblastoma, for which germline DICER1
mutation combined with loss-of-heterozygosity was detected40.

To clarify these genetic observations with respect to human
tumor data, we sought the existence of secondary disabling events
in DICER1 hotspot cases. There are caveats to this analysis, such
as the inference that secondary aberrations occur in trans as
opposed to in cis, and whether they occur within the same nuclei
as opposed to different tumor cells. Moreover, it is more
challenging to call indels and deletions compared to point
mutations, and IMPACT data are generally underpowered
relative to TCGA data for calling copy number variations
(CNVs). Nevertheless, we used the latest TCGA MC3 MAF files
using 2+ callers29 to screen all somatic DICER1 missense mutant
tumors for overt secondary disabling events (nonsense mutations,
out-of-frame indels, splice-altering alleles or deep deletions). This
approach would miss secondary events called by only one
algorithm, but those events called are considered robust.

For initial assessments, we excluded hypermutated tumors
(mostly POLE and some MSI), which are expected to exhibit
elevated passenger mutations. For example, the recurrent allele
R944Q (rarely R944*) could be found with heterozygous copy
loss, or with other somatic DICER1 variants of unknown
significance, but all of these were strictly found in hypermutated
tumors. In general, apparent passenger mutations in DICER1
were enriched in hypermutated cases (mostly colorectal and
esophageal cancers, and POLE subclass of endometrial cancers) in
both TCGA and IMPACT cohorts (Fig. 2 and Supplementary
Data 1 and 2).

Overall, this approach yielded a clarified picture. While the vast
majority of somatic mutations fell away, many RNase IIIb mutant

tumors contained biallelic events (Supplementary Data 1 and 2).
We highlight examples of biallelic events involving each of the
five RNase IIIb DICER1 hotspot residues among IMPACT
tumors (Fig. 1b). These data support the notion that DICER1 is
not generally haploinsufficient in human cancer, but instead
requires a cellular environment where only an altered Dicer
activity is present. We subsequently recognized additional
biallelic cases involving RNase IIIb hotspot mutations in
hypermutated samples (Supplementary Data 1 and 2), suggesting
that functional alteration of DICER1 is also relevant in these
patients. By contrast, hardly any other alleles exhibited evidence
for biallelic events that were recurrent in both datasets. One
possible example was D1699N (Fig. 1a), which was picked up
once in a HETLOSS tumor and another time as a splice-
inactivating event with an RNase IIIb hotspot (E1813G); other
instances of this allele occurred in hypermutated tumors.

Of perhaps greater interest, the only uncharacterized mutation
with clearly recurrent biallelic events in both non-hypermutated
TCGA and IMPACT datasets was RNase IIIa-S1344L (ten events
in nine patients, Fig. 1a and Supplementary Data 1 and 2).
Figure 1b highlights S1344L events in trans to deletions, nonsense
mutations, and an exceptional case bearing a second S1344 allele
(S1344T). While prior genome sequencing has not implicated
RNase IIIa mutations as pathogenic, and RNase IIIa catalytic site
mutations are indeed nearly absent in cancer, these observations
further suggest S1344L is functionally relevant during
tumorigenesis.

Specific tumor preferences of RNase IIIa/b hotspot mutants.
The breadth of TCGA and IMPACT sampling across dozens of
cancer types allowed us to interrogate potential specificity of
DICER1 hotspots. Moreover, while TCGA covers only primary
cases, MSK-IMPACT has a strong representation of metastatic
samples. Both RNase IIIa and IIIb hotspots, including biallelic

TCGA/IMPACT Case RNase IIIa, 2° event Cancer type

TCGA-EE-A2MC-06 S1344L,  HOMDEL Melanoma, SKCM
TCGA-A5-A0GN-01 S1344L,  HETLOSS Endometrial cancer
TCGA-W5-AA39-01 S1344L,  S1344T Hepatobiliary cancer
TCGA-B5-A11U-01 S1344L,  P1377Lfs*2 Endometrial cancer
TCGA-AA-3973-01 S1344L,  E218* Colorectal cancer

P-0006796-T01-IM5 S1344L, I446Ffs*12 Melanoma; cutaneous;
metastasis

Examples of biallelic events involving RNase IIIa-S1344L
MSK-IMPACT Case RNase IIIb, 2° event Cancer type

P-0007425-T01-IM5 E1705K, Y1335* Thyroid cancer
P-0013599-T01-IM5 D1709N, S1473Qfs*17, R937C Endometrial cancer
P-0017108-T01-IM6 D1709N, R656* Sex cord stromal tumor
P-0018403-T01-IM6 G1809R, X1842_splice Soft tissue sarcoma; metastasis
P-0012121-T01-IM5 G1809R, G1809W NSC lung cancer; luad
P-0014229-T01-IM6 D1810N, W138* Melanoma; cutaneous; metastasis
P-0022199-T01-IM6 E1813G, X1699_splice Sex cord stromal tumor; metastasis
P-0020325-T01-IM6 E1813G, G551Efs*11 Uterine sarcoma

Examples of biallelic events involving known RNase IIIb hotspots
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Fig. 1 Survey of DICER1 cancer mutations reveals recurrent RNase IIIb and IIIa hotspots. a Lollipop mutation diagrams of TCGA-PanCan (pointing up) and
MSK-IMPACT (pointing down) datasets. The sites labeled in black designate mutations in the four catalytic residues in the RNase IIIb domain (D1709,
E1705, E1813, D1810, in black) and an adjacent residue (G1809, in green) that are the major known biallelic DICER1 events in cancer. These aggregate data
also reveal an uncharacterized biallelic alteration involving S1344L (in red) in the RNase IIIa domain. The background of other somatic mutations of
unknown functional significance is shown for perspective; certain other apparently recurrent mutations are recovered in both TCGA and IMPACT datasets
(e.g., PAZ-R944Q, in gray), but were not associated with biallelic hits in non-hypermutated samples. b Left column, examples of biallelic hits in each of the
five known RNase IIIb hotspot residues in IMPACT data, with their corresponding secondary inactivating mutations and cancer types. Right column, a
selection of multiple cancer types that exhibit RNase IIIa-S1344L and carry diverse secondary inactivating mutations across TCGA and IMPACT data.
Patient sequencing from metastatic tumors are noted (in blue)
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Fig. 2 Frequency of DICER1 mutations in TCGA and MSK-IMPACT data across tumor types. We classify alleles as variants of unknown significance, RNase
IIIa/b hotspot mutations, and/or biallelic mutations in a TCGA-PanCan data and b MSK-IMPACT data. Because of the diversity of MSK-IMPACT cohort,
only cancer types with >50 cases are shown, except for certain rare MSI/POLE tumors that are shown to match TCGA hypermutated data. Hypermutated
tumors are designated in blue. Note the MSK-IMPACT data is generally underpowered relative to TCGA to call copy number loss; thus, only TCGA data
includes biallelic calls for HETLOSS. Many commonly surveyed cancer types (n for each tumor type summarized below) are devoid of DICER1 hotspot
mutations (also see Supplementary Figs. 2 and 3). However, independently in TCGA and MSK-IMPACT datasets, multiple uterine cancers were enriched
for hotspot mutations (green highlighted groups on x-axis). Bootstrap resampling analysis with hypermutated cases excluded shows that several uterine
cancers and sarcoma subtypes are statistically enriched in both TCGA and MSK-IMPACT datasets (red asterisks). Furthermore, in a second iteration
where hypermutated cases were retained in resampling analysis, additional uterine cancers were found enriched for RNase III hotspots (blue asterisks).
c Examples of statistical analyses for enrichment or depletion of hotspot mutations in MSK-IMPACT cancer groups. From random samplings of 10,000
bootstrap replicates, the average numbers of hotspot mutations obtained are in blue, while observed numbers of hotspot mutations are in orange. For
enrichment, endometrial cancer is shown as an example. Statistical significance for depletion can only be estimated using percentile confidence intervals
(CI) when sample sizes are large, as illustrated for breast cancer (zero hotspots, falling well below 5% CI). Statistical analyses for all other cancer groups
from TCGA and MSK-IMPACT data are shown in Supplementary Figs. 2 and 3
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cases, were represented in metastatic tumors (Fig. 1b), suggesting
that these mutant cells can support migration, invasion and/or
recolonization. Interestingly, the distribution of DICER1 hotspot
mutations was not even across cancer types. For example, visual
inspection shows that hotspot mutations and biallelic cases were
generally restricted to a few related classes of uterine cancers in
both TCGA and MSK-IMPACT datasets (Fig. 2a, b). By contrast,
the strong majority of cancer types completely lacked DICER1
hotspot mutations (Fig. 2b and Supplementary Fig. 3), including
some very commonly sequenced cancers (e.g., breast, pancreatic,
and prostate cancers, each with >1000 cases).

