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Multicenter study demonstrates radiomic features
derived from magnetic resonance perfusion images
identify pseudoprogression in glioblastoma
Nabil Elshafeey1, Aikaterini Kotrotsou 1,2, Ahmed Hassan1, Nancy Elshafei2,3, Islam Hassan2, Sara Ahmed2,

Srishti Abrol1, Anand Agarwal1, Kamel El Salek1, Samuel Bergamaschi4, Jay Acharya 4, Fanny E. Moron5,

Meng Law4,6, Gregory N. Fuller 7, Jason T. Huse7, Pascal O. Zinn 8,9,10 & Rivka R. Colen 1,2,10,11

Pseudoprogression (PsP) is a diagnostic clinical dilemma in cancer. In this study, we retro-

spectively analyse glioblastoma patients, and using their dynamic susceptibility contrast and

dynamic contrast-enhanced perfusion MRI images we build a classifier using radiomic fea-

tures obtained from both Ktrans and rCBV maps coupled with support vector machines. We

achieve an accuracy of 90.82% (area under the curve (AUC)= 89.10%, sensitivity= 91.36%,

67 specificity= 88.24%, p= 0.017) in differentiating between pseudoprogression (PsP) and

progressive disease (PD). The diagnostic performances of the models built using radiomic

features from Ktrans and rCBV separately were equally high (Ktrans: AUC= 94%, 69 p=
0.012; rCBV: AUC= 89.8%, p= 0.004). Thus, this MR perfusion-based radiomic model

demonstrates high accuracy, sensitivity and specificity in discriminating PsP from PD, thus

provides a reliable alternative for noninvasive identification of PsP versus PD at the time of

clinical/radiologic question. This study also illustrates the successful application of radiomic

analysis as an advanced processing step on different MR perfusion maps.
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The current standard of treatment for glioblastoma is the
combination of maximal safe resection, radiation, and
chemotherapy; this paradigm was shown to prolong the

median overall survival to 14.6 months1,2. Immunotherapeutic
agents, which utilize the body’s innate immune responses to kill
cancerous cells, have demonstrated success in preclinical trials3–5.
However, during treatment, the size of the tumor often increases
and/or new inflammatory lesions appear. These transient changes
typically stabilize or subside without further treatment6, but they
are often difficult to distinguish from progressive disease (PD).
This PD-mimicking phenomenon is called pseudoprogression
(PsP). Patients with PsP have longer overall survival and are less
likely to exhibit signs and symptoms of neurological deterioration
than those with PD7,8.

Early discrimination of PsP from PD is a clinical challenge.
Surgical biopsy is used in current clinical practice as a standard
procedure for diagnosis of recurrent or residual disease, but
biopsy is not only highly invasive but also limited in accuracy
depending on the biopsy site, type of resection, and lesion het-
erogeneity9. Furthermore, biopsy is not feasible in every glio-
blastoma patient who has enhancement on post-treatment
imaging9.

Conventional magnetic resonance imaging (MRI) and the
Response Assessment in Neuro-Oncology (RANO) criteria are
used as an alternative to surgical biopsy for distinguishing PsP
from PD, but the diagnostic performance of this evaluation varies
considerably10. By RANO criteria, patients with clinical dete-
rioration, a new lesion, or an increase in existing tumor size
(≥25% increase in the sum of products of perpendicular dia-
meters) on restaging MR scans are defined as having PD, while
those with an increase <25% or a decrease of <50% in the sum of
products of perpendicular diameters of enhancing lesion are
considered to have stable disease, as shown in Supplementary
Table 110. Immunotherapy RANO (iRANO) criteria were devised
as an update to RANO to monitor patients undergoing immu-
notherapy11. According to the iRANO criteria, patients with
evidence of PD (per RANO) within 6 months of immunotherapy
who do not develop considerable neurological decline should
continue on the current therapy and undergo follow-up imaging
in 3 months for confirmation of PD11. The drawback of this
watchful waiting is that patients with PD will continue on an
ineffective therapy, incurring the unnecessary risks of potential
toxicity and delay in switching to more effective therapy; fur-
thermore, failure to correctly identify PsP may result in pre-
mature discontinuation of an effective treatment10,11.

Recently, there have been numerous efforts using MR perfu-
sion to differentiate PD from PsP12–14. MR perfusion, which can
assess the vascular properties of the post-treatment enhancing
lesions, calculates changes in blood volume, blood flow, and
vessel wall permeability. These are important characteristics of
tumor vessels15,16. However, lack of standardization in the post-
processing steps of MR perfusion studies has led to a discrepancy
in the reported cut-off values determining post-treatment changes
from PD and corresponding sensitivity and specificity17,18.
Therefore, there is a need for an accurate noninvasive quantitative
tool to differentiate between PD and pseudoprogression at the
time of detection of a brain MRI questionable lesion.

Radiomic analysis is a new automated, high-throughput method
that quantifies the tumor phenotype at a microscale level (voxel/
pixel level) by using thousands of image-based features obtained by
histogram and texture analysis19–21. Unlike surgical biopsy, radio-
mic analysis assesses the entire three-dimensional tumor inclusive
of spatial heterogeneity22,23. Prior studies have employed radiomic
analysis on MR perfusion for predicting the underlying glio-
blastoma molecular phenotype20,24–26 and patient outcomes24,25 as
well as distinguishing benign and malignant breast lesions27.

However, to date, no multicenter investigations on the use of MR
perfusion-based radiomic analysis to distinguish histologically-
proven PsP from PD in glioblastoma have been reported.

In this multicenter study, we seek to determine the ability of
MR perfusion-based radiomics to discriminate PsP from PD in
glioblastoma patients. We evaluated 98 patients with
pathologically-proven glioblastoma to identify the MR perfusion-
based radiomic signatures of PsP and PD; we then combined
these signatures to develop a noninvasive predictive model to
robustly differentiate PsP from PD in the clinical setting. With an
inclusive and diverse multi-institutional cohort, this pioneering
study seeks to distinguish PD from PsP through MR perfusion-
based radiomic analysis.

