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FANCM limits ALT activity by restricting telomeric
replication stress induced by deregulated BLM and
R-loops
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Telomerase negative immortal cancer cells elongate telomeres through the Alternative
Lengthening of Telomeres (ALT) pathway. While sustained telomeric replicative stress is
required to maintain ALT, it might also lead to cell death when excessive. Here, we show that
the ATPase/translocase activity of FANCM keeps telomeric replicative stress in check
specifically in ALT cells. When FANCM is depleted in ALT cells, telomeres become dys-
functional, and cells stop proliferating and die. FANCM depletion also increases ALT-
associated marks and de novo synthesis of telomeric DNA. Depletion of the BLM helicase
reduces the telomeric replication stress and cell proliferation defects induced by FANCM
inactivation. Finally, FANCM unwinds telomeric R-loops in vitro and suppresses their accu-
mulation in cells. Overexpression of RNaseH1 completely abolishes the replication stress
remaining in cells codepleted for FANCM and BLM. Thus, FANCM allows controlled ALT
activity and ALT cell proliferation by limiting the toxicity of uncontrolled BLM and telomeric
R-loops.
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elomere shortening must be counteracted in immortal

cells, including the large majority of cancer cells, to avoid

senescence or death!. Approximately 90% of human can-
cers have reactivated the reverse transcriptase telomerase, which
adds newly synthesized telomeric repeats to the 3’ end of linear
chromosomes?3. About 10% of immortal cancer cells are
telomerase-negative and replenish telomeres using the so-called
Alternative Lengthening of Telomeres (ALT) pathway*. In
humans, ALT was reported in tumors of mesenchymal or epi-
thelial origin, including osteosarcomas, liposarcomas, glio-
blastomas, astrocytomas, and bladder carcinomas as well as in
in vitro immortalized cell lines*-8.

Molecular features considered markers for ALT comprise: (i)
telomeres of heterogeneous lengths at different chromosome
ends, including telomeres much longer than average telomeres in
telomerase-positive cells3; (ii) elevated levels of the telomeric long
noncoding RNA (IncRNA) TERRA®-13; (iii) clustering of multi-
ple telomeres into ALT-associated PML bodies (APBs), nuclear
structures containing promyelocytic leukemia protein (PML),
telomeric factors such as TRF1, TRF2 and RAP1, TERRA, and
DNA repair factors such as RAD51, RAD52, Replication Protein
A (RPA), Breal, and Bloom (BLM) and Werner helicases!1-14-19;
(iv) abundant extrachromosomal telomeric repeats (ECTRs)
comprising double-stranded (ds) circles (t-circles), partially
single-stranded (ss) circles (C- and G-circles) and linear
dsDNA20-23; (v) recurrent mutations of the Alpha Thalassemia/
Mental Retardation Syndrome X-Linked (ATRX) gene!?.

Multiple DNA metabolism pathways collaborate to maintain
telomeres in ALT cells. Break-induced replication (BIR) is active
at ALT telomeres in the G2 phase of the cell cycle, and is sti-
mulated by DSBs experimentally induced using the telomere-
tethered DNA endonuclease TRF1-FokI?42>, ALT BIR requires
POLD3 and POLD4, two regulatory subunits of DNA polymerase
delta?42>, Conservative mitotic DNA synthesis (MiDAS) was also
documented in human ALT cells20. ALT MiDAS is stimulated by
replication stress and requires RAD52 26, Finally, clustering of
ALT telomeres within APBs is promoted by RAD51-dependent
long-range movements, which are also stimulated by TRF1-FokI-
induced DSBs?’. Telomere movements may promote efficient
homology searches and telomere synthesis, although both ALT
BIR and MiDAS are independent of RAD51 2>26,

A common notion deriving from all this work is that a sus-
tained physiological damage must be maintained at ALT telo-
meres to promote telomere elongation. This is consistent with the
presence of replication stress and DNA damage markers in
APBs!L14-18  The triggers of this damage remain unclear,
although RNA:DNA hybrids (R-loops), G-quadruplexes and
oncogene expression were proposed as candidates!1»26. This sce-
nario implies that telomeric damage levels be maintained within a
specific threshold that is high enough to trigger DNA synthesis-
based repair, yet not too high to induce cell death. Consistently,
telomeric R-loops (telR-loops) formed by TERRA and telomeric
DNA activate replication stress at ALT telomeres, and their levels
are tightly controlled by the endoribonuclease RNaseH1 1128,
When RNaseH1 is depleted, excessive replication stress rapidly
leads to abundant telomere free chromosome ends (TFEs) and
increased C-circles. Conversely, RNaseH1 overexpression causes
progressive TFE accumulation, likely due to inefficient de novo
synthesis of telomeric DNA!l. The DNA damage signaling kinase
ATM- and Rad3-Related (ATR) and the annealing helicase SW1/
SNF-related matrix-associated actin-dependent regulator of
chromatin subfamily A-like protein 1 (SMARCAL1) were also
reported to restrict replicative stress at ALT telomeres2?-30,

The Fanconi anemia, complementation group M (FANCM)
ATPase/translocase is a component of the Fanconi Anemia (FA)
complex, where it supports efficient FANCD2 ubiquitination

upon stalling of replication forks by physical impediments
including DNA crosslinks3!. Independently of the FA complex,
FANCM remodels replication forks, recruits DNA repair factors
at damage sites, suppresses meiotic crossovers and facilitates ATR
checkpoint activation32-3>. Moreover, the ATPase/translocase
activity of FANCM resolves RNA:DNA hybrids in vitro and that
R-loops accumulate genomewide in FANCM-deficient cells3. We
hypothesized that FANCM suppresses replication stress at ALT
telomeres, and while this work was in progress, a report from Pan
et al.!”7 confirmed our hypothesis. The authors showed that, in
ALT cells, FANCM allows efficient progression of the replication
fork through the telomeric tract, and depletion of FANCM
induces telomeric replication stress!”. The same study also
reported that FANCM depletion leads to accumulation of BLM
and Brcal at ALT telomeres and that codepletion of FANCM
with Brcal or BLM is lethall”.