We performed random resampling analysis (see Methods) to
estimate significance for enrichment or depletion of DICER1
hotspot mutations. This analysis finds uterine cancers are
genuinely enriched for hotspot mutations in both TCGA and
MSK-IMPACT cohorts. In TCGA data, uterine corpus endome-
trial carcinoma (UCEC CN high and CN low) and uterine
carcinosarcoma (UCS) were statistically enriched for hotspots
(Fig. 2a and Supplementary Fig. 2). Similarly, endometrial cancer
and uterine sarcoma were significantly enriched for hotspots in
MSK-IMPACT (Fig. 2b and Supplementary Fig. 3). The similar
enrichments from independent largescale cancer cohorts strongly
imply preferred impacts of DICER1 hotspot alleles in the uterine
cancer setting. In addition, soft tissue sarcoma and sex-cord
stromal tumor were enriched for hotspots in MSK-IMPACT data
(Fig. 2b). This analysis was conservative in that we excluded
hypermutated cancers from the resampling procedure. When
hypermutated cases were included, we find significant enrichment
for hotspots in additional uterine cancer groups (UCEC MSI and
UCEC POLE) in TCGA and in endometrial cancer MSI in MSK-
IMPACT data, respectively (Fig. 2a, b). However, other
hypermutated cancers (POLE or MSI) generally lacked DICER1
hotspots.

Reciprocally, 70% (29/40) of TCGA PanCan and 63% (26/41)
of MSK-IMPACT cancer types had zero DICER1 RNase III
hotspot mutations (considering only cancer types with sample
size >50). Of these, 8 TCGA and 17 MSK-IMPACT cancer types
had sample sizes >200, larger than typical uterine cancer cohorts
with clear hotspot enrichment (Supplementary Figs. 2 and 3).
This indicates a dearth of DICER1 hotspot mutations across the
vast majority of cancer types. Nevertheless, statistical significance
for depletion can only be estimated when sample sizes are
sufficiently large that random sampling generates a normal
distribution. As an example, the observed hotspot mutations in
breast cancer (0/4355 patients) are well below the 5% confidence
interval from bootstrap resampling, indicating significant deple-
tion (Fig. 2c). We return to the apparent tumor bias of DICER1
RNase IIIa/b inactivation in subsequent gene expression analyses.

Effects of DICER1 RNase IIIb hotspots on miRNA biogenesis.
The Dicer RNase III domains cleave opposite sides of pre-miRNA
hairpins27, with RNase IIIa cutting the 3p arm and RNase IIIb
cutting the 5p arm (Fig. 3a). Cell culture and in vitro processing
assays established that cancer hotspot mutations in DICER1
RNase IIIb selectively impair miRNA-5p processing (Fig. 3a).
Accordingly, cancer-associated DICER1 hotspot mutations bias
the relative yield of 5p to 3p miRNAs in tumors. While this
outcome has been demonstrated in select tumors24,37, we sought
a more comprehensive analysis of miRNA processing asymmetry
alterations across cancer small RNA datasets.

We first compared miRNA levels in 15 RNase IIIb hotspot
endometrial mutants with 548 other UCEC cases, combining
DICER1 mutants outside of RNase III hotspot sites with all
wildtype cases as controls28,41. As a baseline, we randomly
selected a similar-sized set of non-hotspot endometrial cases

(n= 15) and compared them to the remainder of the control
cohort. Although some miRNAs exhibited apparent up/down-
regulation in control comparisons, almost none were significant,
as expected. More importantly, fluctuating miRNAs showed no
directional bias when segregated by 5p and 3p origin (Fig. 3b). In
contrast, the 15 RNase IIIb hotspot endometrial cases exhibited
directional trends for downregulation of individual 5p strand
miRNAs (Supplementary Fig. 4). Note that 5p strand miRNAs
were still detected in RNase IIIb hotspot mutants, suggesting
impairment but not abrogation of 5' pre-miRNA arm cleavage.
We also observed a reciprocal enrichment of 3p strands
(Supplementary Fig. 4). While this might imply that RNase IIIb
mutations enhance miRNA-3p biogenesis, as libraries were
globally normalized to equalize depth, it is conceivable that lost
5p reads were taken up by 3p reads. We address these possibilities
later in functional assays. In any case, the expression of 5p and 3p
strands in RNase IIIb hotspot mutants were significantly different
from controls (Supplementary Fig. 4, Wilcoxon Rank-Sum test;
p= 1.2E−34). These data extend previous observations on the
asymmetric effects of RNase IIIb hotspot mutants on pre-miRNA
hairpin products25.

We were curious whether RNase IIIb cases with overt biallelic-
inactivating mutations were distinct from hotspot samples
associated with other mutations of unknown significance, or
lacking other DICER1 alterations. It is challenging to definitively
ascertain the absence of biallelic mutations in cancer genome
sequencing data. Nevertheless, we segregated the four biallelic-
inactivated cases from 11 other RNase IIIb hotspot samples, and
observed that both groups showed significantly biased outputs in
miRNA arm accumulation (Supplementary Fig. 4). However, the
biallelic-inactivated cases clearly exhibited more severe bias and
were disproportionately responsible for signals detected in the
aggregate RNase IIIb mutant analysis (Fig. 3c and Supplementary
Fig. 4). Thus, there is a range of functional miRNA pathway
alteration among tumors collectively annotated with RNase IIIb
hotspot mutations.

We expanded these trends by systematically analyzing 9919
TCGA small RNA datasets28 encompassing 33 tumor types
available from the GDC portal [https://portal.gdc.cancer.gov/].
For this purpose, we wished to move away from expression-based
analysis comparing individual miRNAs, which requires matching
mutants to control tumor types for any reasonable inference of
miRNA up/downregulation. Since few DICER1 mutants lack
multiple cases in individual tumor types, besides endometrial
cancer (Fig. 2), this approach could not be utilized broadly.
Instead, we summarized the relative abundance of 5p to 3p
strands for each patient as mi

53= log2(mi
5/mi

3), where mx is the
median expression of the x-strand miRNAs in the TCGA sample i
(Supplementary Fig. 5A). This statistic provides a convenient and
simple overview for each sample that is robust amidst the
diversity of small RNA expression in different libraries and to
potential dominating loci. In particular, as some highly expressed
miRNAs in individual libraries show extreme asymmetry
according to strand selection rules42,43, we found the median
metric (as opposed to mean) was advantageous in illustrating
shifts across heterogeneous and diverse datasets. Supplementary
Fig. 5B illustrates how this metric was applied to example
DICER1-wt and RNase IIIb hotspot mutant cases, revealing
overall shifts in 5p/3p arm distributions across miRNA loci.