Results
Patient characteristics. We investigated a total of 98 patients
from 3 institutions who had histopathologic evidence of PD (n=
76; 77.6%) or PsP (n= 22; 22.4%; Table 1). Using Mann-
Whiteney test for non-prametric data and independent sample
t test for parametric data, there were no statistical significant
difference between the two groups in terms of age, sex, or Ktrans

volume (p > 0.05). However, the exctracted VOI of rCBV using
3D slicer were differed significantly between PsP and PD groups
(1126.91 mm3 and 1369.44 mm3, respectively; p= 0.010).

Predictive value of perfusion parameters analysis. Perfusion
parameter analysis showed that neither Ktrans nor rCBV was able
to predict PsP from PD groups, and there was no statistically

Table 1 Baseline selected demographic and clinical
characteristics of patients with Pseudo progression/
Glioblastoma grade IV (N= 98)

Characteristic Pseudoprogression
N= 22

Glioblastoma
grade IV N= 76

Age, years (SD) 53.50 (14.88) 49.37 (12.97)
Sex, male, N (%) 15 (68.2%) 42 (54.7%)
Ktrans volume, mm3 (SD) 3166.99 (4618.17) 4591.56

(6233.76)
rCBV volume, mm3 (SD) 1126.91 (2771.41) 1396.44

(2245.20)
Surgical type:
Total resection, N (%) 19(86.4%) 45(59.2%)
Sub-total resection,
N (%)

3(13.6%) 29(38.2%)

Biopsy, N (%) 0(0%) 2(2.6%)
Molecular status:
MGMT

Methylated, N (%) 3(13.7%) 3(3.9%)
Unmethylated, N (%) 1(4.5%) 10(13.2%)
Non tested, N (%) 18(81.8%) 63(82.9%)

IDH
Positive, N (%) 2(9%) 7(9.2%)
Negative, N (%) 5(22.7%) 16(21%)
Non tested, N (%) 15(68.3%) 53(69.8%)

Radio-therapy time,
days (SD)**

54.21429(36.59) 56(22.24)

Time after RT to PD/PSP,
days(SD)***

779.92(766.59) 664.9857
(854.85)

Chemotherapy treatment
(Temozolomide), N (%)

22 (100%) 76 (100%)

rCBV relative cerebral blood volume, SD standard deviation
*, Significant difference
**, 5 PSP and 8 PD with no available data
***, 2 PSP and 5 PD with no available data
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significant difference between the PsP and PD groups (Mann-
Whitney test for non-parametric data; Supplementary Table 4).

Performance of the radiomic model. To determine the capacity
of radiomic features to distinguish PsP from PD, we performed
an integrative analysis assessing the predictive performance of
perfusion radiomic features. The image post-processing workflow
is shown in Fig. 1. We first ranked features based on their rele-
vance to the outcome and within-feature redundancy using the
MRMR feature selection technique. Subsequently, SVM with
linear kernel and C5.0 models were constructed using the features
selected by the MRMR analysis. Finally, the diagnostic perfor-
mance of the models was evaluated using LOOCV for the SVM
model and 10-fold cross-validation for the C5.0 model.

In the analysis using Ktrans maps, the top 60 features (as ranked
by the MRMR feature selection technique) robustly differentiate
between PsP and PD. As shown in Fig. 2, selected radiomic
features significantly discriminated between PsP and PD using
the C5.0 method (AUC 100%, sensitivity 100%, specificity 100%,
p-value 1.512e−11 one sided binomial test). Similar results were
obtained using the SVM method (AUC 89.8%, sensitivity 92.5%,
specificity 88.89%, p-value 0.003744 one sided binomial test)
(Fig. 2). We then validated the predictive models using LOOCV
(AUC 90%, sensitivity 93%, specificity 89%, p-value 0.004 one
sided binomial test, Fig. 2) and 10-fold cross-validation (AUC
100%, sensitivity 100%, specificity 100%, p-value 1.512e−11 one
sided binomial test, Fig. 2). Significant features used in the models
are shown in Supplementary Table 5.

In the analysis using rCBV maps, the top 160 features (as
identified by the MRMR feature selection technique) achieved the
highest predictive accuracy in differentiating between PsP and
PD. Significant features used in the models are shown in
Supplementary Table 6. Radiomic models built using SVM
significantly distinguished PsP and PD (AUC 94%, sensitivity
92%, specificity 100%, p-value 0.012 one-sided binomial test);
similar results were obtained using the C5.0 classification (AUC

100%, sensitivity 100%, specificity 100%, p-value 1.512e−11 one-
sided binomial test). Validation using LOOCV (AUC 94%,
sensitivity 92%, specificity 100%, p-value 0.012 one-sided
binomial test, Fig. 3) and 10-fold cross-validation (AUC 100%,
sensitivity 100%, specificity 100%, p-value 1.512e−11 one-sided
binomial test, Fig. 3) demonstrated to be highly statistically
significant.

To determine the added value of combining the radiomic
features obtained from both Ktrans and rCBV pharmacokinetic
maps in predicting PsP from PD, we first ranked all 620 features
identified by the MRMR technique and built further predictive
models. Using 60 radiomic features (Supplementary Table 7)
coupled with SVM, we achieved an accuracy of 90.82% (AUC
89.10%, sensitivity 91.36%, specificity 88.24%, p-value 0.017 one-
sided binomial test); similar results were obtained using C5.0
(AUC 100%, sensitivity 100%, specificity 100%, p-value 1.512e
−11 one-sided binomial test). Differences identified by LOOCV
predictive modeling (AUC 89%, sensitivity 91.4%, specificity 88%,
p-value 0.02 one-sided binomial test, Fig. 4) and 10-fold cross-
validation (AUC 100%, sensitivity 100%, specificity 100%, p-value
1.512e−11 one-sided binomial test, Fig. 4) were both statistically
significant.

As the image acquisition parameters were distinct between
different institutions, we sought to determine the scalability and
generalizability of our radiomics analytical technique. Towards
this end, we performed sub-analysis on the 63 MDACC patients,
we achieved a high accuracy, sensitivity, and specificity to
differentiate between PSP and PD using the three different
extracted radiomic models obtained from Ktrans, rCBV and
combined pharmacokinetic maps as we demonstrated in
Supplementary Figs 1–3.