Here we show that FANCM depletion in ALT cells causes
robust telomere replication stress and damage, activation of ATR
signaling, nearly complete abrogation of proliferation, and cell
death. In FANCM-depleted ALT cells telomeric ssDNA, ECTRs
and mitotic DNA threads accumulate. Moreover, features of ALT
activity including APBs and DNA synthesis in G2/M augment
when FANCM is depleted. An ATPase/translocase inactive var-
iant of FANCM fails to revert telomeric replication stress and
APB accumulation in cells depleted for endogenous FANCM.
Finally, FANCM resolves telR-loops in vitro and restricts them in
cells, and the replicative stress induced by FANCM depletion is
completely averted by simultaneous codepletion of BLM and
overexpression of RNaseH1. We propose that FANCM keeps
replicative stress and ALT in check by assuring regulated BLM
activity and resolving telR-loops.

Results
FANCM supports viability of ALT cells. We depleted FANCM
in several ALT (U20S, HuO9, Saos2 and WI-38 VA13) and
telomerase-positive (Tel+; HeLa, HOS, HT1080 and SKNAS)
cells using short interference RNAs (siRNAs) against two
sequences from FANCM coding region (siFa and siFb). Non-
targeting siRNAs were used as controls (siCt). Two days after
transfection, nearly complete depletion of FANCM protein was
detected by western blot in Fa- and Fb-transfected cells, with the
exception of siFb-transfected SKNAS cells, where about 10% of
the protein remained (Fig. 1a). Fluorescence-activated cell sorting
(FACS) of ethanol-fixed, propidium iodide (PI)-stained cells
revealed that FANCM-depleted ALT cells, but not Tel+, accu-
mulated in G2/M phase (Fig. 1b, ¢; Supplementary Fig. 1A). The
clonogenic potential of ALT cells was largely abolished upon
transfection of FANCM siRNAs, while the one of Tel+ cells
remained essentially unaffected (Fig. 1d, e). For colony formation
experiments, cells were transfected only once with siRNAs before
seeding and colonies were counted at least 8 days later. Hence, the
antiproliferative effects exerted by FANCM depletion on
ALT cells are fast and irreversible. Cell growth analysis upon
prolonged siRNA treatment showed that FANCM-depleted
U20S cells were quickly eliminated from the population, while
HelLa cells continued to grow although at lower rates (Fig. 1f).
Finally, FANCM-depleted U20S cells, but not HeLa cells, started
to be permeable to PI already after 3 days of siRNA treatment
denoting cell death (Supplementary Fig. 2A). No major changes
in PARP1 cleavage were detected in the same cells (Supplemen-
tary Fig. 2B). Thus, FANCM depletion causes aberrant accumu-
lation of ALT cells in G2/M phase, followed by PARPI-
independent cell death.

Our data indicate that FANCM is essential for cell-cycle
progression and viability in ALT cells. This is different to what
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Fig. 1 FANCM supports normal cell-cycle progression and proliferation of ALT cells. a Western blot analysis of FANCM protein levels in ALT and Tel+ cells
transfected with anti-FANCM siRNAs (siFa and siFb) or with control siRNAs (siCt). ALT cells (gray background) are: U20S, HuO9, Saos2 and WI-38 VA13
(VA13); Tel+ cells are: HelLa, HOS, HT1080 (HT10) and SKNAS (SK). U-ST and H-ST are supertelomerase U20S and Hela cells, respectively. Proteins
were extracted 48 h after transfection. Lamin B1 (LMBT1), Golgin 97 and KAP1 serve as loading controls. b Examples of FACS profiles of the indicated siRNA-
transfected cells stained with propidium iodide (PI). Cell counts (y axis) are plotted against Pl intensity (x axis). Cells were harvested 48 h after
transfection. ¢ Quantifications of experiments as in (b). The graph shows the percentage of cells in G1, S and G2/M phases from one representative
experiment. d Examples of colony formation assays with the indicated siRNA-transfected cells. e Quantifications of experiments as in (d). The graph shows
colony numbers relative to siCt-transfected samples. Bars and error bars are means and SDs from three independent experiments. P values were calculated
with a two-tailed Student’s t test. *P < 0.05, **P < 0.005, ***P < 0.001. f Growth curves of U20S and Hela cells transfected with the indicated siRNAs every
3 days. Cell numbers are expressed relative to siCt-transfected cells. Data points and error bars are means and SDs from three independent experiments.
g Western blot analysis of U20S cells infected with retroviruses expressing Flag-tagged TRF1 (FL-TRF1) or with empty vector (ev) control retroviruses. Five

days after infections cells were transfected with the indicated siRNAs and harvested 48 h later. pS33: RPA32 phosphorylated at serine 33, pRPA32:
phosphorylated RPA32. LMB1 and Golgin serve as loading controls. h Examples of FACS profiles of cells as in (g). The graph on the left shows the
percentage of cells in G1, S and G2/M phases from one representative experiment. Source data are provided as a Source Data file

was observed previously!”. It is possible that less efficient protein
depletion obtained by Pan and colleagues or retained expression
of crucial FANCM splice variants (possibly including cell-type
specific ones that are not reported in public databases) left
residual amounts of FANCM protein sufficient to sustain cell
proliferation. Less sensitive cell viability assays might also have
underestimated the effects of FANCM depletion in the
previous study.

Telomeric replication stress sensitizes ALT cells to FANCM
depletion. Several features of ALT cells could explain their sen-
sitivity to FANCM depletion: absence of telomerase activity, very
long telomeres, ATRX inactivation, and sustained telomeric
replication stress. We ectopically expressed the catalytic (hTERT)
and RNA (hTR) subunits of telomerase in U20S and HelLa cells
to generate supertelomerase cells>’. Overexpression of hTERT
and hTR was confirmed by quantitative RT-PCR (Supplementary

Fig. 3A). As expected, HeLa supertelomerase cells had much
longer telomeres than HeLa control cells; U20S supertelomerase
cells had reduced TFE frequencies, while the incidence of under-
replicated, fragile telomeres (TFs) remained unchanged (Supple-
mentary Fig. 3B)!137. FANCM depletion inhibited cell pro-
liferation and led to G2/M accumulation in U20S
supertelomerase cells, but not in HeLa supertelomerase cells
(Fig. 1b-e). Moreover, HeLa cells treated with the telomerase
inhibitor BIBR 153238 did not accumulate in G2/M when
depleted for FANCM (Supplementary Fig. 4A). We then code-
pleted FANCM and ATRX in HeLa cells and did not observe the
accumulation of G2/M cells (Supplementary Fig. 4B). Thus, the
presence of ultra-long telomeres or the absence of active telo-
merase or ATRX alone do not explain the sensitivity of ALT cells
to FANCM depletion.