As each tissue is characterized by a different spectrum of
miRNAs, the typical range of mi

53 values varies between tumor
types. This was evident when calculating mi

53 scores across the
entire TCGA dataset, and segregating them by tumor type. For
example, the ovarian epithelial tumor cohort (486 cases) exhibited
globally lower mi

53 metric, although no RNase IIIb hotspots were
found in these patients. However, the mi

53 metric was otherwise
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reasonably stable across 32 other tumor types (Supplementary
Fig. 6), indicating its value for general comparisons across diverse
datasets.

Across 9919 TCGA datasets, ~0.2% exhibited negative mi
53

scores, and these were dominated by DICER1 RNase IIIb hotspot
cases (Fig. 3d). Strikingly, when excluding ovarian epithelial
tumor, 9/12 lowest mi

53 scores involved DICER1 RNase IIIb
hotspots, emphasizing how distinct their miRNA profiles are
across the entire TCGA cohort (Fig. 3e). When we segregated the
TCGA by tumor type, we could further see that RNase IIIb
hotspot-biallelic loss-of-function cases were usually at the bottom
of their respective cancer groups. Besides the UCEC cohort
analyzed above, this is seen by the separation of two RNase IIIb
biallelic cases in Thyroid carcinoma (THCA) from 478 other
cases in this cohort (Fig. 3f) and another case in Colon
adenocarcinoma (COAD) (Supplementary Fig. 6). Note also that
glioblastoma (GBM) was not profiled by small RNA sequencing,
but an earlier microarray dataset exists at the legacy GDAC
Firehose portal. These data lack comparable 5p/3p data for the
majority of relevant miRNAs, but conducting the analysis with
available data revealed a biallelic RNase IIIb hotspot case among
the lowest scores in GBM (Supplementary Fig. 6).

Curiously, the remaining RNase IIIb hotspot cases lacking
evidence for biallelic-inactivating changes, or bearing other
DICER1 somatic changes of unknown consequence, exhibited a
much broader range of mi

53 scores. Analogous to expression-
based analyses conducted with UCEC cases, the mi

53 behavior of
these non-biallelic RNase IIIb hotspot cases was intermediate to
DICER-wt and DICER-RNase III biallelic-inactivating groups
(Fig. 3e). However, with this summary metric for each tumor, we
could more clearly observe the heterogeneity of individual cases.
Some exhibited 5p-miRNA depletion comparable to hotspot-
biallelic cases. Potentially, these may harbor undetected, func-
tionally inactivating DICER1 mutations. However, other RNase
IIIb hotspot cases had distinctly higher scores. Since each tumor
exhibits a characteristic mi

53 range, segregating the data by tumor
type better illustrated the underlying trends. In this manner,
several non-biallelic RNase IIIb hotspot cases still exhibited 5p-
miRNA depletion that was substantially low among their
respective tumor cohorts (Fig. 3e, f). Besides UCEC, this was
also the case in Bladder Urothelial Carcinoma (BLCA), Sarcoma
(SARC), Skin Cutaneous Melanoma (SKCM), Uterine Carcino-
sarcoma (UCS) (Fig. 3f and Supplementary Fig. 6).

Nevertheless, some RNase IIIb hotspot cases exhibited mi
53

scores that were typical for their tumor type (Fig. 3e and
Supplementary Fig. 6). One possibility is that these samples have
lower tumor purity, which may obscure the ability to record
functional changes in miRNA processing. This scenario would
similarly reduce the available power to detect biallelic changes.
However, another possibility is that some of these samples are
heterozygous. If so, this might suggest DICER1 hotspot mutations
do not act dominantly to bias miRNA biogenesis.

DICER1 RNase IIIa-S1344L mutants deplete miRNA-5p spe-
cies. Since the median mi

53 metric had demonstrable utility for
largescale analysis of TCGA small RNA data, we investigated
whether other DICER1 mutants exhibited characteristic shifts in
hairpin arm distribution. Most other DICER1 mutations (i.e., 217
TCGA DICER1 cases bearing only non-hotspot mutations) did
not affect miRNA strand asymmetry (Fig. 3e). For example, the
six cases bearing the prominent allele R944Q in the PAZ domain
were collectively similar to DICER1-wt cases and other DICER1
mutations of unknown consequence (Fig. 3e).

However, in addition to known RNase IIIb hotspot mutants,
we observed the five RNase IIIa-S1344L cases (Fig. 1) were

systematically associated with low 5p abundance. Their collective
mi

53 score range was higher than DICER1-RNase IIIb hotspot
cases with clear biallelic-inactivating mutations, and similar to the
remainder of RNase IIIb hotspot cases (Fig. 3e). Of note, the
S1344L subclass exhibited a tighter distribution than the RNase
IIIb hotspots that lacked overt biallelic-inactivating mutations
(Fig. 3e). This is consistent with the fact that TCGA S1344L cases
were all associated with secondary loss-of-function hits in
DICER1, or a double hit in S1344 (Fig. 1b). The functional
consequence of S1344L on miRNA arm distribution was even
more apparent when separating cases by cancer type. For
example, the S1344L case with the highest mi

53 score was actually
the lowest scoring case in its tumor cohort (CHOL), emphasizing
it is truly an outlier (Fig. 3e, f, compare dotted lines connecting
individual cases between figures). Similarly, other S1344L cases
were among the lowest scores in COAD, SKCM, and UCEC
cohorts (Fig. 3e and Supplementary Fig. 6).

Since previous mechanistic studies indicated RNase IIIa and
IIIb activities are distinct and can be uncoupled26 (Fig. 3a), the
similar effects of RNase IIIa and IIIb mutants on tumor small
RNA profiles was unanticipated. In particular, they suggest that
RNase IIIa-S1344L somehow impacts RNase IIIb function during
tumorigenesis.

Functional validation of DICER1 RNase IIIa and IIIb hotspots.
We selected several DICER1 hotspot mutations for functional
assays: PAZ domain-R944Q, RNase IIIa-S1344L and RNase IIIb-
E1813G (Fig. 1a). We introduced these into a human DICER1
cDNA, and expressed wt and mutant hDICER1 plasmids in Dicer-
KO MEFs that we previously used to analyze Dicer-independent
miRNA biogenesis44. We verified that transfected Dicer proteins
accumulate at comparable levels (Fig. 4a). To evaluate potentially
selective effects of mutant DICER1 proteins on miRNA-5p vs.
miRNA-3p biogenesis, we sought miRNAs that accumulate both
duplex strands of a given pre-miRNA, thereby providing internal
controls. This was not trivial since there is usually highly asym-
metric accumulation of the duplex strands, with one strand
(miRNA*) preferentially ejected and therefore typically difficult
to detect3.

We screened a panel of loci based on our previous studies of
miRNA* function45, and identified two miRNAs with suitable
properties (mir-151 and mir-199a-1). In particular, their proces-
sing was arrested as pre-miRNA hairpins in Dicer-KO MEFs
indicating full dependence on Dicer, and both partner strands
could be detected when DICER1 was reintroduced into mutant
cells. R944Q did not exhibit obvious differences from wild-type
DICER1 in this assay. However, both RNase III mutants exhibited
specific defects in accumulation of miRNA-5p species, while
partner miRNA-3p species were produced at normal levels
(Fig. 4b, c). These tests suggested the primary defect in RNase
IIIa/b mutants is indeed depletion of miRNA-5p species, not
upregulation of miRNA-3p species (Fig. 3b). As further controls,
miR-144-3p, Dicer-independent miR-451 and U6 snRNA accu-
mulated similarly in the presence of wt and mutant DICER1
proteins. Thus, DICER1 RNase IIIa-S1344L and RNase IIb-
E1813G are selectively compromised in processing canonical
miRNA-5p species.

