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Multi-region exome sequencing reveals genomic
evolution from preneoplasia to lung adenocarcinoma
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There has been a dramatic increase in the detection of lung nodules, many of which are

preneoplasia atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally

invasive adenocarcinoma (MIA) or invasive adenocarcinoma (ADC). The molecular landscape

and the evolutionary trajectory of lung preneoplasia have not been well defined. Here, we

perform multi-region exome sequencing of 116 resected lung nodules including AAH (n= 22),

AIS (n= 27), MIA (n= 54) and synchronous ADC (n= 13). Comparing AAH to AIS, MIA and

ADC, we observe progressive genomic evolution at the single nucleotide level and demarcated

evolution at the chromosomal level supporting the early lung carcinogenesis model from AAH

to AIS, MIA and ADC. Subclonal analyses reveal a higher proportion of clonal mutations in

AIS/MIA/ADC than AAH suggesting neoplastic transformation of lung preneoplasia is

predominantly associated with a selective sweep of unfit subclones. Analysis of multifocal

pulmonary nodules from the same patients reveal evidence of convergent evolution.
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Lung cancer is potentially curable when detected early as
demonstrated in the National Lung Cancer Screening Trial1.
The growing implementation of lung cancer screening and

advent of high-resolution computed tomography (CT) for diag-
nostic imaging have resulted in a dramatic increase in the
detection of indeterminate pulmonary nodules (IPNs). Many
IPNs are atypical adenomatous hyperplasia (AAH), preinvasive
adenocarcinoma in situ (AIS), minimally invasive adenocarci-
noma (MIA), or sometimes early invasive lung adenocarcinoma
(ADC)2–5. It has been postulated that AAH, the only recognized
preneoplasia to ADC, may progress to AIS, MIA, and eventually
frankly invasive ADC6. However, the molecular landscape of
these lesions has not been well defined and the evolutionary
trajectory from AAH to ADC remains controversial.

Carcinogenesis of lung cancer may result from accumulation of
mutations in a branched evolutionary model like a growing tree7–10,
where the trunk harbors early founder events, while the branches
represent subsequent events acquired later during carcinogenesis.
Multi-region sequencing can depict genomic events to their relative
molecular time with early events ubiquitously present in every
tumor region and late events confined to spatially separated tumor
regions. Using this approach, we have previously delineated the
genomic evolution of localized non-small cell lung cancers
(NSCLC) and demonstrated that a majority of canonical cancer
gene mutations were early events during lung carcinogenesis11–13,
suggesting that comprehensive molecular profiling of preneoplasia
is warranted to fully understand the molecular evolution during the
initiation of lung cancer.

Over the past decade, genome-wide profiling has substantially
advanced our understanding of the genomic landscapes of various
cancer types and led to the identification of novel predictive/
prognostic biomarkers and therapeutic targets14–17. However, the
comprehensive genomic landscape of lung preneoplasia, pre-
invasive, and early invasive lung cancer has not been well studied,
primarily due to the scarcity of resected specimens, as surgery is
not the standard of care for the management of IPNs.

To delineate the pivotal molecular events driving lung cancer
initiation and early progression, we initiated an international
collaboration to collect and characterize a large cohort of resected
IPNs. Herein, we report the analyses of multi-region whole-
exome sequencing (WES) of 116 resected IPNs including AAH
(N= 22), AIS (N= 27), MIA (N= 54), and synchronous invasive
ADC (N= 13) from 53 patients (Supplementary Data 1). Our
results demonstrate evidence of genomic evolution from AAH to
AIS, MIA, and ADC, and suggest that neoplastic transformation
of lung preneoplasia may be predominantly associated with
selective sweep of unfit subclones.

Results
Multi-region exome sequencing of resected pulmonary nodules.
In this cohort, 11 patients were from China and 42 were from
Japan, and there were 25 smokers and 28 non-smokers (Supple-
mentary Data 1). In total, 267 multi-region samples were subjected
to WES with a mean sequencing depth of 150×. Matched DNA
from normal lung tissue (≥2 cm from tumor margin, morpholo-
gically negative for malignant cells assessed by two lung cancer
pathologists independently) was used as germ line DNA control.
A total of 46,007 somatic single nucleotide variants (SNVs) were
identified (Supplementary Data 2).