We then overexpressed the shelterin factor TRF1 in U20S cells
by retroviral infection, as this treatment halves the incidence of
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FTs3°. FANCM depletion in TRF1 overexpressing cells still led to
G2/M accumulation, yet less severely than in cells infected with
empty vector (ev) retroviruses (Fig. 1g, h). However, HeLa cells
depleted for TRF1 using an siRNA previously shown to induce
telomere fragility>® did not accumulate in G2/M when codepleted
for FANCM (Supplementary Fig. 4C). Similarly, FANCM-
depleted HeLa cells did not show an altered cell-cycle distribution
when treated with the replication stress inducer hydroxyurea
(HU) followed by block release (Supplementary Fig. 4D). Hence,
telomeric replication stress contributes to the sensitivity of
ALT cells to FANCM depletion; nevertheless, telomeric or
generalized replication stress alone are not sufficient to sensitize
non-ALT cells to FANCM depletion.

FANCM suppresses telomeric replication stress in ALT cells.
To test the involvement of FANCM in telomere stability, we
performed indirect immunofluorescence (IF) using antibodies
against TRF2 combined with antibodies against RPA32 phos-
phorylated at Serine 33 (pS33) or p53 binding protein 1 (53BP1).
RPA32 is phosphorylated at serine 33 during S phase by ATR
upon replication fork stalling?’; 53BP1 forms foci at dysfunc-
tional telomeres that have activated either ATR, or the other
DNA damage signaling kinase ataxia-telangiectasia mutated
(ATM), or both#1:42, Within 48 h of transfection, pS33 and 53BP1
accumulated at telomeres in FANCM-depleted ALT cells
(Fig. 2a, b) forming the so-called telomere dysfunction-induced
foci (TIFs)#l. FANCM depletion did not induce TIF formation in
Tel+ cells (Fig. 2a, b). Accumulation of pSer33 and 53BP1 out-
side of telomeres was negligible in all FANCM-depleted cell lines
(Fig. 2a). FANCM-mediated suppression of telomere instability is
likely to be direct, because the protein associated with telomeric
DNA in chromatin immunoprecipitation (ChIP) experiments
(Fig. 2¢, d). FANCM also immunoprecipitated with the abundant,
genomewide-spread Alu repeat DNA (Fig. 2¢, d), indicating that
the protein is not exclusively associated with telomeres. This is
consistent with the reported localization of FANCM to cellular
chromatin fractions®3.

Western blot analysis confirmed that FANCM depletion causes
pS33 accumulation and revealed phosphorylation of the other
ATR target checkpoint kinase 1 (CHK1) in U20S but not Hela
cells (Fig. 2e). The ATM target KRAB domain-associated protein
1 (KAP1) was not phosphorylated in any of the tested cell lines
(Fig. 2e). Moreover, pS33 accumulation was weakened in
FANCM-depleted U20S cells overexpressing TRF1 (Fig. 1g),
while telomerase inhibition, ATRX or TRF1 depletion and HU
treatment did not promote pS33 accumulation in FANCM-
depleted HelLa cells (Supplementary Fig. 4A-D). Actually, pS33
failed to accumulate efficiently in HeLa cells depleted for FANCM
and treated with HU, consistent with a role for FANCM in
supporting activation of the canonical ATR-dependent intra S-
phase checkpoint®2. We propose that FANCM deficiency in
ALT cells activates a specific ATR-dependent signaling cascade,
which is not fully identical to the one triggered by generalized
replication stress and stems at least partly from excessive
telomeric replication stress. Such ATR response likely provokes
the observed G2/M arrest and cell death.

FANCM suppresses ALT features. In our IF images, TRF2 foci
in FANCM-depleted ALT cells are both larger and brighter than
in control cells (Fig. 2a). To confirm that this was not simply due
to increased TRF2 at telomeres, we subjected siRNA-transfected
U20S interphase cells to DNA fluorescence in situ hybridization
(FISH) using telomeric probes, and measured the number and
area of telomeric foci. We controlled for possible secondary
effects related to cell-cycle stage by arresting siCt-transfected cells

at the G2/M border with the cyclin-dependent kinase 1 (CDKI)
inhibitor RO-33064* (Fig. 3a, b; Supplementary Fig. 1B). The
overall number of telomeric foci decreased upon FANCM
depletion (Fig. 3¢, d), while their area distribution was broader,
with slightly increased frequencies of very small foci (S in
Fig. 3c-e) and substantially increased frequencies of very large
foci (L in Fig. 3c—e). RO-3306-treated cells also had less telomeric
foci than control cells (Fig. 3d), likely due to clustering of ALT
telomeres in G2 1945, However, the increase in very small and
very large foci was more pronounced upon FANCM depletion
than RO-3306 treatment (Fig. 3c-e). Approximately 60% of
FANCM-depleted cells had at least five large foci, vs. approxi-
mately 10 and 15% of untreated or RO-3306-treated siCt-
transfected cells, respectively (Fig. 3f).

We then analyzed the localization of PML, RAD51 and POLD3
at telomeres by combining PML and RAD51 IF with telomere
FISH, and double IF for POLD3 and RAP1. We observed
increased telomeric localization of all three factors in FANCM-
depleted U20S cells, without obvious increase in PML, POLD3
and RADS51 total protein levels (Figs. 3a, 4a, b). RO-3306
treatment did not substantially affect the number of telomeric
PML and RAD51 foci, while it increased the one of telomeric
POLD3 foci yet less importantly than FANCM depletion (Fig. 4a,
b). Moreover, we incubated cells treated as above with the
thymidine analog 5-Ethynyl-2'-deoxyuridine (EdU) for 2.5 h, and
performed telomere FISH combined with EdU detection to
visualize newly synthesized telomeric DNA (Fig. 4a). To exclude S
phase cells, we only scored cells showing a punctuate EdU
staining and with not more than 25 EdU foci. FANCM depletion
increased the incidence of telomeric EAU foci, as it did RO-3306
treatment albeit to lower extents (Fig. 4a, b).