To assess if these biogenesis defects have consequences for
miRNA function, we performed luciferase activity assays. We
tested a panel of sensor constructs in the presence of different
miRNA combinations of miRNA and Dicer constructs. As
expected, repression capacities of mir-151 and mir-199a-1 on
their cognate 5p and 3p sensors was rescued by wild-type
DICER1. Furthermore, R944Q provided similar rescues, indicat-
ing that it is not functionally compromised in this context. By
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contrast, S1344L and E1813G rescued miRNA-3p activity, but
were impaired in conferring miRNA-5p activity for both miRNAs
(Fig. 4d, e). Of note, while mir-151 and mir-199a-1 had overall
similar behavior across this panel of DICER1 mutants, miR-199a-

1-5p was slightly matured by S1344L compared to E1813G
(Fig. 4d) and correspondingly had measurable activity on its
sensor in S1344L but not in E1813G cells (Fig. 4e). This is
consistent with the globally lower miRNA-5p depletion observed
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in RNase IIIb biallelic cases compared to S1344L biallelic cases
(Fig. 3d), even though both classes comprise strong outliers across
TCGA data.

Although these assays were limited, PAZ-R944Q lacked
substantial impact. We note that while arginine is only the
ninth-most common amino acid, it is the most frequently altered
amino acid in cancer46. This may be a consequence of the high
frequency of CG in arginine codons (4 out of 6), coupled with the
high mutagenicity of CG dinucleotides. Thus, PAZ-R944Q might
be incidental. On the other hand, these experimental assays
validate the unexpected finding that cancer-associated hotspot
mutations in DICER1 RNase IIIa and RNase IIIb domains
actually have similar biochemical and function consequences.

RNase IIIa-S1344 is coupled to the RNase IIIb active site. As
S1344 is located in the RNase IIIa domain, we sought mechanistic
insight as to why its mutation leads to 5p, rather than 3p,
depletion. Since intra-molecular dimerization of the two RNase
III domains are required for DICER1 function47, we explored
whether structural and conservation statistical analysis could
explain the mutation effect.

Structural information on human DICER1 RNase III domains
has long been limited, and until recently, only a homodimeric
crystal structure of its RNase IIIb domain (2eb1) [https://www.
rcsb.org/structure/2eb1] was available48. Alignment of human
DICER1 RNase III domains shows S1344 is homologous to T1733
in RNase IIIb (Supplementary Fig. 7A). We modeled S1344 into a
model of the RNase IIIa-IIIb heterodimer, as inferred from the
RNase IIIb homodimer structure48. In the heterodimer model,
S1344L (in RNase IIIa) and its homologous residue T1733 (in
RNase IIIb) are far from the active site residues (19.60 ± 2.62 Å
distance) in their respective domains. Instead, S1344L is closer
(11.7 ± 2.0 Å distance) to the active site of domain IIIb (residues
E1813, D1810, D1709, E1705) and T1733 in is close to the active
site residues of RNase IIIa (Supplementary Fig. 7B). This suggests
how S1344L may disrupt RNase IIIb activity.

Very recently, cryo-EM structures of full-length DICER1 were
reported49, allowing us to examine inter-domain contacts of
RNase IIIa/b in their native conformations. Consistent with
heterodimer modeling, we observe juxtaposition of the RNase III
domains, with RNase IIIa-S1344 on the heterodimer interface
with RNase IIIb in all three available structures (5zak [https://
www.rcsb.org/structure/5zak], 5zam [https://www.rcsb.org/
structure/5zam] and 5zal [https://www.rcsb.org/structure/5zal]),
only 3–4 Å from F1706. Since F1706 neighbors catalytic residue
E1705 that binds the active site Mg2+ (which we modeled into the
cryo-EM structure based on 2eb1 [https://www.rcsb.org/
structure/2eb1] homodimer structure), this brings S1344 in
proximity to the RNase IIIb active site (~8–9 Å from E1705,
Fig. 5a). While the published DICER1 structures are not in their
catalytic state, nor have high enough resolution for Mg2+ ions to

be positioned precisely49, it is conceivable that the S1344 side
chain hydroxyl group is even closer to the active site in an, as yet,
unseen active conformation. This could involve the hydroxyl
group of S1344 connecting through water or directly to Mg2+.

An independent strategy to evaluate the importance of S1344 is
to explore its constraint via interactions with active site residues
of the sister RNase III domain across the protein’s evolutionary
history. Here, we exploited evolutionary couplings (EC) metho-
dology, which uses a multiple sequence alignment built from
thousands of homologous sequences along with a statistical
maximum entropy framework to identify pairs of residues that
are evolutionarily constrained as interacting pairs50. Evolutionary
couplings inferred only from co-variation patterns in sequences,
without reference to known three-dimensional (3D) structures,
were successful in ab initio prediction of correctly folded
structures50,51 and in identifying alternative conformations52,53.
The top-ranked pairs of evolutionarily coupled residues (ECs)—
about L of all possible L2 pairs where L is the length of the protein
sequence—are typically enriched in residues directly critical for
structure and/or function51.

We subjected human DICER1 1271–1829 comprising the two
RNase III domains to evolutionary coupling analysis. For the
well-structured DICER1 RNase IIIb domain, 70% of paired
residues in the top 100 evolutionary couplings (ECs) were within
5 Å of each other in the 3D structure (Fig. 5b), providing evidence
that evolutionary couplings analysis can identify constrained
interacting residue pairs from sequence information alone.
Reassuringly, intra-domain couplings among each of the four
RNase IIIa active site residues, as well as the four RNase IIIb
active site residues, were recovered among the top couplings,
indicative of their known functional coordination. In particular,
RNase IIIb E1705-D1709 active site residues comprised the 9th
highest ranked coupling, and six couplings between RNase IIIb
active site residues and four couplings between RNase IIIa active
site resides were detected in the top 140 ECs (Supplementary
Data 4).

Our previous studies revealed numerous examples in which
potentially anomalous signals within a monomer actually derive
from a homodimeric interaction50. Consistent with this inter-
pretation, we observe lower among the top ECs, but still within
the top L hits, examples of anomalous inter-domain RNase IIIa-b
active site couplings (Supplementary Data 4). This provides
context for the bona fide, strong, inter-domain ECs that align
precisely with the RNase IIIa/b interface shown in the cryo-EM
structures (e.g., 5zak [https://www.rcsb.org/structure/5zak],
Fig. 5b). Notably, we observe coupling of T1733 (the cognate of
S1344) to active site residue RNase IIIb-E1705 in the top L hits, as
well as direct coupling of RNase IIIa-S1344 in RNase IIIb-F1706
in the top 1.5% of all detected couplings (Supplementary Data 4).
This is consistent with close physical proximity of these residues
in the cryo-EM structure (Fig. 5a). Thus, ECs inferred from