Quality control for sequencing data from FFPE samples. As all
specimens were formalin-fixed paraffin-embedded (FFPE) sam-
ples, which are known to be associated with sequencing artifacts,
rigorous quality control was applied before further analyses. FFPE
artifacts usually present as non-recurrent, low log odds (LOD)

score, low variant allelic frequency (VAF) (usually <10%), pre-
dominantly C > T/G > A “transitions”18. Therefore, in addition to
sequencing depth, VAF and minimal counts of alternative reads,
a minimal LOD threshold of 10 (the default is 6.3 for somatic
mutation calls) was applied to filter out FFPE artifacts. As shown
in Supplementary Fig. 2, “mutations” with low LOD scores
exhibited high proportion of C > T/G > A transitions, while
mutations with high LOD scores showed consistent proportion of
C > T/G > A transitions, suggesting “mutations” with low LOD
scores were likely enriched for FFPE artifacts.

We then assessed the quality of mutation calls after our
stringent filtering by comparing the proportion of C > T/G > A
transitions in mutations with VAF < 10% versus mutations with
VAF > 10%. Overall, 26.8% of mutations with VAF < 10% were
C > T/G > A transitions versus 22.1% for mutations with VAF >
10% for this cohort of IPNs. These proportions are comparable to
the high quality frozen samples from TCGA lung adenocarci-
noma (LUAD) cohort, where 32.2% of mutations with VAF <
10% were C > T/G > A transitions versus 24.3% for mutations
with VAF > 10%. We also scrutinized each sample for an excess of
C > T/G > A. As shown in Supplementary Data 3, there were 12
out of the 267 (4.5%) samples having C > T/G > A transitions over
56.25%, the cutoff for top 5% of TCGA LUAD samples with high
C > T/G > A transitions. Importantly, all 12 samples had low
mutation burden with 10 of 12 having 25 mutations or less, which
made the estimation of mutation spectrum less reliable. In
addition, 8 of the 12 samples were from never smokers, which are
known to be associated with C > T/G > A predominant muta-
tional spectra. Taken together, these data suggest FFPE artifacts
were controlled for the current study.

Progressive evolution of AAH at single nucleotide level. We
next delineated the genomic landscape of these IPNs at single
nucleotide level. The SNV profiles varied substantially between
IPNs of different histologic stages as well as between IPNs of the
same histologic stages, highlighting substantial inter-patient het-
erogeneity. Overall, the total mutational burden (TMB) progres-
sively increased from AAH to AIS, further to MIA and ADC
(Supplementary Fig. 1a–b and Supplementary Fig. 3), suggesting
a progressive accumulation of SNVs along with early neoplastic
evolution. To more conservatively rule out any impact of
potential FFPE artifacts on TMB, we recalculated TMB by
removing all private subclonal mutations detected in only one
region of any given IPNs or by removing all C > T/G > A tran-
sitions. As shown in Supplementary Fig. 4, the patterns of TMB
remained the same.

To unravel the mechanisms underlying mutagenesis during
initiation and progression of preneoplasia, we extracted mutational
signatures derived from the patterns of somatic mutations19. To
avoid over-fitting, we applied this analysis only to IPNs with a
minimum of 100 unique SNVs. Top mutational signatures enriched
in this cohort of IPNs included Alexandrov-COSMIC signature 1
(AC1, associated with spontaneous deamination), AC2 and AC13
(associated with APOBEC-mediated processes), AC3 (associated
with DNA double strand break repair defect), AC4 (associated with
tobacco exposure), and AC6 (associated with DNA mismatch repair
defect) (Fig. 1c and Supplementary Fig. 5), indicating the potential
roles of these mutational processes during early lung carcinogenesis.
Recently, the APOBEC-mediated mutational processes have drawn
attention because of its role in subclonal diversification during lung
cancer evolution20 and its potential as a therapeutic target21,22, yet
its role in the initiation and early progression of lung preneoplasia
has not been investigated. In this cohort of preneoplasia, preinvasive
and early invasive lung cancers, we observed a trend of progressive
increase of APOBEC-associated mutational signatures AC2 (weight
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score: 0.014 in AAH, 0.03005 in AIS, 0.0459 in MIA and 0.0366 in
ADC) and AC13 (weight score: 0.0073 in AIS, 0.045 in MIA and
0.036 in ADC) in later-stage IPNs. To further investigate the
APOBEC-mediated mutational processes during early lung carci-
nogenesis, we next calculated APOBEC enrichment scores23.
APOBEC-mediated processes were observed in all four histologic
stages, with a trend of more enrichment in later-stage IPNs
(Fig. 1d), although the difference did not reach statistical

significance, probably due to small sample size, low TMB, and
substantial heterogeneity in this cohort of IPNs. These results imply
an important role of the APOBEC-mediated mutational processes
during initiation and progression of lung preneoplasia, with
possibly increasing activities during neoplastic evolution.