We conclude that FANCM depletion exacerbates ALT activity
as shown by robust telomere clustering within large APBs
containing PML, RAD51 and POLD3, and increased synthesis of
telomeric DNA outside of S phase. FANCM depletion also
generates short telomeric species, possibly representing ECTRs
(see below). G2/M arrest alone cannot explain the aberrantly
elevated ALT features observed in FANCM-depleted cells.

FANCM suppresses telomeric ssDNA and ECTRs in ALT cells.
We performed in-gel telomere restriction fragment (TRF) ana-
lysis of genomic DNA from ALT (U20S and WI-38 VA13) and
Tel+ (HOS and HelLa) cells harvested 48 h after siRNA trans-
fection. Blots were hybridized with telomeric oligonucleotides of
either 5-TTAGGG-3" or 5-CCCTAA-3’ repeats. When hybri-
dization was performed under native (nondenatured) conditions,
we observed increased C-rich telomeric ssDNA of very diverse
lengths in FANCM-depleted ALT cells (Fig. 5a, upper panel).
Conversely, a decrease of G-rich ssDNA was observed in corre-
spondence of the bulk of telomeres, likely due to shortening of the
G-overhang (Fig. 5a, lower panels). For both probes, a fraction of
the signal was in the gel wells, possibly corresponding to ssDNA
exposed from molecules with significant secondary structures
(Fig. 5a). We did not observe alteration of telomeric ssDNA in Tel
+ cells (Fig. 5a). Hybridization of the same gels in denatured
conditions using a long telomeric probe (Telo2 probe) revealed
no appreciable alteration of telomere length in FANCM-depleted
cells (Fig. 5a).

We then dot-blotted genomic DNA from cells as above and
hybridized it under native conditions to telomeric oligonucleo-
tides, followed by denaturation and hybridization with an Alu
repeat, as a control for total DNA loaded. This experiment
confirmed that FANCM-depleted ALT cells contain more
telomeric C-rich ssDNA than siCt-transfected cells (Fig. 5b). As
previously reported!!, depletion of RNaseH1 in U20S cells also
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Fig. 2 FANCM suppresses telomeric DNA damage and localizes to telomeres in ALT cells. a Examples of pS33 or 53BP1 immunostaining (red) combined
with TRF2 immunostaining (green) on U20S and Hela cells transfected with the indicated siRNAs and harvested 48 h after transfection. In the merge
panel, DAPI-stained DNA is also shown (blue). Arrowheads point to pS33 and 53BP1 TIFs. Scale bar: 10 um. b Quantifications of numbers of TIFs per

nucleus in experiments as in (a) performed on the indicated cell lines. ALT cells are on a grey background. Each dot represents an individual nucleus. A
total of at least 196 nuclei from three independent experiments were analyzed for each sample. Bars and error bars are means and SDs. P values were
calculated with a Mann—Whitney U test. **P < 0.005, ****P < 0.0001. ¢ Dot-blot hybridization of endogenous FANCM ChlIPs in the indicated cell lines

using radiolabeled oligonucleotides comprising telomeric G-rich repeats or Alu repeats. A high contrasted image is shown to facilitate visualization of the
telomeric signal for Tel+ cells. In Input, Bd only beads control, Ip anti-FANCM immunoprecipitation. d Quantifications of experiments as in (c). Signals are
graphed as the fraction of In found in the corresponding Ip samples, after subtraction of Bd-associated signals. Bars and error bars are means and SDs from
three independent experiments. e Western blot analysis of DNA damage activation in the indicated siRNA-transfected cells. Proteins were extracted 48 h
after transfection. Untransfected cells treated with camptothecin (CPT) were included to control for antibody specificity. pS824: KAP1 phosphorylated at
serine 824, pS345: CHK1 phosphorylated at serine 345. Beta Actin and LMBT serve as loading controls. Source data are provided as a Source Data file
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G2/M phases from one representative experiment. R: RO-3306. ¢ Examples of telomeric FISH on interphase cells as in (a). Telomeric DNA is shown in
green, nuclear outlines are shown by dotted lines. S small foci, N normal foci, L large foci. Scale bar: 20 pm. d Quantifications of numbers of telomeric foci
per nucleus in experiments as in (c). Each dot represents an individual nucleus. A total of at least 300 nuclei from three independent experiments were
analyzed for each sample. Bars and error bars are means and SDs. P values were calculated with a Mann—Whitney U test. e Area distribution of telomeric
foci areas in experiments as in (€). 3D images were sum projected and areas of individual nuclear FISH signals were measured using DAPI staining to
identify nuclei (not shown). A total of at least 300 nuclei from three independent experiments were analyzed for each sample. Areas of telomeric foci (in
pixels) are binned into 25 intervals of 5-pixel width (x axis; numbers indicate bin centers) and plotted against frequencies (y axis; %). S small foci (0—2.5
pixels), N normal foci (2.5—57.5 pixels), L large foci (57.6—125.5 pixels). The distribution of large foci is represented in the right graph using a smaller y
axis scale to facilitate visualization. f Quantification of cells with at least five Large (L) foci in experiments as in (c). P values were calculated with a two-
tailed Student's t test. *P < 0.05, **P < 0.005, ***P < 0.001, ****P < 0.0001. Source data are provided as a Source Data file

increased telomeric C-rich ssDNA, albeit at lower levels than
FANCM depletion (Fig. 5b). No major difference in total
telomeric DNA was detected using dot-blot hybridization of
denatured DNA for U20S, HOS and HeLa cells (Fig. 5b). An
increase in total C-rich telomeric DNA was observed in FANCM-
depleted WI-38 VA13 cells (Fig. 5b).