To assess the predictive power of the extracted radiomic
features obtained from Ktrans, rCBV, and combined pharmaco-
kinetic maps, we collated an independent prospective dataset of
seven pathologically proven MDACC patients (Supplementary
Table 2). Using the model built with whole dataset on the 98

1

1

1 1

rCBV Volumetric analysis Statistical analysis
Radiomic features

extraction

0.06

0.05

0.04

0.03

0.02

0.01

0

70
0

100

100

80

80

60

60

S
en

si
tiv

ity
 (

%
)

40

40

20

20

0

0

Specificity (%)

ROC curve using SVM method
with AUC and CI values

100 80 60 40 20 0

Specificity (%)

Validation using LOOCV method with
AUC and CI values

100

80

60

S
en

si
tiv

ity
 (

%
)

40

20

0

80
0

90
0

10
00

11
00

12
00

13
00

H
is

to
gr

am
 a

na
ly

si
s

Tr
ai

ni
ng

 m
od

el
 s

et

Te
xt

ur
e 

an
al

ys
is

P
re

di
ct

iv
e 

m
od

el
 s

et

Ktrans Volumetric analysis

79

0.0

79

0.0

2
2

22

2 2

22

3 3
33

3

3

4 4
44

4

4

4

a b c d
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patients as well as models built with cross-validation technique
(LOOCV and 10-fold CV) for both C5.0 and SVM methods, the
prediction results showed that the 7 new prospective patients
were correctly classified as PD patients with high probability
percentage as mentioned in Supplementary Tables 8–10.

Discussion
In this study, we evaluated the ability of MR perfusion-based
radiomics to non-invasively discriminate between PsP and PD in
glioblastoma patients at the time of clinical/radiologic question.
We demonstrated that, although PsP and PD have similar
radiographic appearances, they harbor distinct radiomic infor-
mation that is hidden within MR perfusion images and can be
extracted and used to build a clinically-relevant predictive model
that discriminates PsP from PD.

Evaluation of post-treatment changes in glioblastoma patients
using conventional MRI remains a challenge for clinicians and
radiologist, as post-treatment MR images demonstrate con-
founding appearances28–30. Advanced MRI techniques, including
perfusion MRI, have been proposed as alternatives to current
imaging assessment criteria; however, reported cut-off values
determining post-treatment changes versus PD vary widely across
different studies. In the meta-analysis by Wan et al., they
demonstrated substantial discrepancy between the cut-off values
(see Wan et al.; Table 1)18, which they attributed to the differ-
ences in the acquisition parameters of DSC and DCE among
different institutions. Further, the reported accuracy, sensitivity,
and specificity of the perfusion studies are not clinically reliable17.

In our patient cohort, ROI-based perfusion parameter analysis
using Ktrans and rCBV pharmacokinetic maps alone did not

Ktrans training and predictive model tests
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Fig. 2 Model building and evaluation using the selected Ktrans features (60 features). a, b ROC curve depicts the predictive model building using C5.0
(P-value 1.512e−11) and SVM methods (P-value 0.003744) respectively. c, d 10-fold cross-validation ROC curve (P-value 1.512e−11) and Leave-One-Out
Cross-Validation (LOOCV) ROC curve (P-value 0.004) depicts the performance of the model
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detect any differences between PsP and PD patient groups
(Supplementary Table 4). However, our proposed radiomic
model achieved high accuracy, sensitivity, and specificity in dif-
ferentiating between PsP from PD compared to previous methods
at the time of the clinical question of PsP versus PD; therefore,
radiomics can be used by radiologists and oncologists for clinical
decision-making (Figs. 2–4).

The radiomic model used in this study and proposed for
ongoing clinical applications was built using imaging data from a
multi-institutional cohort of patients for whom histopathologic
confirmation of PsP or PD was available. The model demon-
strated high discriminatory power, with AUCs greater than 89%
(Figs. 2–4). Despite differences in the MR acquisition parameters
of DSC and DCE imaging among the institutions (Supplementary
Table 3), the radiomics predictive model demonstrated robust
performance. Additionally, the discriminatory power was highly
robust for the individual pharmacokinetic maps and after fusing
the features from both the Ktrans and rCBV maps. These results
suggest that our radiomic model is well-calibrated and can be
directly applied in any clinical setting without the need to adjust
the acquisition protocol or include both DSC and DCE sequences.

Further, the majority of the features included in our models are
second-order (Supplementary Tables 5–7); of the key features
selected (60 for Ktrans, 160 for rCBV and 60 for fused model), the
number of second-order features was 54 (90%) for the Ktrans-
based model (Supplementary Table 5), 150 (94%) for the rCBV-
based model (Supplementary Table 6), and 54 (90%) for the fused
model (Supplementary Table 7). This finding is concordant with
the fact that histogram features depict the data distribution within
a selected region, and therefore their value is directly affected by
the differences in acquisition parameters. Conversely, second-
order features capture the inter-relationship between neighboring
voxels, and thus are not sensitive to the absolute data value.
Hence, by incorporating second-order radiomic features, the
model is more robust and ‘immune’ to the MR acquisition
parameters.

The robustness of our extracted radiomic features is further
demonstrated by the similarity in calculated AUC, sensitivity, and
specificity for the two classification algorithms investigated: (i)
SVM with linear kernel and (ii) C5.0. A previous study investi-
gated the performance and stability of various feature selection
and classifier methods in radiomic applications31. They reported

rCBV training and predictive model tests
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Fig. 3 Model building and evaluation using the selected rCBV features (160 features). a, b ROC curve depicts the predictive model building using C5.0
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variable accuracy for different combinations of feature selection
and classifier methods. Although evaluation of classifier methods
and feature selection techniques was beyond the scope of this
work, our findings indicate that our extracted radiomic features
were stable and performed equally well independent of the clas-
sifier method31.