Macroevolution from AAH to ADC at chromosomal level. In
contrast to progressive genomic evolution from AAH to ADC at
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the single nucleotide level, somatic copy number alterations
(SCNAs) appear to be demarcated. Very few SCNAs were
detected in AAH, while SCNA events became prevalent in
AIS, MIA, and ADC (Fig. 2a). GISTIC analysis identified sig-
nificant (FDR q-value < 5e-06) chromosomal gains at 6p21.1,
12p12.1, 12q15 and chromosomal losses at 17p13.3, 19p13.3

(Supplementary Fig. 6), all of which are commonly gained and
lost chromosomal regions in lung adenocarcinomas14. Further-
more, we estimated allelic imbalance (AI) in these IPNs using
hapLOHseq24 and detected only a few AI events in AAH and
AIS, but widespread AI events across multiple genomic regions
in MIA, which further increased in ADC (p= 3.411e-10,

Fig. 1 Progressive genomic evolution from AAH to ADC at the single nucleotide level. a Mutational burden. Each dot represents the mutational burden in
each IPN from smokers (green) or non-smokers (purple). The solid blue dots represent the mean mutational burden of all lesions of each histologic stage.
Kruskal–Wallis H test was used to compare mutational burden among all stages. b Mutational burden in smokers versus non-smokers. The violin plots
represent the distribution of mutational burden in smokers (green) and non-smokers (purple), respectively, by each stage. The circles represent the mean
mutational burden of IPNs from smokers (green) or non-smokers (purple) by each stage. Wilcoxon Rank-Sum test was used for the comparison between
smokers and non-smokers. c Top 10 enriched mutational signatures. The Alexandrov-COSMIC mutational signatures were derived from all mutations in
each IPN. Only IPNs with a minimum of 100 unique SNVs were included in mutational signature deconstruction. The stacked bar plot represents the
fraction of estimated mutations for each signature in each IPN. d The enrichment of APOBEC-mediated processes. Each green dot represents APOBEC
enrichment score in each IPN and the solid blue dots represent the mean APOBEC enrichment scores of all IPNs of each histologic stage with 95%
confidence interval as error bars. The statistical significance between all stages was assessed by Kruskal–Wallis H test. Only lesions with a minimum of 10
SNVs were included for APOBEC enrichment analysis

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Proportion
of

samples

a

0

5

10

15

20

25

AAH

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
1

AIS

MIA

ADC

AAH AIS MIA ADC
Stages

N
um

be
r 

of
 e

ve
nt

s 
w

ith
al

le
lic

 im
ba

la
nc

e

Stages

AAH
AIS
MIA
ADC

p−value = 3.411e−10
(Kruskal−Wallis test)

b

Fig. 2 Macroevolution from AAH to ADC at chromosomal level. a The somatic copy number aberrations across the genome. Each row represents all
lesions grouped by histologic stage. Copy number gains, defined as the mean log2 ratio (IPN versus germ line DNA) >0.3 of all lesions by each given stage,
are represented as red bars. Copy number losses, defined as the mean log2 ratio (IPN versus germ line DNA) ≤0.3 of all lesions by each histologic stage
are represented as blue bars. The height of the bars is proportional to the fraction of IPNs showing copy number gains or losses at corresponding
chromosomal regions. b The allelic imbalance. Each green dot represents the number of AI events in each IPN and the blue dots represent the mean
number of AI events detected in IPNs of each histologic stage. The difference between all stages was assessed by Kruskal–Wallis H test
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Kruskal–Wallis test) (Fig. 2b and Supplementary Fig. 7). Taken
together, these data imply macroevolution at the chromosomal
level during the transitions from AAH to AIS and from AIS to
MIA, possibly associated with SCNA and AI, respectively.