We then performed phi-29-mediated C-circle assays*® using
DNA from ALT and Tel+ cells and found a remarkable increase

in C-circles in ALT cells depleted for FANCM (Fig. 5c).
Accumulation of ECTRs, likely to correspond partly but not
exclusively to C-circles, was also detected in FANCM-depleted
U20S cells using two-dimensional gel electrophoresis (Fig. 5d).
Metaphase chromosome FISH of FANCM-depleted U20S cells
showed abundant extrachromosomal telomeric signals, probably
corresponding to ECTRs, and DNA threads extending from the
termini of single chromosomes, or bridging two independent
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Fig. 4 FANCM depletion increases ALT features. a Upper panels: examples of PML or RAD5T immunostaining (red) combined with telomeric DNA FISH
(green); lower left panel: examples of POLD3 immunostaining (red) combined with RAPT immunostaining (green); lower right panel: examples of EdU
detection (red) combined with and telomeric DNA FISH (green). Experiments were performed on U20S cells transfected with the indicated siRNAs and
harvested 48 h after transfection. SiCt-transfected cells treated with RO-3306 were included. In the merge panel, DAPI-stained DNA is also shown (blue).
Arrowheads point to colocalization events. Scale bar: 10 pm. b Quantifications experiments as in (a). Each dot represents an individual nucleus. A total of at
least 300 nuclei from three independent experiments were analyzed for each sample. Bars and error bars are means and SDs. P values were calculated with
a Mann—Whitney U test. ***P < 0.001, ****P < 0.0001. Source data are provided as a Source Data file

chromosome ends (Supplementary Fig. 5A and B). C-rich
ssDNA-containing ECTRs and DNA threads may explain the
well-retained DNA molecules observed in our TRF analysis and
the increased telomeric ssDNA observed in our dot-blot analysis
(Fig. 5a, b). We did not observe an increase in the incidence of
TFEs in FANCM-depleted U20S cells (Supplementary Fig. 5A
and B).

FANCM regulates BLM in ALT cells. FANCM and BLM were
reported to collaborate in maintaining ALT telomeres!”. We
depleted FANCM in U20S and Hela cells and performed
indirect IF using anti-BLM and anti-TRF2 antibodies. Because
FANCM is necessary for BLM recruitment to damage sites
induced by stalled replication®*, we included cells treated with
the topoisomerase I inhibitor Camptothecin (CPT; Supplemen-
tary Fig. 6A). CPT induced robust formation of nuclear

(nontelomeric) BLM foci in siCt-transfected U20S and Hela
cells, but not in siFa-transfected cells (Supplementary Fig. 6B and
C). On the other hand, BLM TIFs were already abundant in siCt-
transfected U20S and only rarely observed in siCt-transfected
HeLa cells, and FANCM depletion increased the number of BLM
TIFs in U20S cells (Supplementary Fig. 6B and C). CPT treat-
ment marginally affected TIF frequencies in all samples (Sup-
plementary Fig. 6B and C). BLM nuclear relocalization occurred
without major changes in total protein levels (Supplementary
Fig. 6A). Hence, we confirm that FANCM depletion causes BLM
accumulation at ALT telomeres!”, while it prevents it at non-
telomeric sites of damage both in ALT and Tel+ cells®4. The
telomeric accumulation of BLM upon FANCM depletion might
involve reported interactions with TRF1 and TRF2 %7.

We then depleted FANCM and BLM simultaneously in U20S
cells (Fig. 6a). BLM depletion alone did not alter cell-cycle
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Fig. 5 FANCM restricts telomeric ssDNA and ECTRs in ALT cells. a TRF analysis of the indicated ALT (gray backgrounds) and Tel+ siRNA-transfected
cells. Genomic DNA was prepared 48 h after transfection, restriction digested and hybridized in-gel in native conditions to radiolabeled oligonucleotides
comprising five telomeric G-rich or C-rich repeats ([TTAGGG]5 and [CCCTAAI5, respectively). After signal acquisition, gels were denatured and
rehybridized to a long radiolabeled telomeric probe (Telo2). The position of the wells and the sizes in kb of a molecular weight marker are indicated on the
left of the gels. b Dot-blot hybridizations of digested genomic DNA from cells as in (a). Control transfections with siRNAs against RNaseH1 (siRH) were
also included. Native or denatured DNA was first hybridized to radiolabeled telomeric oligonucleotides. After signal acquisition, membranes were
denatured and rehybridized to radiolabeled Alu repeat oligonucleotides (loading). For quantifications (table below), telomeric signals were normalized
through the corresponding Alu signal and expressed relative to siCt-transfected samples. Means and SDs from three technical replicates are indicated.
Note the accumulation of C-rich ssDNA in FANCM-depleted ALT cells (thick borders). € C-circle assay analysis of genomic DNA from the indicated
siRNA-transfected cells harvested 48 h after transfection. Products were dot-blotted and hybridized to a radiolabeled Telo2 probe. Control reactions were
performed without phi29 polymerase (®29). Note that Tel+ cells had no detectable signals. The graph at the bottom shows quantifications of C-circle
signals relative to siCt-samples. Bars and error bars are means and SDs from three independent experiments. P values were calculated with a two-tailed
Student's t test. **P < 0.005, ***P < 0.001. d 2D gel electrophoresis of genomic DNA from siRNA-transfected U20S cells as in a. DNA was denatured and
hybridized to a radiolabeled Telo2 probe. Arrowheads point to arches corresponding to circular DNA. Source data are provided as a Source Data file

distribution and number of colonies formed, while it decreased FANCM suppresses TERRA and telR-loops in ALT cells. To

proliferation rates and only minimally augmented the fraction of
PI-permeable cells (Fig. 6b-d; Supplementary Figs. 1C, 2A).
Unexpectedly, FANCM and BLM codepletion resulted in a partial
rescue of the aberrant cell-cycle distribution and cell proliferation
and viability deriving from depleting FANCM (Fig. 6b-d;
Supplementary Figs. 1C, 2A). Moreover, BLM depletion halved
the incidence of pS33 TIFs in cells depleted for FANCM (Fig. 6e,
f). These results establish that BLM depletion alleviates the
adverse effects exerted by FANCM deficiency on ALT cells.

