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|dentifying the structure of Zn-N, active sites
and structural activation

Feng Li V7 Yunfei Bu?’, Gao-Feng Han ! Hyuk-Jun Noh!, Seok-Jin Kim', Ishfaq Ahmad!, Yalin Lu® 3,

Peng Zhang® Hu Young Jeong® >, Zhengping Fu3, Qin Zhong® & Jong-Beom Baek® '

Identification of active sites is one of the main obstacles to rational design of catalysts for
diverse applications. Fundamental insight into the identification of the structure of active sites
and structural contributions for catalytic performance are still lacking. Recently, X-ray
absorption spectroscopy (XAS) and density functional theory (DFT) provide important tools
to disclose the electronic, geometric and catalytic natures of active sites. Herein, we
demonstrate the structural identification of Zn-N, active sites with both experimental/the-
oretical X-ray absorption near edge structure (XANES) and extended X-ray absorption fine
structure (EXAFS) spectra. Further DFT calculations reveal that the oxygen species activation
on Zn-N, active sites is significantly enhanced, which can accelerate the reduction of oxygen
with high selectivity, according well with the experimental results. This work highlights the
identification and investigation of Zn-N, active sites, providing a regular principle to obtain
deep insight into the nature of catalysts for various catalytic applications.
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ctive sites are at the heart of catalysts, while the nature of

active sites plays a key role in the performance of cata-

lysts!=6. During the past decade, the active sites of tran-
sition metal-nitrogen—-carbon (TMNC) catalysts have not been
well identified and are simply defined as TM-N, based on
information from X-ray photoelectron spectroscopy (XPS)7-11.
Such rough recognition of active sites leads to ambiguous
understanding of the reaction mechanisms occurring on the
surface of the catalysts, as well as stagnation of the development
of rational catalyst design strategies. Recently, synchrotron
radiation-based extended X-ray absorption fine structure
(EXAFS) spectrum analysis, along with experimental character-
ization and theoretical simulation, has gradually been introduced
to identify the geometric structures of active sites!2~15, Despite
this progress, however, the more structurally sensitive X-ray
absorption near edge structure (XANES) spectrum analysis has
been neglected. To obtain fundamental understanding of active
sites and catalytic mechanisms, identifying the electronic and
geometric structures of active sites with both XANES and EXAFS
spectra is still highly desired.

Among various TMNC catalysts, zinc (Zn)-based materials,
due to the low sublimation temperature, have been difficult to
achieve and little progress has been made. After the removal of
metallic Zn by sublimation, Zn-containing materials are fre-
quently used as precursors to produce porous nitrogenated car-
bon for various electrochemical applications or Zn-free single
atom catalysts!>15-19, However, none of these can maintain the
presence of elemental Zn, not to mention the relevant active sites.
Recently, single Zn atoms have been stabilized on carbon black
(ZnN,/C), with Zn-N, as the structure of the active sites20:21,
However, the active sites have been investigated simply by
EXAFS, without XANES spectrum analysis, making identification
of active site structures and ensuing reaction mechanisms
ambiguous and unreliable. It is still a great challenge to construct
and identify Zn-based active sites, as well as to discern structural
activation for catalytic applications.

Herein we demonstrate the synthesis and structural identifi-
cation of Zn-based active sites, as well as the related structural
activation for oxygen species. Combined EXAFS and XANES
spectra analysis confirmed Zn-N, as the structure of the active
sites. First-principles density-functional theory (DFT) calcula-
tions reveal that the O-O bond stretching of adsorbed O, (*O,)
and OOH (*OOH) on Zn-N, active sites are significantly
enhanced. The high degree of O-O bond stretching can accelerate
the highly selective four-electron reduction of adsorbed oxygen
on the surface of Zn-N, active sites, which agrees well with the
experimental results.