Fig. 4 DICER1 RNase IIIa/IIIb hotspots selectively affect miRNA-5p processing and activity. a Western blot validation of accumulation of wt and mutant
DICER1 proteins in Dcr-KO MEFs. Cells were transfected with the indicated Dicer and miRNA constructs blotted using human Dicer antibody and ß-tubulin
as loading control. b, c Northern blot assays of small RNAs from Dcr-KO MEFs transfected with the indicated Dicer and miRNA constructs. The top two
blots are for 5p and 3p probes directed against mir-151 (b) and mir-199a-1 (c), which detect different mature 21–23 nt species but co-detect their cognate
pre-miRNA hairpins. The lack of mature species without Dicer transfection confirms their full Dicer dependence. Both miRNAs yield relatively similar 3p
species with wt and mutant Dicer proteins, while 5p species are selectively impaired. mir-144-3p serves as another canonical miRNA control, miR-451 is a
Dicer-independent miRNA, and U6 is a loading control. Note that some structured pre-miRNA hairpins run faster than their predicted linear sizes; pre-mir-
151 is expected to be 58 nt, pre-mir-151 is expected to be 63 nt, pre-mir-144 is 57 nt. d, e Luciferase sensor assays. Dcr-KO MEFs were transfected with the
indicated human DICER1, miRNA and sensor constructs. With reference to the lack of repression of these miRNAs on their sensors in Dcr-KOMEFs, wt and
mutant DICER1 proteins were able to rescue 5p/3p activity of miRNAs with the exception of strongly diminished or lack of 5p rescue by RNase IIIa/b
mutant DICER1 proteins. Standard error of triplicate luciferase sensor experiments is shown
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sequence information alone, reinforce the notion of an evolutio-
narily constrained, functionally relevant inter-domain interaction
between S1344 and the RNase IIIb catalytic center that is required
for proper pre-miRNA processing.

Specific derepressed gene sets in DICER1 hotspot cancer.
Having expanded the set of functional mutations in human
DICER1, we investigated whether these lead to interpretable
changes in gene expression. Others modeled effects of DICER1
hotspots on gene expression in mouse Dicer-mutant cell lines24,
but there have been limited attempts to connect differential
miRNA expression in DICER1 hotspot mutants with mRNA
changes in human tumors. Since DICER1 hotspot mutations are
overall rare in cancer, we focused on UCEC54, which contained
the largest number of DICER1 hotspot mutants (Figs. 1 and 2).
Analyzing UCEC RNA-Seq data, we note nine genes significantly
upregulated, and none downregulated, in RNase IIIa/b hotspot
cases compared to other samples (p < 0.05 after Bonferroni cor-
rection; Table 1). Derepressed genes include HMGA2, an onco-
gene target of let-7 family members55–57, and other oncogenes
such as IGFBP258,59 and MMP1660.

We next asked whether upregulated genes in DICER1 hotspot
mutants were enriched for targets of particular miRNA families.
We conducted gene-set enrichment analysis (GSEA) using well-
known biological pathways and well-conserved miRNA family
target genes as our query gene sets61. Most (5 out of 7) enriched
gene sets represented miRNA family targets (Fig. 6a), suggesting
that gene expression signatures in RNase IIIa/b hotspot mutants
are dominated by certain depleted miRNA families rather than
common biological pathways.

The strongest enrichments were seen for upregulation of genes
bearing target sites for let-7 or miR-17 seed families (Fig. 6a, b;
FDR < 10%). For both families, the 5p-miRNA is the predomi-
nant strand and as expected, 5p-strand miRNAs of these families
were downregulated relative to 3p-strands in RNase IIIa/b
mutants (Fig. 6c). Another 5p-depleted family with target
upregulation was miR-15/16 (Fig. 6a; FDR= 11%). Of note, let-
755–57 and miR-15/1662 are known tumor suppressor miRNA
families. Interestingly, for the other two families, miR-29 and
miR-101 (Fig. 6a; FDR= 11%), although their predominant
miRNA strands are 3p, both mature and passenger strands of
these families were downregulated in DICER1 RNase IIIa/b
mutants (Fig. 6c). This is consistent with observed derepression of
their respective target cohorts, but suggests that reduced
expression of these miRNA families is an indirect effect of
DICER1 hotspot mutations. Finally, GSEA analysis indicated
modest enrichment for NOTCH-related pathways (Fig. 6a, b;
FDR<15%), which is well-appreciated to be mutated in cancer63.

Overall, these analyses indicate that alterations in pre-miRNA
processing in DICER1 biallelic endometrial tumors yield
preferential effects on derepression of cognate direct targets of
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Fig. 5 Structural rationale for how RNase IIIa-S1344 affects RNase IIIb
function. a (Left) The human DICER1 cryo-EM structure 5zam [https://
www.rcsb.org/structure/5zam] is shown, and part of the RNase IIIa
domain (in green)/RNase IIIb (in purple) interface is enlarged. Inspection of
this region reveals that RNase IIIa-S1344 resides on the inter-molecular
heterodimeric interface with the RNase IIIb domain, closest to F1706, which
is adjacent to the active site residue E1705. E1705, D1709, and E1813
coordinate the Mg2+ ion in higher resolution structures of the RNase IIIb
domain (i.e., 2eb1) and the Mg2+ ion is modeled here by overlaying 2eb1
[https://www.rcsb.org/structure/2EB1] with 5zam [https://www.rcsb.
org/structure/5zam]. This places S1344 within 8–9 Å of the RNase IIIb
domain active site Mg2+. Modeling the side chain of S1344 and correct
placement of the Mg2+ in the catalytic state may bring the hydroxyl of the
serine even closer. b Contact map summarizing highly evolutionarily
coupled residues, analyzed across the equivalent of DICER1 aa1271-1829,
comprising the RNase IIIa/b domains. Highly coupled residue pairs (black)
were displayed on top of residues located <5 Å apart in the 5zam [https://
www.rcsb.org/structure/5zam] cryo-EM structure (aqua). Note that the
RNase IIIa domain contains a large flexible insertion whose structure is
unknown (gray). This analysis reveals not only functionally coupled
residues within each RNase III domain, as expected, but also a prominent
interface of RNase IIIa/IIIb interactions that includes S1344. These
observations provide an evolutionary explanation for how cancer hotspot
RNase IIIa-S1344L mutations impair RNase IIIb activity

Table 1 Significantly deregulated genes in DICER1 hotspot
endometrial cancer

Genes logFC adj p-value

HMGA2 3.708 1.662E-6
IGDCC3 3.648 4.091E-5
ACVR2B 1.211 1.365E-4
MMP16 2.333 4.123E-3
C17orf63 0.782 4.577E-3
ADAMTS7 1.993 1.247E-2
IGF2BP2 3.294 2.501E-2
FAM171B 1.801 3.499E-2
MGAT5B 2.875 3.851E-2

A differential gene expression analysis comparing DICER1 hotspot mutants to wildtypes. We
compared the gene expression levels in eight DICER1 mutants to the levels in 222 DICER1
wildtypes using the limma voom toolkit. We used Bonferroni correction to adjust our p-values for
multiple hypothesis testing (padj < 0.05). logFC: change in gene expression (log based). All genes
significantly changed in mutants were upregulated, none were significantly downregulated
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specific miRNAs, and certain likely indirect miRNA target
networks and associated gene expression signatures that may be
relevant for DICER1 hotspot uterine cancers.

Discussion
We systematically analyzed the landscape of DICER1 hotspot
mutations that lead to miRNA strand asymmetries in cancer. This
revealed cancer-subtype enrichments of known RNase IIIb hot-
spot mutations, which impair processing of miRNA-5p strands,
and stratify the effects of tumors with biallelic inactivation on
miRNA processing. Importantly, we also functionalize a recurrent
biallelic DICER1 mutation in RNase IIIa (S1344L) that causes
similar 5p depletion. This was unexpected given that the two
Dicer RNase III domains independently cleave opposite arms of
the pre-miRNA hairpin.