test whether FANCM suppresses telomere replication stress in
ALT cells by regulating TERRA and/or telR-loops, we first per-
formed TERRA northern blot and found that the levels of this
IncRNA were 3.5 and 2.5 folds higher in siFa- and siFb-
transfected cells, respectively, than in siCt-transfected ones.
TERRA species up to ~2kb in length were the most affected
(Fig. 7a). We then performed in vitro R-loop resolution assays
using telR-loop-containing plasmids generated by T7 transcrip-
tion of a telomeric tract of approximately 1kb!l. We used two
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Fig. 6 BLM depletion substantially averts the phenotypes associated with FANCM depletion. a Western blot analysis of FANCM and BLM in U20S cells
transfected with siFa, anti-BLM siRNAs (siBI), and siCt. Two different concentrations (5 and 20 nM) of siFa were used. Cells were harvested 48 h after
transfection. LMBT serves as loading control. The asterisk indicates a band cross-reacting with the anti-FANCM antibody. b Quantifications of FACS
profiles of cells as in (a) stained with PI. The graph shows the percentage of cells in G1, S and G2/M phases from one representative experiment. ¢ Example
of colony formation assays using cells as in (a). siFa5: 5 nM siRNA, siFa20: 20 nM siRNA. The graph on the right shows colony numbers relative to siCt-
transfected samples. Bars and error bars are means and SDs from four independent experiments. P values were calculated with a two-way ANOVA
followed by Tukey's HSD. d Growth curves of U20S cells transfected with the indicated siRNAs (20 nM each) every 3 days. Cell numbers are expressed
relative to siCt-transfected cells. Data points and error bars are means and SDs from three independent experiments. SiCt and siFa curves are the same as
the ones shown in Fig. 1f. @ Examples of pS33 immunostaining (red) combined with TRF2 immunostaining (green) on cells as in (a). In the merge panel,
DAPI-stained DNA is also shown (blue). Arrowheads point to pS33 TIFs. Scale bar: 10 pm. f Quantifications of numbers of pS33 TIFs per nucleus in cells as
in (a). Each dot represents an individual nucleus. A total of at least 300 nuclei from three independent experiments were analyzed for each sample. Bars
and error bars are means and SDs. P values were calculated with a two-way ANOVA followed by Tukey's HSD. *P < 0.05, **P < 0.005, ***P < 0.001, ****P <
0.0001. Source data are provided as a Source Data file

plasmids with different insert orientations as to produce tran- TERRA transcripts within telR-loops and consequent increased
scripts containing TERRA-like, G-rich RNA repeats, or com- binding sites for the probe (Fig. 7d, e). In untreated siFa-
plementary C-rich transcripts (Fig. 7b). As expected!!, G-rich transfected cells, the C-rich ssDNA signal was more prominent
transcripts were less efficiently produced than C-rich ones than in control cells and it was further augmented by RNaseH
(Fig. 7b). TelR-loop plasmids were incubated with recombinant treatment (Fig. 7d, e). The total number of foci per cell was higher
FANCM in heterodimer with its stabilization partner FAAP24, in FANCM-depleted cells but was not affected by RNaseH
with or without ATP and then resolved in agarose gels. FANCM treatment (Fig. 7d, e). We conclude that FANCM suppresses
promoted complete release of both G-rich and C-rich transcripts TERRA and TERRA-containing telR-loops in ALT cells. Con-
from R-loop-plasmids without RNA degradation and in an ATP-  sidering the ability of FANCM to resolve telR-loops in vitro
dependent manner (Fig. 7b). Thus, FANCM efficiently unwinds  (Fig. 7b) and the localization of FANCM to telomeres (Fig. 2¢, d),
the RNA moiety of telR-loops in vitro. we propose that FANCM directly resolves telR-loops on telomeric
To examine telR-loops in FANCM-depleted U20S cells, we chromatin. The more prominent C-rich ssDNA signal already
performed DNA:RNA immunoprecipitations (DRIP) using the present in FANCM-depleted cells not treated with RNaseH
monoclonal antibody $9.648. Dot-blot hybridization detected (Fig. 7d, e) might originate from gaps in DNA replication or
telomeric DNA in immunoprecipitated material from all samples, cellular degradation of the RNA moiety of telR-loops. Also,
with a ~3-fold increase in siFa and siFb samples (Fig. 7c). although we refer to the telomeric RNA:DNA hybrid structures
Treatment of nucleic acids with recombinant RNaseH prior to arising upon FANCM depletion as telR-loops, our experiments
antibody incubation largely abolished hybridization signals, do not distinguish between conventional R-loops, three-stranded
confirming that they emanated from DNA:RNA hybrids (Fig. 7c). nucleic acids comprising an RNA:DNA hybrid and a displaced
We also performed native DNA FISH using G-rich telomeric ssDNA, and ds RNA:DNA hybrids devoid of a displacement loop.
probes on interphase nuclei treated or not with RNaseH!l. A
punctate staining corresponding to C-rich telomeric DNA was
already visible in untreated siCt-transfected cells, and its intensity ~FANCM averts telR-loop-induced telomeric replication stress.
was higher in RNaseH-treated cells likely due to degradation of We speculated that FANCM suppresses telomeric replication
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tRNA signals and expressed relative to the siCt sample. b Schematic representation of how telR-loops were generated and unwound in vitro. The gel on the
right is an example of a telR-loop unwinding assay performed with telR-loop plasmids (1nM) and purified recombinant FANCM-FAAP24 (2.5 nM). Note
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subtraction of Bd-associated signals. Alu signals are not included in the quantification. Bars and error bars are means and SDs from four independent

experiments. P values were calculated with a two-tailed Student's t test. d Schematic representation of the protocol for native FISH. The displaced DNA
strand is indicated by a dotted line because the same protocol allows detection also of C-rich DNA engaged in RNA:DNA hybrids devoid of a displacement
loop. Images on the right are examples of native FISH on siRNA-transfected U20S cells as in (a). Signals from the G-rich telomeric probe and therefore
deriving from C-rich ssDNA are in green. Scale bar: 10 pm. e Quantifications of experiments as in (d). 3D images were sum projected and integrated

intensities of FISH signal were measured within individual nuclei identified by DAPI staining (not shown) and background subtracted. Each dot represents
an individual nucleus. A total of 100-120 nuclei were analyzed for each sample. One representative experiment is shown. Bars are means. P values were

calculated with a Mann—Whitney U test. *P <0.05, **P <0.005, ***P < 0.001, ****P < 0.0001. Source data are provided as a Source Data file