Results
Synthesis and structural characterization. Figure 1 shows typical
structures of active sites of TMNC catalysts. With different
coordination environments, the electronic and geometric struc-
tures of the active sites are largely different. Importantly, differ-
ences of the electronic and geometric structures can lead to
diverse adsorption behaviours, which play key roles in the per-
formance of catalysts. To begin with, Zn-based TMNC material
(ZnNC) was prepared by thermal treatment of Zn-containing
hybrid precursor in an argon atmosphere at 800°C for 6h
(Supplementary Fig. 1). According to reported works, prolonged
higher temperature pyrolysis can result in the vanish of Zn?2.
The crystalline structure of ZnNC was investigated using high-
power X-ray diffraction (HP-XRD) equipment (Supplementary
Fig. 2). The two diffraction peaks of ZnNC at around 26° and 43°
can be assigned to the (002) and (100) planes of graphitic carbon.
No peaks of metallic Zn and Zn oxide were detected. The
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Fig. 1 Schematic illustration of active site structures in transition
metal-nitrogen-carbon system. Light yellow, blue and pink ivory balls
represent carbon, nitrogen and transition metal atoms, respectively

structural and chemical compositions of ZnNC were further
studied by scanning electron microscopy (SEM), transmission
electron microscopy (TEM) and Brunauer-Emmett-Teller (BET)
specific surface area analysis (Supplementary Figs. 3-5). The
polyhedral building blocks in ZnNC exhibited an average size of
50 nm and consisted of C, N and Zn elements. Importantly, the
element mapping images showed that the C, N and Zn elements
are uniformly distributed in ZnNC. The high-resolution scanning
transmission electron microscope (STEM) images further confirm
the graphitic morphology of ZnNC, with an absence of metal or
metal oxide nanoparticles for Zn element.

The XPS technique was further introduced to investigate the
detailed chemical compositions of Zn and N species (Supple-
mentary Fig. 6). The two peaks at binding energies of 1021.7 and
1044.8 eV in the high-resolution Zn 2p XPS spectrum belong to
Zn 2ps;, and Zn 2p,, of the Zn?T species. The high-resolution N
1s XPS spectrum confirmed the presence of four different N
species, including pyridinic N (398.5 eV), pyrrolic N (400.1 eV),
graphitic N (401.0 eV) and oxidized N (404.6 eV)23. The atomic
concentrations of the various N species are 2.28 at%, 0.26 at%,
2.34 at% and 0.39 at%, respectively. In relation to pyrrolic N, the
content of pyridinic N is significantly higher, which can be
attributed to the higher thermal stability of pyridinic N.
Generally, uniformly distributed pyridinic N plays an important
role in the active sites of TMNC materials, which can stabilize TM
atoms in the NC matrix by formation of TM-N bonds.

Active site structure identification. Synchrotron radiation-based
X-ray absorption spectroscopy, with high sensitivity to electronic
and geometric structures, was adopted for identification of the
structure of active sites. Figure 2a shows the K-edge XANES
spectrum of ZnNC, with ZnPc and Zn foil as the references. The
location of the absorption edge for ZnNC reveals that the oxi-
dation state of the Zn atom is between 0 and + 2. The Fourier-
transformed (FT) k3-weighted EXAFS spectrum of ZnNC exhibits
a main peak at around 1.47 A, corresponding to Zn-N coordi-
nation. The possibility of Zn-C coordination was excluded by the
following XANES spectrum simulation (Supplementary Fig. 7). In
contrast to the case of Zn foil, no peak belonging to Zn-Zn bond
was detected at around 2.2 A (Fig. 2b). Based on the position of
the absorption edge, the Zn-N, model structure was proposed as
the geometric structure of the ZnNC active sites and was further
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Fig. 2 Structural analysis of ZnNC by X-ray absorption fine structure (XAFS) spectroscopy. a Zn K-edge X-ray absorption near edge structure spectra of Zn
foil, ZnPc and ZnNC. b Fourier transform (FT) of the Zn K-edge extended XAFS (EXAFS) spectra of Zn foil, ZnPc and ZnNC. ¢, d Corresponding EXAFS
fitting curve of ZnNC in R and k spaces, respectively. Insets are the schematic model of Zn-N,. Light yellow, blue, light purple and red ivory balls represent

carbon, nitrogen, zinc and oxygen atoms, respectively

used to fit the corresponding Fourier transform (FT) k3-weighted
EXAFS spectrum in both R and k spaces (Supplementary
Table 1). As shown in Fig. 2c, d, the FT k3-weighted EXAFS
spectrum of ZnNC can be well fitted, suggesting Zn-N, config-
uration as the active sites of ZnNC.