Selective clonal sweep during neoplastic evolution of AAH. The
clonal architecture of lung preneoplasia and the trajectory
through which it evolves with progression from preneoplasia to
invasive lung cancer are unknown. We sought to explore the
clonal architecture of AAH, AIS, MIA, and ADC in our cohort.
Using a modified version of pyclone12, we inferred clonality of
somatic mutations identified in these IPNs. Overall, an average of
48.8% of all mutations (ranging from 0 to 95.3%) were clonal in
these IPNs, which was significantly lower than that of invasive
lung cancers (average 68.2%, ranging from 8.2 to 100%, p=
1.31e-10, Mann–Whitney U Test)12. Furthermore, we observed
higher proportion of clonal mutations in AIS/MIA/ADC than
that in AAH (Fig. 3a). Interestingly, both clonal mutational
burden and subclonal mutational burden were significantly
higher in later-stage IPNs (Fig. 3b). These data suggest that the
progression of lung preneoplasia predominantly followed the
clonal sweep model, whereby a proportion of subclonal mutations
in early-stage IPNs became clonal in later-stage IPNs while unfit
subclones were eliminated. However, selective sweep is typically
associated with reduction in subclonal mutations in later-stage
diseases, which was not observed in the current cohort. To
investigate whether sequencing artifacts from FFPE samples
could account for the lack of reduction in subclonal mutations in
later-stage IPNs, we repeated the analysis by removing all private
subclonal mutations or by removing all C > T/G > A transitions.
Similar to the pattern obtained using all mutations, higher clonal
mutational burden and higher subclonal mutational burden were
observed in later-stage IPNs by either approach (Supplementary
Fig. 8), suggesting that the lack of reduction in subclonal muta-
tions in later-stage IPNs was unlikely due to FFPE artifacts. One
plausible explanation may be that clonal sweep was accompanied
by subclonal diversification in parallel, whereby a proportion of
subclonal mutations become clonal with accompanying ongoing

acquisition of subclonal mutations in the expanding population
reflecting ongoing mutational processes.

Next, we leveraged the multi-region WES data and performed
phylogenetic analysis to reconstruct the ITH architecture of each
IPN. Consistent with subclonal analysis, the proportion of trunk
mutations, representing genomic events acquired during early
molecular time of carcinogenesis, was higher in later-stage IPNs
(Supplementary Fig. 9), further supporting clonal sweeps during
initiation and progression of lung preneoplasia.

Cancer gene mutations from AAH to ADC. Previous studies
have demonstrated that a majority of canonical cancer gene
mutations are early molecular events during carcinogenesis of
NSCLC11,12,25. However, because only invasive NSCLC tumors
were analyzed, these studies were unable to characterize the
timing of cancer gene mutations during initiation and early
progression of lung preneoplasia. Taking advantages of exome
sequencing of preneoplasia and preinvasive lung cancers in the
current study, we depicted the canonical cancer gene mutations
and copy number variations during early carcinogenesis. As
shown in Fig. 4 and Supplementary Data 4, commonly mutated
cancer genes in this cohort of IPNs included EGFR, KRAS,
RBM10, TP53, etc. In addition, STK11 and CDKN2A were com-
mon tumor suppressor genes involved in chromosomal losses.
EGFR was the most commonly mutated cancer gene in this
cohort occurring in 40.7% of AIS, 29.6% of MIA and 46.2% of
ADC lesions. Strikingly, no EGFR mutation was detected in 22
AAH lesions under our strict filtering criteria with VAF ≥ 0.05.
This was different from previous studies, in which EGFR muta-
tions were detected in a proportion of AAH lesions26,27. We
therefore applied less stringent filtering criteria (VAF ≥ 0.01 and
alteration reads ≥2), and observed canonical EGFR mutations in 7
AAH lesions (Supplementary Data 5). Comparing the cancer cell
fraction (CCF) of EGFR mutations across different stages
demonstrated that EGFR mutations were only present as minor
subclones in AAH (mean CCF= 0.11), which became major
subclones in AIS (mean CCF= 0.66), MIA (mean CCF= 0.54)
and ADC (mean CCF= 0.71). Taken together, these data imply
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that the subclones with EGFR mutations may have a selective
advantage and therefore became dominant clones in later-stage
IPNs. In addition, loss of chromosomal segments containing
STK11 was detected in 10% of AAH, 20% of AIS, 35.7% of MIA
and 38.5% of ADC lesions (p= 0.02558, χ2 test for trend in
proportions), implying STK11 loss may be a later genomic event
during initiation or progression of lung preneoplasia. Gene
expression data are needed to validate the role of STK11 during
early carcinogenesis.