Further, the key features selected for both Ktrans- and rCBV-
based models were entropy, sum of squares, and autocorrelation
(Supplementary Tables 5–7). These features hold information
about the spatial heterogeneity of the studied region and are more
sensitive when assessing tumor microenvironment and the pre-
sence of tumor cells. The finidngs of the present study confirmed
and extended previous work by Zinn et al. who showed that MRI
features (Diffsuion and radiomic features) capture spatial
heterogeneity25,32,33. Our results show that patients with PD have
high entropy and sum of squares and low autocorrelation com-
pared to PsP patients. Thus, selected volumes in PD patients were
characterized by non-uniformity and increased complexity
compared to PsP patients. This may reflect the heterogeneity seen
microscopically34–36.

Limitations of the current study mostly result from the
requirement for histopathologic confirmation of PsP or PD. First,

the percentage of patients with PsP is low, and our study design
did not include patients for whom histopathologic confirmation
was not available. Because biopsy is an invasive procedure and
clinicians usually prefer a watchful approach over biopsy, it is
expected that only a small fraction of patient who have undergone
biopsy will have PsP. Second, we performed semi-automated
segmentation of the VOI, which is a time-consuming process and
also requires an in-depth assessment of inter-rater variability and
stability of the extracted radiomic features. A user-friendly tool
that performs reliable automatic segmentations is needed, as it
would allow for easy translation of the radiomic analysis in the
clinical setting. Additionally, being a retrospective study, impor-
tant information, such as molecular and genetic characteristics,
was not available to review. For example, the contribution of
MGMT methylation and IDH1/2 mutations, was not investigated
in this work, since this information was not available for the
majority of the studied population. Finally, the total number of
patients included in the study was relatively small and did not
allow for a large validation prospective dataset using as a separate
cohort. A much larger study with a larger patient cohort that will
allow independent validation is needed; further the prospective
validation component is currently performed in our institution.

Merged Ktrans and rCBV training and predictive model tests

a b

c d

100

100

80

80

60

60

S
en

si
tiv

ity
 (

%
)

40

40

20

20

0

0
Specificity (%)

100

100

80

80

60

60

S
en

si
tiv

ity
 (

%
)

40

40

20

20

0

0

Specificity (%)

100

100

80

80

60

60

S
en

si
tiv

ity
 (

%
)

40

40

20

20

0

0
Specificity (%)

100

100

80

80

60

60

S
en

si
tiv

ity
 (

%
)

40

40

20

20

0

0
Specificity (%)

rCBV + Ktrans (60 features)
AUC: 100%
Sensitivity: 100%
Specificity: 100%

rCBV + Ktrans (60 features)
AUC: 100%
Sensitivity: 100%
Specificity: 100%

rCBV + Ktrans (60 features)
AUC: 89%
Sensitivity: 91.36%
Specificity: 88.2%

rCBV + Ktrans (60 features)
AUC: 89%
Sensitivity: 91.4%
Specificity: 88.2%

ROC curve using C5.0 method
with AUC and CI values

ROC curve using SVM method
with AUC and CI values

Validation using 10-fold cross method
with AUC and CI values

Validation using LOOCV method
with AUC and CI values

Fig. 4 Model building and evaluation using the selected merged Ktrans and rCBV features (60 features). a, b ROC curve depicts the predictive model
building using C5.0 (P-value 1.512e−11) and SVM methods (P-value 0.017), respectively. c, d 10-fold cross-validation ROC curve (P-value 1.512e−11) and
Leave-One-Out Cross-Validation (LOOCV) ROC curve (P-value 0.02) depicts the performance of the model
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In summary, our study presents a radiomic model based on
MR perfusion data for noninvasive, individualized prediction of
PsP in glioblastoma patients at the point-of-care (at the time of
the clinical question). We demonstrate the high predictive accu-
racy of radiomics in differentiating PsP from PD. Our radiomic
model can be easily integrated into the clinical setting, as it is a
post-processing approach that does not require changes in the
current imaging protocol and will allow clinicians to make more
informed decisions for optimal patient care. After outlining the
VOI on DCE and DSC maps, the model will indicate whether the
patient has PsP or PD. Our radiomic model will complement the
methods now available to clinicians by offering a comprehensive
evaluation of the imaging data. We expect that it will dramatically
decrease the number of invasive procedures performed to confirm
the absence of tumor in patients; Most importantly, our radio-
mics method can help ensure that patients with PsP will continue
on an effective treatment or discontinue an ineffective treatment
without the need for delays caused by watchful waiting. Con-
versely, early identification of PD will allow the prompt transition
to a more effective treatment.

Methods
Study population. This retrospective multi-institutional clinical study was con-
ducted in compliance with U.S. Health Insurance Portability and Accountability
Act (HIPAA) regulations. All necessary institutional ethics review approvals were
obtained by the participating institutions (The University of Texas MD Anderson
Cancer Center, Baylor College of Medicine, and University of Southern California
Keck School of Medicine).

A total of 651 patients with histopathologic diagnosis of GBM and an
enhancing lesion on MRI that may indicate PD or treatment-related changes were
received from three institutions; The University of Texas MD Anderson Cancer
Center (MDACC) (598 patients), Baylor College of Medicine (BCM) (13 patients),
and University of Southern California (USC) Keck School of Medicine (40
patients). A total of 98 patients were included in the final analysis based on the
following inclusion criteria: (1) minimum age of 18 years; (2) enhancing lesion on
MRI that may indicate PD or treatment-related changes; (3) conventional and
advanced MRI, including dynamic susceptibility contrast (DSC) and dynamic
contrast-enhanced (DCE) perfusion imaging; (4) pathologic confirmation of PD or
PsP within 3 months after detection of a questionable enhancing lesion on MRI
(time of question); (5) adequate image quality with no artifact affecting the
radiomic analysis. 553 patients did not meet the inclusion criteria and therefore
excluded. 8 patients (1 BCM, 7 USC) did not have dynamic susceptibility contrast-
enhanced T2*-weighted (DSC) and dynamic contrast-enhanced (DCE) perfusion;
85 patients (82 MDACC, 2 BCM, and 1USC) were excluded due to poor quality of
imaging/perfusion data; 460 (453 MDACC, 4 USC, and 3 BCM) were excluded due
to absence of histopathological confirmation of PsP versus PD.