Compared with the EXAFS spectrum, the XANES spectrum
is more sensitive and is thus essential for the identification of
the structure of active sites. To confirm the structure of the
active sites, XANES spectra were further simulated with typical
structures of TMNC active sites (Fig. 3). Figure 3a shows the Zn
K-edge XANES spectrum of ZnNC and the theoretical XANES
spectrum based on the structure of the proposed Zn-N, model.
The calculated spectrum can reproduce identical features and
matches well with the experimental results. Compared with the
experimental spectrum, the calculated spectra for the structures
of Zn-N,C;, Zn-N,C,, Zn-N3C;, Zn-N, models and ZnO,
which exhibit more positive absorption edges, are strikingly
different. Although the theoretical spectrum for the structure of
the Zn-N3; model shows an adsorption edge similar to that of
the experimental spectrum, a corresponding strong feature at
around 9677.3 eV interrupts this agreement. In the energy range
of 9669-9677 eV, no obvious other models related intensity
enhancing was observed in the experimental spectrum, revealing
the high homogeneity of Zn-N, model.

This result is consistent well with the optimized typical
structures of Zn active sites (Supplementary Fig. 8). As shown, the
configurations of Zn-N;Cs, Zn-N,C,, Zn-N3;C;, Zn-N; and Zn-
N, are instable, in which the Zn atoms have struggled out of
the nitrogenated carbon matrix planes. The exposed Zn atoms
can be easily reduced into metallic Zn by the surrounded adjacent
carbon species. Unlike other transition metals, such as Fe and Co,
the formed metallic Zn can be further removed steadily via
sublimation at high temperature. In this regard, Zn-N,

configuration on the edge sites of the nitrogenated carbon matrix
planes exhibits the most stable configuration, which faces the
minimum adjacent carbon species and has the most opportunity
to survive at high temperature. The following atomic resolution
STEM images in Fig. 4c, d further confirmed the sole edge
site location of Zn single atoms at the nitrogenated carbon
matrixes. No Zn-N;Cs, Zn-N,C,, Zn-N;C;, Zn-N3 and Zn-N,
configuration-related location site for Zn single atoms was
observed. At the meantime, the nitrogenated carbon matrixes
are very small in size, which can provide abundant edge sites for
the maximum coordinating of Zn single atoms.

Overall, combining EXAFS with XANES spectra, the structure
of the active sites for ZnNC can be confirmed without ambiguity
to be the Zn-N, structure. Structural identification of the active
sites is highly beneficial for the analysis of structural activation to
determine catalytic behaviours on the surfaces of catalysts.

Theoretical study of the structural activation. Electrochemical
reduction of O, to H,O in aqueous medium via a robust four-
electron pathway has been pursued for decades by TMNC cata-
lysts. Active site structural activation for O-O bond stretching
in *O, and *OOH, and O, adsorption plays an important role in
the oxygen reduction process?3-2°.

To obtain fundamental insight into structural activation for
oxygen species on Zn-N, active sites, first-principles DFT
calculations were conducted. The Pt(111) surface was also
investigated as a reference (Supplementary Fig. 9). Figure 5a
shows the optimized gaseous O, molecule, which exhibits an O-O
bond length of 1.21A. Figure 5b, ¢ show the optimized
configurations of O, and OOH adsorbed on the Zn-N, active
site. Importantly, the bond lengths for *O, and *OOH are 1.53
and 1.49 A, respectively, which are 1.26 and 1.23 times that of the
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Fig. 3 Theoretical calculation of X-ray absorption near edge structure (XANES) spectra. a-i Comparison of Zn K-edge XANES spectra of ZnNC and
theoretical XANES spectra calculated with different active site structures. Insets are corresponding schematic models of the active site structures.
Light yellow, blue, light purple and red ivory balls represent carbon, nitrogen, zinc and oxygen atoms, respectively

gaseous O, molecule. The degree of O-O bond stretching of *O,
and *OOH on Zn-N, active sites is also higher than that on Pt
(111). With a higher degree of O-O bond stretching, much easier
breaking of O-O bonds can be expected. The higher degree of O-
O bond stretching can accelerate the rate of selective four-
electron oxygen reduction and suppress the formation H,0, via
an inefficient two-electron pathway.