Genomic landscape of IPNs from smokers versus non-smokers.
Cigarette smoking is the most important risk factor for lung
cancer. It has been well documented that the genomic landscape
of lung cancers from smokers is different from that of non-
smokers28. However, whether the genomic landscapes of lung
preneoplasias and preinvasive lung cancers are different between
smokers and non-smokers has not been systemically studied.
With the caveat of small sample size fully acknowledged, we
sought to explore whether lung adenocarcinoma precursors from
smokers have distinct genomic alterations and evolutionary tra-
jectories compared to their non-smoking counterparts. As shown
in Fig. 1a–b and Supplementary Fig. 10a, IPNs from smokers
displayed a trend of higher TMB than those from non-smokers at
all four histologic stages. In addition, smokers showed higher
abundance of AI events in MIA and ADC than non-smokers,
although the difference did not reach statistical significance
(Supplementary Fig. 10b). Smokers also showed a trend of
higher clonal TMB (Supplementary Fig. 10c), higher subclonal
TMB (Supplementary Fig. 10d) and higher proportion of trunk
mutations (Supplementary Fig. 10e). Although no significant
difference was observed between smokers and non-smokers in
regard to cancer gene mutations, likely due to small sample size,
EGFR mutations appeared to be more frequent in non-smokers
than smokers (11/28 versus 7/25, p= 0.283, Chi-Square test),

while smokers showed higher incidence of TP53 mutations
(5/25 versus 1/28, p= 0.073, χ2 test) and CDKN2A loss or
mutations (6/25 versus 2/28, p= 0.092, χ2 test). Taken together,
these data imply that cigarette smoking may be associated with
distinct evolutionary trajectories during initiation and progres-
sion of lung preneoplasia. Characterization of larger cohorts of
IPNs from both smokers and non-smokers are warranted to
address this critical question.

Distinct drivers and genetic constraints in multifocal IPNs.
There were 39 patients with multifocal IPNs in this cohort,
including 22 patients with more than one histologic stage of IPNs
(Supplementary Data 1 and 6). These patients provided a unique
opportunity to decipher the genetic constraints underlying the
carcinogenesis of lung adenocarcinomas, as multiple lesions share
identical genetic background and relative exposure history.
Overall, the results were similar to those from the cohort as a
whole with later-stage IPNs having higher TMB (Supplementary
Fig. 11a), more AI events (Supplementary Fig. 11b) and higher
proportion of clonal mutations (Supplementary Fig. 11c) com-
pared to early-stage IPNs from the same patients. Interestingly,
distinct cancer gene mutations were detected in different IPNs
(Fig. 5a–f). On the other hand, some cancer genes demonstrated
distinct mutations across different IPNs within the same patients.
For example, although no mutations were shared between a MIA
lesion and an ADC lesion from patient C5, implying these were
two independent primary tumors, a KRAS p.G12A mutation was
identified in an MIA and a p.G12C mutation in an ADC (Fig. 5a).
Similarly, a KRAS p.G12A mutation and a KRAS p.G12L muta-
tion were detected in an AAH lesion and an ADC lesion,
respectively from patient J3 (Fig. 5b). The same phenomenon was
also observed for EGFR mutations in patient C2 (Fig. 5c). These
findings are reminiscent of heterogeneity studies in renal cell
carcinoma, where different mutations in the same cancer genes
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were identified in different regions within the same tumor
implying convergent evolution29. Taken together, these results
suggest the possibility that even with an identical genetic back-
ground and environmental exposure, carcinogenesis of multiple
primary tumors can be driven by distinct molecular events in
different tumors, with possible genetic constraints around certain
genes or pathways that are pivotal for carcinogenesis in certain
patients.