The clinical, radiologic, and pathologic data were retrieved from the medical
records. Our final study cohort consisted of: 63 (50PD and 13PSP) patients from
MDACC, 7 (6PD and 1PSP) patients from BCM, and 28 (21PD and 7PSP) patients
from USC. Based on the pathologic diagnosis, 76 (77.6%) patients had PD and 22
(22.4%) patients had treatment-related changes considered to be PsP. Detailed
demographic, clinical characteristics and treatment information is presented in
Table 1.

For further validation of our results, a prospective study of 7 MDACC patients
with pathologically proven PD were included using the same aforementioned
inclusion and exclusion criteria. (Supplementary Table 2 showed the demographic,
clinical and pathological data)

Histopathologic evaluation. All patients had undergone biopsy or surgical
resection, and resected entire tumor/tissue block specimens were histopathologi-
cally examined. The pathology status as PD or PSP was decided and reviewed in
consensus by two experienced board-certified pathologists (J.T.H. and G.N.F.)
blinded to the MRI data. PD was defined as samples with either solely recurrent
GBM tissue or mixture of radiation necrosis and recurrent GBM, while PSP was
determined by the presence of radiation necrosis only or mixture between radiation
necrosis and reactive gliosis.

MRI acquisitions and imaging post processing. For conventional MRI acquisi-
tion, images were acquired using a 1.5 or 3.0 Tesla MR Scanner. The MRI protocol
for MDACC included an axial T1-weighted sequence (repetition time [TR],
700 ms; echo time [TE], 12 ms; slice thickness, 5 mm; acquisition matrix 352 ×
224), an axial fluid attenuation inversion recovery (FLAIR) sequence (TR,
10,000 ms; TE, 140 ms; slice thickness, 5 mm; acquisition matrix, 256 × 256), and
an axial post-contrast T1-weighted sequence acquired 5 min after the contrast
injection (TR, 750 ms; TE, 13 ms; slice thickness, 5 mm; acquisition matrix, 384 ×

256). The MRI protocol for USC included an axial T1-weighted sequence (TR, 600
ms; TE, 8 ms; slice thickness, 5 mm; acquisition matrix, 320 × 192), an axial FLAIR
sequence (TR, 8000 ms; TE, 151.2 ms; slice thickness, 5 mm; acquisition matrix,
320 × 224), and an axial post-contrast T1-weighted sequence acquired 5 min after
the contrast injection (TR, 615 ms; TE, 17 ms; slice thickness, 5 mm; acquisition
matrix, 320 × 192). The MRI protocol for BCM included an axial T1-weighted
sequence (TR, 750 ms; TE, 11 ms; slice thickness, 5 mm; acquisition matrix, 384 ×
192), an axial FLAIR sequence (TR, 2541 ms; TE, 16.4 ms; slice thickness, 5 mm;
acquisition matrix, 384 × 192), and an axial post-contrast T1-weighted sequence
acquired 5 min after the contrast injection (TR, 750 ms; TE, 11 ms; slice thickness,
5 mm; acquisition matrix, 384 × 192). while for advanced MRI acquisition: The
parameters of both DCE and DSC for each institution are shown in Supplementary
Table 3. Pre-contrast T1 mapping images were acquired with six flip angles (2, 5,
10, 15, 20, and 25 degrees). Images were acquired before and after injection of
passively targeted gadolinium-diethylenetriamine penta-acetic acid (0.1 mmol
per kg).

The advanced imaging analysis and pharmacokinetic map calculation were
performed using Nordic ICE (NordicNeuroLab, Bergen, Norway). Images were
segmented using 3D Slicer (version 4.3.1, https://www.slicer.org), an open-source
software program widely used for image visualization and segmentation37,38. The
image post-processing workflow is shown in Fig. 1.

DCE data were analyzed by using Nordic ICE, using the dual compartment
modified Tofts and Kermode pharmacokinetic model as described elsewhere39,40.
We manually selected the arterial input function in the middle cerebral artery
located on the ipsilateral side, then the pharmacokinetic Ktrans parameter (reflects
local blood flow, endothelial permeability, endothelial surface area, proportional
blood volume within a given voxel) was obtained41. For DSC analysis, the arterial
input function was manually selected in the middle cerebral artery located on the
ipsilateral side. Using the integrated DSC module, which incorporates a relative
cerebral blood volume (rCBV) leakage-correction algorithm and manual noise
thresholding, we obtained the amount of blood in a given volume of tissue
expressed as mL per 100 mL of tissue41.

Perfusion parametric maps analysis. We performed a perfusion parameter
analysis to determine whether perfusion parameters can differentiate between PD
and PsP. Both capillary permeability (Ktrans) and leakage-corrected rCBV maps
were rigidly registered based on mutual information with the post-contrast T1WI
using Nordic ICE; the resulting registrations were visually inspected to ensure
adequate alignment. Subsequently, circular regions-of-interest (ROIs) with an area
of 10.55 mm2 were manually delineated on the area with the highest parameter
value for each parameter map, ensuring that necrotic areas and large blood vessels
were excluded. The mean values were extracted from the ROIs for each parameter
map. To reduce sampling error, four ROIs were selected and the average of the
mean values was obtained42. This method has been demonstrated to provide the
optimal interobserver and intra-observer reproducibility43.

Quantitative radiomic analysis and model building. Post-contrast T1WI were
coregistered with Ktrans and rCBV maps to ensure appropriate tumor delineation;
cystic, necrotic regions and intralesional macrovessels were excluded. The coregistered
images for both Ktrans and leakage-corrected rCBV maps were semi-automatically
segmented by an experienced user (N.E., 4 years experience) and manually reviewed
slice-by-slice by an experienced board-certified radiologist (R.R.C., 9 years experi-
ence), both of whom were blinded to histopathologic assessment. Three-dimensional
volumes of interest (VOIs) were subsequently extracted for further analysis. A total of
310 radiomic features were extracted from each pharmaocokinetic parametric map,
consisting of 10 histogram-based features44 and 300 s-order Haralick features45–47.
Accounting for the Ktrans and leakage-corrected rCBV maps analyzed in this study, a
total of 620 radiomic features were obtained per patient26,48,49. Radiomic analysis was
performed using our in-house developed software implemented in MATLAB (version
2017b; MathWorks Inc; Natick, MA).