Interestingly, our cross-cancer analyses reveal DICER1 RNase
IIIa/b hotspot mutations in restricted tumor types (Fig. 2).
Although DICER1 hotspots are overall rare, and occur spor-
adically in diverse cancer classes25 (Supplementary Data 1 and 2),
we consistently observe their strongest enrichment in endometrial
cancers and in both TCGA and MSK-IMPACT cohorts. Although
DICER1 RNase IIIb mutations were previously studied in endo-
metrial cancer24, we broadly extend this phenomenon and show
these events are depleted in many individual cancers, and in
cancers in aggregate. This implies there are selective advantages to
DICER1 hotspot cancer cells in only certain tissue settings.

In accordance with this notion, we provide evidence for pre-
ferential miRNA target upregulation in DICER1 RNase IIIa/b
hotspot tumors (Fig. 6). Although we are circumspect to interpret
gene expression signatures from the limited number of cases, it
seems notable that while many miRNA-5p species are reduced
(although not eliminated, Fig. 3), we detected significant changes
for target cohorts of only a few specific miRNA families (Fig. 6).
These few include known tumor suppressors such as the let-7 and
miR-15/16 families, both of which comprise 5p mature miRNA
species whose defective biogenesis is a direct consequence of
biallelic RNase IIIa/b hotspot mutations in DICER1.

The let-7 family has previously been suggested as a tumor
suppressor miRNA family that could be compromised by DICER1
RNase IIIb cancer hotspot mutations24,26,64, but clear linkage to
endogenous DICER1 tumor signature has not been established.

We observed that derepression of let-7 targets was the strongest
GSEA signature obtained in DICER1 endometrial cancer, with
known let-7 oncogene targets HMGA2 and IGFBP2 strongly
deregulated (Table 1). In addition, while miR-15/16 is also
recognized as tumor suppressor family, its impact has mostly
been restricted to liquid cancers, in particular chronic lympho-
cytic leukemia62. Nevertheless, these miRNAs are expressed
outside of the hematopoietic system, and our data potentially
expand the functional impact of miR-15/16 to certain solid
cancers, such as endometrial cancer. We identify a number of
miRNA targets derepressed in DICER1 hotspot tumors (Table 1)
as candidates for evaluating potential involvement in oncogenesis.

Overall, these integrated analysis of cancer genome, small
RNA, and transcriptome profiling reveal tissue-specific accumu-
lation of DICER1 RNase III hotspot mutations, including an allele
within the RNase IIIa domain that affects RNase IIIb function.
Thus, cancer genetics reveals unexpected features of Dicer enzy-
mology, pre-miRNA processing, and expression signatures in
tumors.

Methods
Identification of DICER1 hotspot mutants and biallelic cases. We used OncoKB
(oncokb.org) and Cancer Hotspots (cancerhotspots.org) to identify recurrent
hotspot mutations in DICER1. These included well-characterized alterations of
RNase IIIb metal-binding residues E1813, D1810, D1709, E170525, and the newly
characterized allele in RNase IIIa S1344L. We added G1809, which was reported in
the literature31 as a hotspot, as it was recurrent in MSK-IMPACT data. We then
identified DICER1 mutations using the TCGA MC3 2+ callers mutation data29. Of
9919 samples in the TCGA PanCan dataset, 217 bore somatic DICER1 mutations,
of which 31 harbored RNase IIIa/b hotspot mutations (one patient with 2).
Similarly, analysis of 31,029 MSK-IMPACT patients with annotated clinical data
and tumor subtypes yielded 597 somatic DICER1 mutant cases, of which 57 cases
contained RNase IIIa/b hotspot mutations. To identify likely biallelic cases affecting
DICER1, we searched for hotspot alleles that co-occurred with another hotspot
mutation, truncating mutation; we also searched for HETLOSS but only in TCGA
data, since MSK-IMPACT is generally underpowered to call copy number loss.

miRNA-seq data. TCGA miRNA sequencing data was downloaded from GDC
data portal at the National Cancer Institute [https://portal.gdc.cancer.gov/]. Pre-
mapped miRNA sequencing files in bam format were downloaded using the gdc-
client tool provided in the GDC data transfer tool package (https://github.com/
NCI-GDC/gdc-client), using specific case IDs from TCGA. We obtained a total of
10725 bam files, which included data from both cancer and normal tissues that can
be easily distinguished using TCGA sample type identifier ID. Data mapping
quality and mapping statistics for the TCGA dataset was obtained using the
bam_stats.py tool from the RSeQC package (http://rseqc.sourceforge.net/).
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Fig. 6 Gene expression signatures of DICER1 hotspot UCEC tumors. a Gene-set enrichment analysis (GSEA) on mRNA profiles of DICER1 RNase III hotspot
cases in uterine corpus endometrial cancer (UCEC). Shown are all enriched sets in RNase III hotspot samples; five are miRNA target sets and two relate to
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Mappability ranged from 74–99% across TCGA datasets with an average mapping
rate of 96.1%. Hence, we retained all datasets for further analysis. Using sample
tags to differentiate cancer versus normal tissues, we excluded 632 samples that
were derived from normal tissues. In addition, 139 samples with duplicate IDs
originating from cancer tissues were excluded owing to uncertain nature of
duplicate profiling of these samples (Supplementary Data 3). In sum, we analyzed a
total of 9919 TCGA miRNA-seq datasets in this study.

miRNA set analyzed across TCGA cancer samples. We obtained 5p and 3p
annotations for 992 miRNAs from miRBase (www.mirbase.org), and supplemented
this with 210 miRNAs with defined 5p and 3p from in-house miRNA annotations
from aggregate small RNA mapping. For broadly conserved miRNA families, we
used a list of 176 pan-mammalian miRNAs65. Next, we examined the expression of
all these miRNAs across TCGA samples and identified 227 broadly expressed
miRNAs have average log2 expression ≥5 across all pan-cancer samples. We took
the union of the broadly expressed miRNAs and the broadly conserved mamma-
lian miRNAs to arrive at 280 miRNAs used for subsequent analyses (Supple-
mentary Data 5). Note that in some cases, a given miRNA family is represented by
multiple loci with identical 5p and 3p species, and we designated those as single loci
(e.g., hsa-mir-124-1, -2, -3 are all identical on both 5p and 3p arms).

miRNA counts. We obtained miRNA expression counts for TCGA PanCancer
datasets using the featureCounts software from the Subread package66. To obtain
counts, we used annotated miRNA-5p and miRNA-3p coordinates flanked with
additional two nucleotide sequence on either side, thereby including four addi-
tional nucleotides for every miRNA-arm. The counts were normalized using the
DEseq package in R, for comparison across the TCGA cancer samples67. miRNA-
Seq data for Glioblastoma Multiforme cancer study was not available from GDC,
therefore, for GBM, TCGA Level 1 microarray expression data [http://firebrowse.
org/?cohort=GBM] were processed and normalized using the AgiMicroRna R
package.

Analysis of miRNA-seq data. To identify shifts in the expression of individual
miRNA-5p and miRNA-3p species, we utilized the UCEC cohort, which had
sufficient numbers of RNase III hotspot mutants for statistical comparisons. We
performed miRNA-arm differential expression analysis with these sets: (1) all
RNase IIIb hotspot mutations (15 cases), (2) RNase IIIB non-biallelic mutations
(11 cases), (3) RNase IIIb biallelic mutations (four cases), versus all other samples
as controls (bearing non-hotspot DICER mutations or DICER-wt alleles, 548
cases). We also performed a control analysis by randomly selecting 15 UCEC
samples lacking hotspot mutations, and comparing them to the remaining samples.
Differential expression was performed using the DEseq package in R, and p-values
for fold-change analysis were adjusted using Benjamini–Hochberg correction. We
defined significant fold-change between miRNA-5p and miRNA-3p species at a
False Discovery Rate (FDR) of 0.01.