stress by dismantling telR-loops. We depleted FANCM in U20S
cells infected with retroviruses expressing an siRNA-resistant, V5
epitope-tagged FANCM variant (V5-FANCM WT) or an
ATPase/translocase inactive counterpart unable to resolve R-
loops (V5-FANCM K117R36). Both variants were expressed at
higher levels than endogenous FANCM (Fig. 8a). Confirming the
specificity of our siRNAs, V5-FANCM WT largely averted G2/M
arrest and accumulation of ps33 TIFs and APBs in siFa-
transfected cells (Fig. 8b, ¢; Supplementary Figs. 1D, 7A). On
the contrary, cell-cycle distribution and incidence of pS33 TIFs
and APBs were similar in V5-FANCM K117R and ev control cells
transfected with siFa (Fig. 8b, ¢; Supplementary Figs. 1D, 7A).
We then exploited the ability of overexpressed RNaseH1 to
suppress telR-loops in cells!1:3%49, We depleted FANCM alone or
in combination with BLM in U20S cells infected with retro-
viruses driving overexpression of MYC epitope-tagged RNaseH1
(MYC-RHI1 WT) or a catalytically dead counterpart (MYC-RH1
D145A), or with ev control retroviruses (Fig. 8d). MYC-RH1 WT
further enhanced the rescue of G2/M arrest defect in cells
codepleted for FANCM and BLM (Fig. 8e; Supplementary
Fig. 1E). Decreased frequencies of FANCM depletion-induced
pS33 TIFs were measured in cells expressing MYC-RH1 WT as
compared to ev-infected cells (Fig. 8f; Supplementary Fig. 7B). In

cells codepleted for FANCM and BLM and overexpressing MYC-
RH1 WT, pS33 TIFs were restored to levels similar to ev control
cells (Fig. 8f; Supplementary Fig. 7B). In all experiments, MYC-
RH1 D145A failed to function as its catalytically active counter-
part (Fig. 8e, f; Supplementary Figs. 1E, 7B). These results indicate
that the telomeric replication stress arising upon FANCM
depletion is suppressed by FANCM enzymatic activity and stems
from unresolved telR-loops and uncontrolled BLM.

Discussion

We demonstrate here that, in absence of FANCM, ALT cells
experience severe telomeric replication stress and activate an
ATR-mediated DNA damage signaling, which is likely the trigger
of the observed G2/M arrest and cell death®’. The fact that
overexpression of TRF1 renders ALT cells less sensitive to
FANCM depletion (Fig. 1g, h) and the lack of accumulation of
nontelomeric pSer33 and 53BP1 foci in FANCM-depleted
ALT cells (Fig. 2a) confirm the centrality of the signal emanat-
ing from damaged telomeres in promoting G2/M arrest. How-
ever, FANCM may serve essential functions in ALT cells also
outside telomeres, as suggested by its physical interaction with
Alu repeat DNA.
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calculated with a two-way ANOVA followed by Tukey's HSD. d Western blot analysis of U20S cells infected with retroviruses expressing MYC epitope-
tagged RNaseH1 (RH1) variants or ev control retroviruses. D145A: endoribonuclease dead RNaseH1. Five days after infections cells were transfected with
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were analyzed for each sample. Bars and error bars are means and SDs. P values were calculated with a two-way ANOVA followed by Tukey's HSD.
Comparisons between D145A and ev and WT are not indicated. *P <0.05, ***P < 0.001, ****P <0.0001. Source data are provided as a Source Data file

We also confirm that FANCM is not essential in all cells, as
proliferation and viability of Tel+ cells was not majorly affected
by FANCM depletion. Consistently, adult humans carrying
biallelic loss of function FANCM mutations were reported®!->2,
Moreover, Tel+ human colorectal carcinoma cells, mouse
embryonic fibroblasts and chicken lymphoblasts knocked-out for
FANCM were successfully generated and proliferated normally
unless challenged with DNA damage®3—>>. As such, FANCM
represents an attractive target in ALT cancer therapy. While it is
true that FANCM deficiency is associated with higher risk of
breast and liver cancer®!®, the irreversible lesions rapidly
inflicted by FANCM depletion on ALT cells indicate that short-
term inhibition of FANCM may efficiently eradicate ALT tumors
in absence of secondary effects. On the other side, the previously
proposed therapy based on coinhibition of FANCM and BLM
should be avoided!”.

We also show that FANCM suppresses ALT-associated fea-
tures, including clustering of telomeres in PML-, POLD3- and
RAD5]1-containing APBs, and production of ECTRs which
include C-circles but possibly other forms (Figs. 4a, b, 5¢, d).
Because the same features were not evident when we depleted
FANCM in Tel+ cells, FANCM deficiency alone is not sufficient

to initiate ALT de novo. Further in line with FANCM limiting
ALT, its depletion increased synthesis of telomeric DNA outside
of S phase (Fig. 4a, b) and led to appearance of DNA threads
(Supplementary Fig. 5A and B), which may represent inter-
mediates of intermolecular recombination events. We propose
that FANCM suppresses POLD3-dependent telomeric BIR in G2
and possibly MiDAS?4-26. Consistently, deletion of the yeast
helicase Mphl, the Saccharomyces cerevisiae FANCM ortholog®®,
directed repair of an HO endonuclease-induced DSB towards
BIR>7. Moreover, Mphl overexpression inhibited BIR at intra-
chromosomal DSBs®3, while it did not prevent insurgence of
telomerase-deficient type II survivors, which are ALT yeasts that
maintain their telomeres though BIR?$-92, Finally, Mphl localizes
to short telomeres in an R-loop-dependent manner®3. FANCM
proteins appear to play specific roles at ALT and uncapped tel-
omeres that are different from the ones that they exert at intra-
chromosomal damage sites, and that are mediated by R-loops.
TelR-loops may directly promote recruitment and/or stabilization
and in turn activation of FANCM at telomeres in human
ALT cells, thus regulating POLD3-dependent telomeric BIR. The
relevance of RAD51 accumulation in APBs when FANCM is
depleted remains unclear (Fig. 4a, b). RAD51 could mediate the
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telomere clustering observed in FANCM-depleted cells or other
molecular events which we did not investigate, such as sister
telomere exchanges.