Discussion
The characterization of IPNs through multi-region WES in our
study provided molecular evidence supporting the proposed
model of early carcinogenesis of lung adenocarcinoma from AAH
to AIS, MIA, and ADC, and revealed evidence supporting pro-
gressive genomic evolution at the single nucleotide level accom-
panied by macroevolution at the transition from AAH to AIS and
from AIS to MIA, possibly associated with SCNA and AI,
respectively (Supplementary Fig. 12). Meanwhile, we observed
substantial inter-patient heterogeneity at each histologic stage.
For example, although TMB is significantly higher in ADC than
AAH as a group, some AAH lesions demonstrated higher TMB
than many ADC lesions (Fig. 1a, Supplementary Figs. 4 and 10).
Therefore, characterizing larger cohorts of AAH, AIS, MIA, and
ADC lesions is necessary to address the inter-patient hetero-
geneity and to more robustly decipher common genomic evolu-
tionary patterns from preneoplasia to invasive lung cancer. In
addition, the current diagnosis of AAH, AIS, MIA, and ADC was

based on morphologic assessment, which may not fully reflect the
underlying biology of these lesions. In future studies, more defi-
nitive endpoints such as postsurgical recurrence and overall
survival should be integrated with molecular landscape to define
the molecular subtypes of IPNs and assess their prognostic values.

Determining whether pulmonary nodules are malignant or
benign is critical for appropriate management of IPNs. However,
it is challenging, particularly for ground glass opacity (GGO)-
predominant IPNs, due to low yield of biopsy in such lesions30.
Multiple algorithms incorporating clinical and radiologic features
have been proposed to deduce cancer probability of IPNs, but the
accuracy of these algorithms is still in question30,31. We tested a
commonly used and recently validated algorithm32,33 in the IPNs
of our cohort. Higher cancer risk scores were observed in later-
stage IPNs (Supplementary Fig. 13), confirming the predictive
value of this algorithm. However, there was substantial overlap
between different histologic stages, highlighting the limitation of
such algorithms. Since morphologic staging may not be optimal
to reflect the biology of these IPNs, we tested whether cancer
recurrence, a more clinically meaningful endpoint, was associated
with certain genomic features. We did not detect significant
associations between recurrence and TMB, abundance of AI
events, proportion of clonal mutations, or APOBEC enrichment
scores (Supplementary Data 7) in this cohort of patients. Of note,
the follow up was short (median 12.4 months ranging from 0 to
42.6 months) and only four recurrences (three histologically
confirmed recurrences and one suspected recurrence with brain
metastasis) have occurred (Supplementary Data 1). Analyses of
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larger cohorts of IPNs with longer follow up are needed to
identify potential molecular markers to select high-risk IPNs.

Intra-tumor heterogeneity (ITH) could provide diverse
genetic and epigenetic elements to foster tumor evolution and the
ITH architecture may evolve with neoplastic progression34,35.
Evolution of ITH architecture can follow a subclonal diversifi-
cation model, where tumor ITH becomes progressively more
heterogeneous in more advanced diseases driven by acquisition of
subclonal genomic events in different cell populations along with
disease progression. Previous studies have shown higher level of
ITH complexity in later-stage NSCLC, consistent with this model
during progression from early stage to advanced NSCLC11,12,36.
In interesting contrast, the data from current study revealed
higher proportion of subclonal mutations (Fig. 3b) and branch
mutations (Supplementary Fig. 9) in early-stage IPNs than those
of advanced stages, suggesting a clonal sweep model with selective
outgrowth of fit subclones during initiation and early progression
of lung preneoplasia. These observations imply that neoplastic
evolution is a dynamic process that may change along with
neoplastic progression and follow different models at different
stages. Furthermore, varying evolutional processes in different
IPNs of each histologic stage were observed, further highlighting
the substantial inter-patient heterogeneity even at the pre-
neoplastic and preinvasive stages.