Histogram-based features describe the Ktrans and rCBV values distribution
within the VOI; the features obtained were minimum, maximum, mean, standard
deviation, skewness, kurtosis, and the percentiles 1%, 5%, 95%, and 99%. The
second-order Haralick features were computed from the gray-level co-occurrence
matrix (GLCM) after requantization of the image gray levels; the gray levels
implemented in this analysis were 8, 16, 32, 64, and 256. The second-order Haralick
features describe mathematical relationships between co-occurring voxels separated
by a given distance in a specific direction. For the purposes of this analysis, we
investigated a distance of 1 voxel and 4 in-plane directions. Twenty GLCM-based
features were obtained per gray level: autocorrelation, contrast, correlation, cluster
shade, cluster prominence, dissimilarity, energy, entropy, homogeneity, maximum
probability, variance, sum average, sum variance, sum entropy, difference variance,
difference entropy, information measure of correlation 1, information measure of
correlation 2, inverse difference moment, and normalized inverse difference
moment. Rotation invariant measures of the features were obtained by calculating
the average, range, and angular variance of the features across the four in-plane
directions. Taking into account the number of gray levels and the number of
rotation invariant measures, a total of 300 were calculated per map. Fig. 1 shows
the pipeline used to get the radiomic perfusion model.
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To investigate the predictive performance of extracted radiomic features in
discriminating between PD and PsP (outcome), we first identified the radiomic
features (feature set) that are associated with outcome. To minimize irrelevant and
redundant radiomic features, we used the Maximum Relevance Minimum
Redundancy (MRMR) feature selection technique; MRMR ranks the features based
on maximizing the relevance and avoiding excess redundancy50. The MRMR
approach was implemented using the mRMRe R package.

Different sizes of feature sets were investigated to ensure selection of the
fetaureset size with best prediction accuracy. We started with the MRMR-ranked
310 features and evaluated different featureset sizes ranging from 310 to 20 in
steps of 10.

MRMR-ranked radiomic features were used for classification and model
building. Two different supervised learning algorithms were used in this analysis
for classification and predictive model building: Support Vector Machine (SVM)
and decision tree algorithm C5.0. In the C5.0 algorithm, a decision tree is used
while modeling the classification process51. SVM is a supervised machine learning
algorithm that is used for solving classification problems by transforming the
feature space to a higher dimension space so that a separating hyperplane
maximizes the distance between the two classifiers52. To increase model accuracy
in our analysis, we tested the classifier in SVM with three different kernels (linear,
polynomial, and radial basis)53.

We used leave-one-out cross-validation (LOOCV) and k-fold cross-validation
(k= 10) to evaluate the accuracy, sensitivity, and specificity of the models54.
Receiver Operating Characteristic (ROC) curves were plotted; and the area under
the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV),
negative predictive value, and p-value were reported for each cross-validation and
prediction output.

Statistical analysis. Statistical analyses was performed using R software, version
3.4.3 (https://www.r-project.org)55. The statistical significance was two-sided in this
study, with significance level <0.05. Prior to univariate analysis, the fitness of
numeric dataset to normal distribution was determined by the Kolmogorov–
Smirnov test. Differences in non-parametric data, such as demographic and clinical
characteristics and individual perfusion parameters (rCBV and Ktrans), between the
PD and PsP groups were assessed using the Mann-Whitney U test.

Data availability
The data is available within the Article or the Supplementary Information. The imaging
data that support the findings of this study are available from the corresponding author
upon request.

Code availability
For the MR perfusion analysis, we used Nordic ICE, a commercially available processing
platform (https://www.nordicneurolab.com/products/nordicICE.html). For volumetric
analysis we used 3D Slicer (version 4.3.1, https://www.slicer.org/), an open-source
software program widely used for image visualization and segmentation. The pipeline for
the radiomic analysis has been introduced in Zinn et al.20. For the biostatistical analysis,
we used R software (version 3.4.0, R Foundation for Statistical Computing, Vienna,
Austria); package MRMRe (version 2.0.7) and C5 decision tree (version 0.1.2) and SVM
(version 1.7–0.1)50–52.

Received: 18 January 2019 Accepted: 7 June 2019

References
1. Holland, E. C. Glioblastoma multiforme: The terminator. Proc. Natl Acad. Sci.

USA 97, 6242–6244 (2000).
2. Ostrom, Q. T. et al. CBTRUS Statistical report: primary brain and other

central nervous system tumors diagnosed in the United States in 2009–2013.
Neuro-Oncol. 18, v1–v75 (2016).

3. Wainwright, D. A. et al. Durable therapeutic efficacy utilizing combinatorial
blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin.
Cancer Res. : Off. J. Am. Assoc. Cancer Res. 20, 5290–5301 (2014).

4. Antonios, J. P. et al. Detection of immune responses after immunotherapy in
glioblastoma using PET and MRI. Proc. Natl Acad. Sci. USA 114, 10220–10225
(2017).

5. Zeng, J. et al. Anti-PD-1 blockade and stereotactic radiation produce long-
term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol., Biol.,
Phys. 86, 343–349 (2013).

6. Lin, A. L. et al. Molecular and histologic characteristics of pseudoprogression
in diffuse gliomas. J. neuro-Oncol. 130, 529–533 (2016).

7. Chamberlain, M. C., Glantz, M. J., Chalmers, L., Van Horn, A. & Sloan, A. E.
Early necrosis following concurrent Temodar and radiotherapy in patients
with glioblastoma. J. Neuro-Oncol. 82, 81–83 (2007).