On the other hand, the O, adsorption energies on Zn-N, active
sites and Pt(111) are -1.53 and -0.93 eV, respectively (Supple-
mentary Table 2). The high O, adsorption energy on the Zn-N,
active sites is more favoured by oxygen reduction, which can
allow fast reactant supply for the subsequent reaction steps.
Although the carbon atoms adjacent pyridinic N are also
constantly considered as the active sites, the O, adsorption
energies on the carbon atoms are much lower, leading to a quite
sluggish oxygen reduction pathway?3. Meanwhile, the oxygen
reduction is more efficient at an overpotential of 04V
(Supplementary Fig. 10).

According to the identified structure of active sites and the
structural activation of oxygen species, we believe that Zn-N,
active sites incorporating ZnNC exhibit favourable catalytic
behaviour for oxygen reduction.

Experimental evaluation on ORR catalytic activity. The cata-
lytic behaviours of ZnNCs for oxygen reduction were further
evaluated in an oxygen-saturated 0.1 M aq. KOH solution. The
contents of Zn in ZnNC, ZnNC-M and ZnNC-L were around
4.03 wt%, 3.68 wt% and 2.81 wt%, respectively (Supplementary
Figs 11 and 12). NC and Pt/C were compared under the same
conditions (Supplementary Fig. 13). Figure 5e shows the potential
dependence of the kinetic current density (J) on ZnNC with
different Zn concentrations and Pt/C. Ji was calculated using the
Koutecky-Levich equation. Without Zn active sites, NC exhibits
poor catalytic activity in the potential range of 0.8-1.0 V vs. the
reversible hydrogen electrode (RHE). Ji values at 0.85V for
ZnNC-L, ZnNC-M and ZnNC are -1.9, -4.5 and -7.9 mA cm2,
respectively, while that for Pt/C is around —4.3 mA cm=2. Com-
pared with Pt/C, ZnNC exhibits much higher mass activity
(Supplementary Fig. 14). Following the increasing Zn con-
centration, ZnNC demonstrates significantly enhanced catalytic
activity towards oxygen reduction. Meanwhile, the decreasing
Tafel slopes (81, 55 and 27 mV dec™!) confirm that the corre-
sponding reaction kinetics also become much faster (Supple-
mentary Fig. 15). With a smaller Tafel slope and a more positive
half-wave potential (Ej;; 0.857V), ZnNC exhibits catalytic
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activity superior to that of other decent catalysts for oxygen
reduction reaction®26-32 (Supplementary Table 3).

The selectivity of ZnNC was further detected by monitoring
the H,O, yield through rotating ring-disk electrode (RRDE)

Carbon

ke,
Nitrogen

Fig. 4 Structural characterization of ZnNC by atomic resolution scanning
transmission electron microscopy (STEM). a, b Low-resolution STEM and
element mapping images of ZnNC. ¢, d Atomic resolution STEM image of
ZnNC. The Zn single atoms indexed with cyan blue square, confirming that
the Zn single atoms are located on the edge of the nitrogenated carbon
matrixes. Scale bar: @ 200 nm; b 10 nm; ¢, d 1nm

measurements (Supplementary Fig. 16). By applying a constant
potential to the Pt ring, the H,O, yield for ZnNC was revealed to
be 1.35-2.93% in the potential range of 0.5-0.7 V, which was
merely half of that for Pt/C (3.16-4.61%). According to the ring
and disk current, the electron transfer number (1) of ZnNC was
further calculated and found to be 3.97, confirming an efficient
four-electron oxygen reduction pathway. The good stability of
ZnNC was also demonstrated in the results of a methanol
poisoning test and long-term cycling tests in oxygen-saturated
0.1 M aq. KOH solution (Supplementary Fig. 17).

The demonstrated high catalytic activity and selectivity of Zn-
N, active sites for electrochemical reduction of O, agree well with
the theoretical calculations based on the structural activation of
*O, and *OOH. On the other hand, owing to the stronger OH
adsorption of Zn-N, active sites, the theoretical onset potential
would be smaller than that of Pt(111). The result is different from
the relative performance of ZnNC and Pt/C and requires study in
the future.