Our results have revealed evidence supporting genomic evo-
lution with neoplastic progression from preneoplasia to invasive
lung adenocarcinoma. However, as all patients in this study were
from Japan and China, future studies using IPNs from Western
patient populations are warranted to validate whether these
findings are broadly applicable. In addition, a major caveat of the
current study is that these analyses were based on resected lesions,
which offered a single molecular snapshot of the evolutionary
process of IPNs. There is an assumption of a linear model of
evolution from AAH to AIS, MIA and ADC. However, whether
all AAH eventually transform to AIS, MIA, or ADC and whether
every ADC follows the linear evolutionary trajectory from AAH
to AIS, then MIA and eventually ADC is unknown. These
questions cannot be addressed by the analyses conducted in a
single resected specimen. For example, one alternative explana-
tion for the lack of reduction in subclonal TMB in later-stage
IPNs (Fig. 3a and Supplementary Fig. 8) is the “winner effect”,
where only IPNs with high mutational burden (both clonal and
subclonal) would eventually transform to IPNs of advanced
stages. Deciphering how the genomic landscape evolves over time
with neoplastic progression and how these changes associate with
patient outcomes requires longitudinal biopsies over the course of
disease progression from lung preneoplasia, which is impractical
in general clinical practice. Conversely, lung cancer prevention
trials applying longitudinal biopsies such as IMPRINT-Lung
(NCT03634241) may provide a unique opportunity to examine
the temporal changes in molecular features with neoplastic
progression.

Methods
Patients and tissue processing. Resected specimens were collected from patients
presenting with IPNs, who underwent resection at Zhejiang Cancer Hospital
(China) and Nagasaki Hospital (Japan) from 2014 to 2017. None of these patients
received preoperative chemotherapy or radiotherapy (Supplementary Data 1).
Rigorous pathology quality control was applied and all samples were subjected to
central pathology review at MD Anderson prior to further analyses. A “grid”
approach (Supplementary Fig. 1) was used to collect tissues from multiple regions
within each IPN. Manual macrodissection was applied to ensure a minimum of
40% diseased (atypical or malignant) cells in each multi-region sample before DNA
extraction. Samples with lower disease content were excluded from further ana-
lyses. DNA from normal lung tissue (≥2 cm from tumor margin, morphologically
negative for malignant cells assessed by two lung cancer pathologists indepen-
dently) from the same patients was used as germ line DNA control. Written
informed consent was obtained from all patients involved. The study was approved

by the Institutional Review Boards (IRB) at MD Anderson Cancer Center, Zhejiang
Cancer Hospital and Nagasaki University Graduate School of Biomedical Sciences.

Whole-exome sequencing. DNA was extracted using the QIAamp DNA FFPE
Tissue Kit (QIAGEN) and the resulting genomic DNA was sheared into 300–400
bp segments and subjected to library preparation for whole-exome sequencing
using KAPA library prep (Kapa Biosystems) with the Agilent SureSelect Human
All Exon V4 kit according to the manufacturer’s instructions. 76nt paired-end
multiplex sequencing of DNA samples was performed on the Illumina HiSeq
2500 sequencing platform.

SNV and indel calling from whole-exome sequencing. Sequencing reads were
mapped to the human reference sequence GRCh37 (hg19) using the Burrows-
Wheeler Aligner (BWA) using default parameters37. Duplicate reads were marked
using Picard 1.67 followed by realignment around known indels and base quality
recalibration was performed using GATK version 3.738. Somatic mutation calls
were performed using Mutect 1.1.4, allowing at least 0.05 variant allele frequency in
the tumor sample and up to a maximum of 0.01 allele frequency in normal sample,
with sequencing depth of at least 20× in tumor and 10× in normal samples, as well
as mutation LOD score >10. The passed variants were further filtered through
validation using other somatic variant callers including somaticsniper, freebayes,
vardict, MuSE, and only mutations detected by at least two somatic variant callers
were subjected to further analyses. Small indels of cancer genes were detected by
pindel and further filtered with total tumor reads >15 and total normal reads >6; at
least 4 reads supporting the indel with a minimum allele frequency of 0.05 in tumor
and maximum 0.01 in normal, to obtain a more confident set of somatic variants.
Then forced callings were performed based on shared mutation loci detected by
Mutect in multiple regions from one lesion. The final list of somatic SNVs and
indels was then annotated by multiple databases using Annovar and filtered by
dbsnp129.

Quality assessment of FFPE samples. To evaluate the potential sequencing
artifacts derived from FFPE samples in this study, mutation calls from TCGA
LUAD cohort were downloaded14, the ratio of C > T/G > A transitions was cal-
culated and compared to that in our cohort of IPNs.