8. de Wit, M. C. Y., de Bruin, H. G., Eijkenboom, W., Sillevis Smitt, P. A. E. &
van den Bent, M. J. Immediate post-radiotherapy changes in malignant glioma
can mimic tumor progression. Neurology 63, 535–537 (2004).

9. Hygino da Cruz, L. C., Rodriguez, I., Domingues, R. C., Gasparetto, E. L. &
Sorensen, A. G. Pseudoprogression and pseudoresponse: imaging challenges in
the assessment of posttreatment glioma. Am. J. Neuroradiol. 32, 1978–1985
(2011).

10. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas:
response assessment in neuro-oncology working group. J. Clin. Oncol. 28,
1963–1972 (2010).

11. Okada, H. et al. Immunotherapy response assessment in neuro-oncology: a
report of the RANO working group. Lancet. Oncol. 16, e534-e542 (2015).

12. Young, R. J. et al. MRI perfusion in determining pseudoprogression in patients
with glioblastoma. Clin. imaging 37, 41–49 (2013).

13. Prager, A. J. et al. Diffusion and perfusion MRI to differentiate treatment-
related changes including pseudoprogression from recurrent tumors in high-
grade gliomas with histopathologic evidence. Am J Neuroradiol. https://doi.
org/10.3174/ajnr.A4218 (2015).

14. Ye, J. et al. Differentiation between recurrent gliomas and radiation necrosis
using arterial spin labeling perfusion imaging. Exp. Ther. Med. 11, 2432–2436
(2016).

15. Essig, M. et al. Perfusion MRI: the five most frequently asked technical
questions. Ajr. Am. J. Roentgenol. 200, 24–34 (2013).

16. Law, M. Advanced imaging techniques in brain tumors. Cancer Imaging 9,
S4–S9 (2009).

17. Huang, R. Y., Neagu, M. R., Reardon, D. A. & Wen, P. Y. Pitfalls in the
neuroimaging of glioblastoma in the era of antiangiogenic and immuno/
targeted therapy—detecting illusive disease, defining response. Fron. Neurol 6,
33 (2015).

18. Wan, B. et al. The diagnostic performance of perfusion MRI for differentiating
glioma recurrence from pseudoprogression: A meta-analysis. Medicine 96,
e6333 (2017).

19. Abrol, S., Kotrotsou, A., Salem, A., Zinn, P. O. & Colen, R. R. Radiomic
phenotyping in brain cancer to unravel hidden information in medical images.
Top. Magn. Reson. imaging : TMRI 26, 43–53 (2017).

20. Zinn, P. O. et al. A Coclinical radiogenomic validation study: conserved
magnetic resonance radiomic appearance of periostin-expressing glioblastoma
in patients and xenograft models. Clin. Cancer. Res. https://doi.org/10.1158/
1078-0432.ccr-17-3420 (2018).

21. Kotrotsou, A., Zinn, P. O. & Colen, R. R. Radiomics in brain tumors: an
emerging technique for characterization of tumor environment. Magn. Reson.
Imaging Clin. North Am. 24, 719–729 (2016).

22. Castellano, G., Bonilha, L., Li, L. M. & Cendes, F. Texture analysis of medical
images. Clin. Radiol. 59, 1061–1069 (2004).

23. Davnall, F. et al. Assessment of tumor heterogeneity: an emerging imaging
tool for clinical practice? Insights into Imaging 3, 573–589 (2012).

24. Kong, D. S. et al. Quantitative radiomic profiling of glioblastoma represents
transcriptomic expression. Oncotarget 9, 6336–6345 (2018).

25. Rao, A. et al. A combinatorial radiographic phenotype may stratify patient
survival and be associated with invasion and proliferation characteristics in
glioblastoma. J. Neurosurg. 124, 1008 (2016).

26. Zinn, P. O. et al. Distinct radiomic phenotypes define glioblastoma TP53-
PTEN-EGFR mutational landscape. Neurosurgery 64, 203–210 (2017).

27. Parekh, V. S. & Jacobs, M. A. Integrated radiomic framework for breast
cancer and tumor biology using advanced machine learning and
multiparametric MRI. NPJ Breast Cancer 3, https://doi.org/10.1038/s41523-
017-0045-3 (2017).

28. Shah, R. et al. Radiation necrosis in the brain: imaging features and
differentiation from tumor recurrence. Radiographics 32, 1343–1359
(2012).

29. Kumar, A. J. et al. Malignant gliomas: MR imaging spectrum of radiation
therapy- and chemotherapy-induced necrosis of the brain after treatment.
Radiology 217, 377–384 (2000).

30. Ulmer, S. et al. Clinical and radiographic features of peritumoral infarction
following resection of glioblastoma. Neurology 67, 1668–1670 (2006).

31. Parmar, C., Grossmann, P., Bussink, J., Lambin, P. & Aerts, H. J. W. L.
Machine learning methods for quantitative radiomic. Biomark. Sci. Rep. 5,
13087 (2015).

32. Zinn, P. O. et al. Diffusion weighted magnetic resonance imaging
radiophenotypes and associated molecular pathways in glioblastoma.
Neurosurgery 63(Suppl 1), 127–135 (2016).

33. Zinn, P. O. et al. A coclinical radiogenomic validation study: conserved
magnetic resonance radiomic appearance of periostin-expressing glioblastoma
in patients and xenograft models. Clin. Cancer Res. https://doi.org/10.1158/
1078-0432.CCR-17-3420 (2018).

34. Qin, J.-b et al. Grading of gliomas by using radiomic features on multiple
magnetic resonance imaging (MRI) sequences. Med. Sci. Monit. 23,
2168–2178 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11007-0

8 NATURE COMMUNICATIONS |         (2019) 10:3170 | https://doi.org/10.1038/s41467-019-11007-0 | www.nature.com/naturecommunications

https://www.r-project.org
https://www.nordicneurolab.com/products/nordicICE.html
https://www.slicer.org/
https://doi.org/10.3174/ajnr.A4218
https://doi.org/10.3174/ajnr.A4218
https://doi.org/10.1158/1078-0432.ccr-17-3420
https://doi.org/10.1158/1078-0432.ccr-17-3420
https://doi.org/10.1038/s41523-017-0045-3
https://doi.org/10.1038/s41523-017-0045-3
https://doi.org/10.1158/1078-0432.CCR-17-3420
https://doi.org/10.1158/1078-0432.CCR-17-3420
www.nature.com/naturecommunications


35. Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in
landscape classification tasks over a range of moderate spatial scales. Int. J.
Remote Sens. 38, 1312–1338 (2017).