Median 5p/3p ratio calculation. To ascertain bias in miRNA-5p/3p ratio, we used
a scoring metric to evaluate the relative production of miRNA-5p and -3p strand
across TCGA libraries. Briefly, for every TCGA sample, the miRNA counts from
miRNA-5p and -3p arm counts were ranked from lowest to highest to obtain a
distribution, from which a median log2 miRNA expression was estimated for 5p,
and 3p arms separately in our restricted set of 280 miRNAs (Supplementary Fig. 5).
As calculating mean as a metric for central tendency can be biased by highly
expressed loci, we instead chose a median metric, which is more robust when
samples across different cancer tissues are compared. Then, a median 5p/3p ratio
was calculated using the formula mi

53= log2(mi
5/mi

3), where mx is the median
expression of the x-strand miRNAs in the TCGA sample i. A shift in the median
5p/3p ratio between WT and RNase IIIb hotspot mutations in different cancer
types is interpreted as a ratio bias, which can be attributed to compromised pro-
cessing of miRNA-5p and -3p arms.

Statistical analysis of DICER1 hotspots across cancer types. To determine
whether certain types of tumors are enriched for DICER1 hotspot mutations in
TCGA and MSK-IMPACT datasets, we performed a resampling test where we
generated a distribution from random sampling for each tumor type, and assessed
significance for enrichment via this bootstrap procedure. We performed n= 10,000
bootstrap replicates, and estimated p-value for enrichment of hotspot mutations by
calculating the ratio for number of events where hotspot mutations (m) from
resampling was greater than the observed number of hotspot mutations to n
bootstrap replicates (m > observed/10,000). We performed this analysis in two
iterations. In the first, to be conservative, we excluded the hypermutated cancer
subtypes, as these cases may falsely influence the occurrence of hotspot mutations
during a random sampling procedure. In a second iteration, we retained the
hypermutated cases in the random sampling analysis. p-values were then corrected
for multiple tests using the Bonferroni correction method.

DICER1 RNase III hotspot mutations are overall rare in both TCGA and MSK-
IMPACT datasets (31/9919 samples for TCGA and 57/31029 samples for MSK-

IMPACT. Nevertheless, estimating statistical significance using a bootstrap
resampling method is only reliable for enrichment, but not for depletion of hotspot
mutations, unless the sample sizes are very large. 13 TCGA and 33 MSK-IMPACT
cancer subtypes have sample sizes less than 50, which are too narrow to compute
statistical significance. Therefore, we focused only on 40 TCGA and 41 MSK-
IMPACT cancer types with sample size >50 for bootstrap resampling analysis
(Supplementary Figs. 2 and 3). In cases where random sampling generates a
normal distribution, the percentile confidence intervals for the variance statistic can
be computed. Using this approach, we were able to reliably estimate statistical
significance for depletion of hotspot mutations for two cancer types in the MSK-
IMPACT data. Still, we note >20 individual cancer types with >200 cases that
completely lack DICER1 RNase III hotspot mutations (Supplementary Figs. 2 and
3), cohorts that are generally much larger than all of the endometrial/uterine
cancers that reliably accumulate multiple RNase III hotspots, and ~70% cancer
subtypes completely lack hotspot mutations. Thus, there appears to be a general
depletion of DICER1 RNase III hotspot mutations across many cancers.

Identifying evolutionary couplings in RNase III domains. Our analyses of small
RNA data and DICER mutant constructs revealed that RNase IIIa-S1344L variant
unexpectedly compromised the biogenesis of 5p-strand miRNAs, which are cleaved
from pre-miRNA by DICER1 RNase IIIb. Based on the fact that RNase III
dimerization is necessary for proper DICER1 functioning, we wanted to see how
S1344L could affect 5p miRNA processing. For this we ran evolutionary couplings
(ECs) analysis using code provided at [https://github.com/debbiemarkslab/
EVcouplings]. We used residues 1271–1829 of human DICER1 [https://www.
uniprot.org/uniprot/Q9UPY3] as the input sequence containing both RNase IIIa
and RNase IIIb domains. Our chosen alignment had 36,169 sequences with 69.7%
of residue columns containing less than 30% gaps (alignment produced from a
normalized bitscore cutoff of 0.3 from the Uniref100 January 2019 release).
Pseudolikehood maximization (PLM) was used to infer the ECs. The full evolu-
tionary couplings data is provided in Supplementary Data 4.

Analysis of RNA-seq data. To test whether DICER1 hotspot mutants had distinct
gene expression profiles compared to other samples, we obtained processed and
normalized RNA-seq datasets (Level 4) from TCGA analysis runs as generated with
the Firehose analysis pipeline [https://gdac.broadinstitute.org/]. Most TCGA tumor
cohorts had <3 RNA-seq datasets for RNase IIIa/b hotspot mutants, hindering a
statistically robust comparison. Therefore, we restricted this analysis to the UCEC
study, utilizing there were eight DICER1 RNase IIIa/b hotspot mutant and 222
DICER1 wildtype and non-hotspot samples with RNA-seq data. We conducted
differential gene expression analysis using the limma voom R package68 on the
gene-level RSEM counts.

Gene-set enrichment analysis (GSEA). To test if genes upregulated in UCEC
DICER1 hotspot cases compared to wildtypes were targets of particular miRNAs or
members of canonical pathways, we utilized GSEA. To create gene sets for targets
of the well-conserved miRNA families, we first downloaded predicted miRNA
targets from TargetScan (Release 6.2) and aggregated these using miRNA family-
member associations to obtain a list of targets for each miRNA family5. We next
filtered out predictions with conservation score lower than 90% and collected
targets that were in the upper 5th percentile considering their context score (i.e.,
scores lower than −0.3555). Using these filtered predictions, we created gene sets
that were compatible with the conventional GSEA analysis61.

We combined these miRNA target gene sets with gene sets representing well-
known and curated Reactome pathways from MSigDB69,70. This gave us a total of
719 gene sets, consisting of 674 gene sets for pathways and 45 for targets of miRNA
families. For the GSEA, we utilized the romer utility from the limma toolkit and
used the contrast model that we used in the RNA-Seq data analysis71. We set the
number of rotations to 10,000 and for each gene set, tested whether the genes in the
set were enriched for any direction (up- or downregulation).

We found genes in seven different sets to be significantly enriched towards
upregulation and none in the reverse direction (FDR < 0.15; Table 1). Five out of 7
gene sets were representing target genes for miRNA families and three of these
were miRNA families for which 5p strand was the predominant strand according
to miRBase72.