Mutational signature analysis. “DeconstructSigs” package was applied to extract
top mutational signatures based on non-negative matrix factorization (NMF) and
model selection to deconstruct mutational processes present in each lesion. The
curated mutational signature sets are based on combined Alexandrov and COSMIC
signatures (AC1-30)19 used in “YAPSA” package. To avoid over-fitting, we only
applied signature analysis to IPNs with at least 100 unique SNVs. APOBEC-
mediated mutational processes were defined as previously described. In brief,
APOBEC enrichment scores reflecting the strength of mutagenesis at the TCW
(where W is either A or T) motif was determined for all mutations in each lesion11.

Copy number and allelic imbalance analysis. Disease and matched germ line
DNA were used to obtain tumor-specific (somatic) copy number changes by
varscan239 from WES data, the log2 ratios of disease versus germ line DNA reads
were calculated for each tumor region after adjusting for the total mapped reads in
that tumor region, then segmented by the circular binary segmentation (CBS)
algorithm40. The GISTIC2 algorithm41 was applied to the segmented copy number
profiles to identify significant aberrations of broad and focal events. Similar
approach has been taken to estimate copy number status at the gene level. Log
ratios were subjected to segmentation using the “DNAcopy” package, and then
segment data were processed using the “CNTools” package to generate segmented
DNA copy number matrix. To determine the somatic copy number aberrations of
cancer genes in this cohort, oncogenes known to be activated by amplification and
tumor suppressor genes known to be inactivated by deletion were examined. A
threshold of log2 ratio (IPN versus germ line DNA) >2 or <−2 was used to screen
for copy number gains or copy number losses, respectively. Manual inspection on
IGV was conducted to review all segments containing candidate genes in each
sample to confirm chromosomal gains or losses.

The regions of genomic allelic imbalance were predicted by hapLOHseq based
on the probabilities for each heterozygous genotype residing in a region present
allelic imbalance24, which leverages the allele-specific read counts and capturing
signals among multiple sites jointly at haplotype level.

Subclonal analysis. Tumor purity was estimated using ABSOLUTE42 and
ASCAT43. The cancer cell fraction (CCF) and mutant allele copy number for each
SNV was inferred using pyclone 12.344 following the modified method described
previously45. In brief, PyClone implements a Dirichlet process clustering model
that simultaneously estimates the distribution of the cellular prevalence for each
mutation. Copy numbers of somatic mutations were inferred by integrating integer
copy numbers determined by ASCAT on single sample basis. The outputs were
cellular prevalence value distributions per SNV estimated from Markov-chain
Monte Carlo (MCMC) sampling. The median value of the MCMC sampling-
derived distribution was used as a representative cellular prevalence for each
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mutation. A given mutation was classified as “clonal” if the 95% confidence interval
of CCF overlapped 1 and “subclonal” otherwise.

Phylogenetic analysis. Using binary matrix based on the presence and absence of
somatic mutations across samples, we first calculated the genetic distances between
samples using the hamming distance, then applying neighbor joining algorithm
and wagner parsimony method from the APE and phangorn package46 to infer
phylogenetic relationships between tumor sectors for each patient.

Cancer risk prediction. Brock University cancer prediction equation as below was
used to predict the probability of cancer in each lesion32,33.

Log odds ¼ 0:0287 Age� 62ð Þð Þ þ Sexþ Family History Lung Cancerþ Emphysema

� 5:3854 Nodule size=10ð Þ�0:5�1:58113883
� �þ Nodule type

�

þNodule Upper Lung� 0:0824 Nodule count� 4ð Þ
þSpiculation� 6:7892

Cancer probability ¼ 100 eðLogoddsÞ= 1þ eðLogoddsÞ
� �� �

Statistical analyses. Kruskal–Wallis H test was applied to assess the association
between mutational burdens, proportion of clonal mutations and trunk mutations,
APOBEC signature enrichment, abundance of allelic imbalance events, risk scores
between IPNs from different histologic stages. Tukey’s test was used for comparing
mutational burden between each stage pairs. One-sided Wilcoxon rank-sum test
was used for the comparison between the groups of smokers and non-smokers. All
statistical analysis was performed using R.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data from whole-exome sequencing has been deposited at European Genome-
phenome Archive (EGA), which is hosted by The European Bioinformatics Institute
(EBI) and the Centre for Genomic Regulation (CRG) under the accession code:
EGAS00001003439 [https://ega-archive.org/studies/EGAS00001003439]. Further
information about EGA is available at https://ega-archive.org. All other data may be
found within the main manuscript or Supplementary Information or available from the
authors upon request.
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