36. Tiwari, P. et al. Computer-extracted texture features to distinguish cerebral
radionecrosis from recurrent brain tumors on multiparametric MRI: a
feasibility study. Am. J. Neuroradiol. 37, 2231 (2016).

37. Zinn, P. O. et al. Radiogenomic mapping of edema/cellular invasion MRI-
phenotypes in glioblastoma multiforme. PloS ONE 6, e25451 (2011).

38. Zinn, P. O. et al. A novel volume-age-KPS (VAK) glioblastoma classification
identifies a prognostic cognate microRNA-gene signature. PloS ONE 7, e41522
(2012).

39. Tofts, P. S. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J.
Magn. Reson Imaging 7, 91–101 (1997).

40. Tofts, P. S. et al. Estimating kinetic parameters from dynamic contrast-
enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities
and symbols. J. Magn. Reson Imaging 10, 223–232 (1999).

41. Zhang, J. et al. Clinical applications of contrast-enhanced perfusion MRI
techniques in gliomas: recent advances and current challenges. Contrast
Media Mol. Imaging 2017, 7064120 (2017).

42. Law, M. et al. Glioma grading: sensitivity, specificity, and predictive values of
perfusion MR imaging and proton MR spectroscopic imaging compared with
conventional MR imaging. Am. J. Neuroradiol. 24, 1989–1998 (2003).

43. Wetzel, S. G. et al. Relative cerebral blood volume measurements in
intracranial mass lesions: interobserver and intraobserver reproducibility
study. Radiology 224, 797–803 (2002).

44. Papoulis Athanasios, S. U. P. Probability, random variables, and stochastic
processes. McGraw-Hill 4 (1991/2).

45. Clausi, D. A. An analysis of co-occurrence texture statistics as a function of
grey level quantization. Can. J. Remote Sens. 28, 45–62 (2002).

46. Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image
classification. IEEE Trans. Syst., Man, Cybern. SMC 3, 610–621 (1973).

47. Soh, L. K. & Tsatsoulis, C. Texture analysis of SAR sea ice imagery using gray
level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37, 780–795
(1999).

48. Zinn, P. O. et al. 139 Clinically applicable and biologically validated mri
radiomic test method predicts glioblastoma genomic landscape and survival.
Neurosurgery 63, 156–157 (2016).

49. Colen, R. R. et al. Radiomics to predict immunotherapy-induced pneumonitis:
proof of concept. Investi. New Drugs, https://doi.org/10.1007/s10637-017-
0524-2 (2017).

50. Hanchuan, P., Fuhui, L. & Ding, C. Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005).

51. Frank, E., Wang, Y., Inglis, S., Holmes, G. & Witten, I. H. Using model trees
for classification. Mach. Learn. 32, 63–76 (1998).

52. Vojt et al. in Proceedings of the 28th International Conference on International
Conference on Machine Learning 665-672 (Omnipress, Bellevue, Washington,
USA, 2011).

53. Platt, J. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Adv. large margin Classif. 10, 61–74 (1999). 3/26.

54. Refaeilzadeh, P., Tang, L. & Liu, H. in Encyclopedia of Database Systems (eds
Ling Liu & M. Tamer ÖZsu) 532–538 (Springer US, 2009).

55. Team, R. C. R: A Language and Environment for Statistical Computing. doi:
citeulike-article-id:12956656 (2013).

Acknowledgements
This work was supported by the John S. Dunn Sr. Distinguished Chair in Diagnostic
Imaging fund, MD Anderson Cancer Center startup funding, Multi-Investigator Imaging
(MI2) Research Award. Radiological Society of North America scholar grant
(RSCH11506). The Cancer Prevention & Research Institute of Texas (RP160150) and by
the U.S. National Cancer Institute through the MD Anderson Cancer Center Support
Grant (P30CA016672) (RRC).

Author contribution
N. Elshafeey. and R.R.C conceived the study; S. Ahmed., S. Abrol., A.H., I.H., A.A., K.S.,
J.A. and S.B. collected patient clinical data; N. Elshafeey. and A.K. designed and per-
formed the imaging analysis; N. Elshafeey., N. Elshafei., and A.K. performed the statis-
tical analysis; J.T.H. and G.N.F. pathology evaluation and review; N. Elshafeey. and A.H.
prepared the figures and tables; F.M and M.L. provided patient data from collaborating
institutes; N. Elshafeey., A.K., P.O.Z., F.M., M.L. and M.L. provided support for the
interpretation of the results; N. Elshafeey. and A.K. drafted the manuscript; N. Elshafeey.,
A.K., F.M. and R.R.C critically revised the article for important intellectual content. All
authors read and approved the final version of the article.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11007-0.

Competing interests:Meng Law receives Honorarium and Research Grant Support from
Bracco Diagnostics. The remaining authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11007-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3170 | https://doi.org/10.1038/s41467-019-11007-0 | www.nature.com/naturecommunications 9

https://doi.org/10.1007/s10637-017-0524-2
https://doi.org/10.1007/s10637-017-0524-2
https://doi.org/10.1038/s41467-019-11007-0
https://doi.org/10.1038/s41467-019-11007-0
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
	Results
	Patient characteristics
	Predictive value of perfusion parameters analysis
	Performance of the radiomic model

	Discussion
	Methods
	Study population
	Histopathologic evaluation
	MRI acquisitions and imaging post processing
	Perfusion parametric maps analysis
	Quantitative radiomic analysis and model building
	Statistical analysis

	References
	References
	References
	Acknowledgements
	Author contribution
	Competing interests
	ACKNOWLEDGEMENTS