Discussion

In summary, Zn-N, active sites have been achieved and
identified by both EXAFS and XANES spectra. Theoretical cal-
culations reveal that the structural activation of oxygen species
on Zn-N, active sites is favoured by the selective oxygen reduc-
tion, which is confirmed by the experimental results. This
work not only achieves the preparation and identification of Zn-
N, active sites but also provides a regular principle to obtain
deep insight into the nature of catalysts for various catalytic
applications.

Methods

Synthesis of ZnNC. As a typical synthesis, Zn(CH;COO), (2 mmol), 2-
methylimidazole (8 mmol) and CNT (5 mg) were dissolved in methanol (80 ml).
Each mixture was sonicated for 20 min. The above solutions were mixed quickly
and aged at ambient conditions for 24 h. The resultant precipitates were collected
and dried in an oven under reduced pressure. The collected precursor was annealed
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Fig. 5 Theoretical and experimental investigations of oxygen species activation. a Molecular structure of gaseous O,. b, ¢ O, and OOH adsorption
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at 800 °C for 6 h in an argon atmosphere with a fast argon flow rate of 1.5 L min~1,

denoted as ZnNC. Sample synthesized with 15-h thermal treatment was denoted
as ZnNC-M. ZnNC etched with 5% HCI for 4 h was denoted as ZnNC-L. For the
NC synthesis, trimesic acid (0.1 g) was mixed with dicyandiamide (1.0 g) and
annealed under the same conditions as ZnNC.

Characterizations. A field-emission SEM (Nanonova 230, FEI, USA) was used to
obtain the SEM images of the samples. A high-resolution TEM (JEM-2100F, JEOL,
Japan) was used to get the TEM images of the samples. A high-power X-ray
diffractometer (D/MAZX 2500 V/PC, Rigaku, Japan) was applied to obtain the
XRD patterns. An X-ray photoelectron spectrometer (K-alpha, Thermo Fisher
Scientific, UK) was introduced to conduct the XPS analysis. Nitrogen
adsorption-desorption isotherms were used to analyse the specific surface area,
using the BET method (BELSORP-max, BEL, Japan). XAFS test was conducted at
Pohang Light Source (PLS-II) in Korea.

The catalytic performance was investigated on an electrochemical workstation
(Ivium, Netherlands) with a typical three-electrode cell. The counter-electrode and
reference electrode were graphite rod and Ag/AgCl (saturated KCI) electrodes,
respectively. All the potentials were referenced vs. RHE. The commercial Pt/C was
obtained from Alfa Aesar (platinum, nominally 20% on carbon Black HiSPEC
3000). Catalyst (4 mg) and Nafion solution (30 uL, Aldrich Chemical Inc.) were
dispersed in 0.5 ml ethanol/isopropyl alcohol solution (1/3, v/v). Catalyst ink was
obtained by ultrasonicating the solution for 30 min. Catalyst film for the
electrochemical test was formed by dropping the ink (8.32 uL) onto RRDEs (4 mm
in diameter). The loading amount of Pt/C and catalysts are 0.2 and 0.5 mgcm™2,
respectively (Pt/C: 40 pgp, cm~2; ZnNC: 20 ugz, cm™2). Linear sweep voltammetry
was conducted in 0.1 M aq. KOH solution (oxygen saturated). The scan rate and
rotation speed were 5mV s~! and 1600 r.p.m., respectively. A constant potential of
0.3V (vs. Ag/AgCl) was applied on the Pt ring. The percentage of HO, and
electron transfer number (n) were calculated by the disc, ring current and Pt ring
collection efficiency. The kinetics current was calculated using Koutecky-Levich
equation.

Theoretical calculation. The Vienna Ab Initio Simulation Package (VASP) was

used to conduct the DFT calculations, employing the Perdew-Burke-Ernzerhof-

type gradient-corrected exchange-correlation potential. The cutoff energy for the
plane-wave basis set was 630 eV. The ionic potentials were described by projector-
augmented wave potentials. The atomic configurations were relaxed with residual
forces <0.01 eV A~1. The Zn K-edge XANES spectra calculations were carried on
the optimized atomic structures of ZnNC active sites with the full-potential aug-
mented plane wave+local orbitals method, considering core-hole correction.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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