Construction of DICER1 mutants. Mutant DICER1 constructs (R944Q, S1344L,
E1813G) were made through site-directed mutagenesis protocol (Agilent Quik-
Change) of mammalian expression construct of Flag-HA-tagged human DICER1,
Addgene plasmid #1988173. Sequencing of clones confirmed presence of desired
mutations and absence of off-target mutations in rest of the gene. Primers used for
site-directed mutagenesis:

R944Q
5′-GTACACATCAGCTACATAAAATTGATGAGGCTGATCAAAATTGCG-3′
5′-CGCAATTTTGATCAGCCTCATCAATTTTATGTAGCTGATGTGTAC-3′
S1344L
5′-TTTTTGCTTCTCATATATAAAAGGCGGCCCTCATGCG-3′
5′-CGCATGAGGGCCGCCTTTTATATATGAGAAGCAAAAA-3′
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E1813G
5′-CACCAGCAAGCGACCCAAAAATATCCCCCATGG-3′
5′-CCATGGGGGATATTTTTGGGTCGCTTGCTGGTG-3′

Western blotting. We used published Dicer-KO MEFs44. Cells were incubated in
lysis buffer (10 mM Tris-Cl pH 8.0, 150 mM NaCl, 1 mM EDTA, 1% Triton-X,
0.1% SDS, 1% protease inhibitor and 1 mM DTT) for 10 min at 4 °C followed by
centrifugation at 18,407 × g for 10 min. The supernatant was collected and total
protein concentration was estimated by Bradford assay. Ten micrograms of total
protein (per lane) was separated on 4–12% SDS-PAGE (BioRad). Western blotting
was performed by standard procedures. The blots were incubated with 1:1000
dilutions of anti-human Dicer (13D6, Abcam) and β-tubulin (E7, DSHB) primary
antibodies and 1:10,000 dilution of HRP (horseradish peroxidase)-conjugated anti-
mouse IgG secondary antibody (Jackson). The protein bands on the blots were
detected using an enhanced chemiluminescent substrate for HRP activity (ECL,
Thermo Fisher Scientific).

Northern blotting. Dicer-KO MEF cells were transfected with published constructs
expressing pri-miRNA constructs (mir-144/451 and either mir-151 or mir-199a-1)
44,45 and either wild-type or mutant hDICER1 construct (WT or R944Q or S1344L
or E1813G), as indicated. Transfection was performed in six-well plates using
Lipofectamine-LTX reagent (Thermo Fisher Scientific) as per the manufacturer’s
protocol. Untransfected Dicer-KO MEF cells were used as background control. We
performed Northern blotting by separating 20 µg of total RNA per lane on 15%
polyacrylamide 7M urea gels and transferring onto GeneScreen Plus membrane
(Perkin Elmer) using the Trans-Blot SD Semi-Dry Cell (BioRad)74. The blots were
ultraviolet (UV) crosslinked (Stratagene), baked at 80 °C for 1 h and probed with
antisense DNA oligos labeled with γ-[32P]-ATP. The blots were stripped and re-
probed to detect multiple miRNAs and loading control (U6). γ-[32P]-ATP-labeled
Decade Marker RNA (Thermo Fisher) was used as size standard (10–100 bases).
Probe sequences to detect small RNAs are:

miR-144-3p AGTACATCATCTATACTGTA
miR-451-5p AACTCAGTAATGGTAACGGTTT
mir-151-5p TACTAGACTGTGAGCTCCTCGA
mir-151-3p TAACCAATGTGCAGACTACTGTa
miR-199a-1-5p GAACAGGTAGTCTGAACACTGGG
miR-199a-1-3p TAACCAATGTGCAGACTACTGT
U6 snRNA ATTTGCGTGTCATCCTTGCGCAG

Luciferase sensor assay. We used published miRNA sensor constructs45, bearing
miRNA target sites downstream of renilla luciferase coding sequence in psiCHECK2
(Promega). Firefly luciferase expressed from psiCHECK2 serves as an internal
control. Using Lipofectamine-LTX (Thermo Fisher Scientific) to transfect Dicer-KO
MEFs in 96-well plates with 160 ng pri-miRNA expression constructs (mir-151, mir-
199a-1) and 40 ng cognate target-containing sensor constructs. Cognate targets were
antisense to either 5P or 3P arm of the expressed miRNAs. Fold repression was
normalized to parallel assays with non-cognate miRNA (mir-375).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The somatic mutational data from both the TCGA and MSK-IMPACT cohorts were
downloaded from the cBioPortal for Cancer Genomics (http://cbioportal.org/). TCGA
datasets were downloaded from the GDC data portal of the National Cancer Institute:
TCGA miRNA-Seq data, [https://portal.gdc.cancer.gov/repository?filters=%7B%22op%
22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%
22content%22%3A%7B%22field%22%3A%22files.data_format%22%2C%22value%22%
3A%5B%22BAM%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content
%22%3A%7B%22field%22%3A%22files.experimental_strategy%22%2C%22value%22%
3A%5B%22miRNA-Seq%22%5D%7D%7D%5D%7D]; GBM miRNA-microarray data,
[http://firebrowse.org/?cohort=GBM]; TCGA endometrial RNA-seq data, [http://gdac.
broadinstitute.org/runs/stddata__2016_01_28/data/UCEC/20160128/]. All
computational and raw experimental data that support the findings of this study are
available within the article, its supplementary information files, and in the Source Data
Files. Any other necessary information is available from the corresponding author upon
reasonable request. A reporting summary for this article is available as a supplementary
information file.

Code availability
The code for analyses conducted in this study and supplemental results for each of the
analyses are available at https://github.com/dicerhotspot/.
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Marie-Joseé and Henry R. Kravis Center for Molecular Oncology for access to MSK-
IMPACT profiling data. We thank Kjong Lehmann, Andre Kahles, Gunnar Rätsch,
Özgün Babur, Pınar Aksoy, Ed Reznik, Nils Weinhold, Ruomu Jiang, Berkin Elvan for
comments. This work was supported by US National Cancer Institute funding of the
TCGA Genome Data Analysis Center (U24 CA143840). E.C.L.’s group was supported by
the NIH/NIGMS (R01-GM083300), NIH/NHLBI (R01-HL135564) and the Functional
Genomics Initiative (FGI), and MSK Core Grant P30-CA008748.

Author contributions
J.V. conducted most of the computational analyses. W.K.C. analyzed DICER1 mutations.
B.A.A. created many conceptual frameworks for the study, and conducted the RNA-seq
analysis. S.M. performed experimental tests of DICER1 mutants. A.J.S. helped with initial
miRNA-seq analysis and E.D. contributed to pathway analysis. C.S. analyzed evolu-
tionary couplings. N.S., C.S., and E.C.L. supervised the studies and analyzed data. E.C.L.
wrote the manuscript with input from co-authors.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11610-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Joanne Weidhaas and other
anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11610-1

14 NATURE COMMUNICATIONS |         (2019) 10:3682 | https://doi.org/10.1038/s41467-019-11610-1 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-11610-1
https://doi.org/10.1038/s41467-019-11610-1
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains exert similar effects on miRNA biogenesis
	Results
	Recurrent DICER1 RNase IIIa and IIIb mutations in tumors
	Biallelic DICER1 cases involve RNase IIIa and IIIb hotspots
	Specific tumor preferences of RNase IIIa/b hotspot mutants
	Effects of DICER1 RNase IIIb hotspots on miRNA biogenesis
	DICER1 RNase IIIa-S1344L mutants deplete miRNA-5p species
	Functional validation of DICER1 RNase IIIa and IIIb hotspots
	RNase IIIa-S1344 is coupled to the RNase IIIb active site
	Specific derepressed gene sets in DICER1 hotspot cancer

	Discussion
	Methods
	Identification of DICER1 hotspot mutants and biallelic cases
	miRNA-seq data
	miRNA set analyzed across TCGA cancer samples
	miRNA counts
	Analysis of miRNA-seq data
	Median 5p/3p ratio calculation
	Statistical analysis of DICER1 hotspots across cancer types
	Identifying evolutionary couplings in RNase III domains
	Analysis of RNA-seq data
	Gene-set enrichment analysis (GSEA)
	Construction of DICER1 mutants
	Western blotting
	Northern blotting
	Luciferase sensor assay
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Additional information