Despite increasing ALT activity, FANCM depletion did not
elicit major gain of total (G-rich plus C-rich) telomeric DNA
(Fig. 5b). It is possible that in our experiments the amount of
newly produced telomeric DNA was below the detection limit.
Additionally, de novo synthesis of telomeric DNA in FANCM-
depleted cells is likely counterbalanced by incomplete semi-
conservative replication of telomeric DNA in S phase!” and by
elimination of ECTRs from cells. The exact mechanism by which
circular ECTRs are generated remains to be elucidated; never-
theless, they are associated with features that increase in
FANCM-depleted ALT cells, including replication stress, acti-
vated ATR, C-rich telomeric ssDNA and telR-loops!!64-%6. One
observation of our study is that FANCM depletion does not alter
TFE frequencies (Supplementary Fig. 5A and B). This suggests
that the observed ECTRs do not derive from excision of entire
telomeric tracts.

The replication stress arising at ALT telomeres upon FANCM
depletion mainly originates from two sources, deregulated BLM
and telR-loops. Given the increased BLM recruitment to ALT
telomeres when FANCM is depleted (Supplementary Fig. 6A—C),
FANCM could directly displace BLM from telomeres. Alter-
natively, FANCM could suppress the triggers provoking BLM
recruitment such as arrested telomeric replication forks or R- and
D-loop intermediates. BLM activity promotes ALT by supporting
telomeric recombination and BIR-based synthesis of telomeric
DNA possibly by resolving recombination intermediates formed
during BIR-associated strand invasion as part of the BLM-
TOP3A-RMI (BTR) dissolvase complex!>¢7:68, Consistently,
FANCM depletion increases telomere synthesis outside of S-
phase (Fig. 4a, b). Moreover, because BLM mediates long-range
resection of DNA ends®%79, hyperactive BLM is likely to directly
contribute to the production of telomeric ssDNA when FANCM
is depleted. This is consistent with the low levels of pS33
TIFs detected in cells double depleted for FANCM and BLM
(Fig. 8f). As FANCD?2 has also been shown to suppress BLM
toxicity in ALT cells%, one could speculate that this may be a
general role for the FA pathway. Nevertheless, the ATPase/
translocase activity of FANCM is dispensable for FANCD2
monoubiquitination3!, and overexpression in U20S cells of a
variant of FANCM unable to recruit the FA complex to chro-
matin did not suppress any ALT-associated feature (accom-
panying manuscript, “The FANCM-BLM-TOP3A-RMI complex
suppresses alternative lengthening of telomeres (ALT)”, Lu et al.).
It seems therefore unlikely that the entire FA complex functions
to maintain ALT.

As for the nature of telR-loops in FANCM-depleted cells, our
data suggest that they accumulate because they are not properly
dismantled at telomeric chromatin by the ATPase/translocase
activity of FANCM (Fig. 7b-e). TelR-loops could be generated
cotranscriptionally, as telomeric DNA is a difficult substrate for
RNA polymerases! 4%, The increased short TERRA species
observed in FANCM-depleted ALT cells (Fig. 7a) might indeed
derive from premature termination of telomere transcription due
to improper telR-loop resolution. Also, the accumulation of pS33
indicates that FANCM most likely resolves telR-loops during S-
phase. Thus, improper telR-loop resolution can at least in part
explain the diminished efficiency of replication fork progression
through the telomeric tract in FANCM-depleted cells!”. More-
over, some FANCM-depletion-associated features of replication-
stress, accumulation of C-rich telomeric ssDNA and C-circles
(Fig. 5a-e), are more evident in U20S cells than in other ALT-
cells. This might be explained by the fact that TERRA and telR-
loops are particularly abundant in U20S cells!!.

Due to the fast and dramatic response of ALT cells to FANCM
inactivation (Fig. 1b-f), our studies had to be performed using
siRNAs rather than CRISPR/Cas9-based gene inactivation,
obfuscating the analysis of genetic interactions. Nevertheless, the
synergism between BLM depletion and RNaseH1 overexpression
in suppressing replicative stress in FANCM-depleted cells sug-
gests that BLM activity and telR-loops may be functionally rela-
ted. Although BLM suppresses R-loops genome-wide’!, it could
promote telR-loop formation specifically in ALT cells, for
example by generating C-rich ssDNA followed by TERRA
annealing. Conversely, telR-loops could recruit BLM to telomeres
by stalling telomeric replication forks or by forming D-loop
mimicking structures. Future studies, possibly utilizing condi-
tional knockout cells for FANCM and BLM, should refine this
intriguing cellular scenario and open the way to novel avenues for
curing ALT cancers.

Methods

Cell lines and culture conditions. HeLa cervical cancer, HT1080 fibrosarcoma,
and HEK293 embryonic kidney cells were purchased from ATCC. U20S osteo-
sarcoma cells were a kind gift from M. Lopes (IMCR, Zurich, Switzerland). HuO9,
Saos2 and HOS osteosarcoma cells were a kind gift from B. Fuchs (Balgrist Uni-
versity Hospital, Zurich, Switzerland). WI-38 VA13 in vitro SV40-transformed
lung fibroblasts were a kind gift from A. Londofio-Vallejo (CNRS, Paris, France).
SKNAS neuroblastoma cells were a kind gift from O. Shakhova (University Hos-
pital Zurich, Switzerland). HeLa, HT1080, HEK293, U20S, and WI-38 VA13 cells
were cultured in high glucose DMEM, GlutaMAX (Thermo Fisher Scientific)
supplemented with 10% tetracycline-free fetal bovine serum (Pan BioTech) and
100 U/ml penicillin-streptomycin (Thermo Fisher Scientific). HuO9, Saos2, HOS
and SKNAS cells were cultured in high glucose DMEM/F12, GlutaMAX (Thermo
Fisher Scientific), supplemented with 10% tetracycline-free fetal bovine serum (Pan
BioTech), 100 U/ml penicillin-streptomycin (Thermo Fisher Scientific) and non-
essential amino acids (Thermo Fisher Scientific). Mycoplasma contaminations
were tested using the VenorGeM Mycoplasma PCR Detection Kit (Minerva Bio-
labs) according to the manufacturer’s instructions. When indicated, cells were
incubated with 1 pM camptothecin (Sigma-Aldrich) for 3 h, 0.2 mM hydroxyurea
(Sigma-Aldrich) for 16 h, 20 uM BIBR 1532 (Merck Millipore) for 7 days, and 10
uM RO-3306 (Selleckchem) for 18 h.

Ectopic protein expression. For FANCM complementation experiments, siFa-
and siFb-resistant cDNAs coding for N-terminally V5-tagged FANCM variants
were synthesized at GenScript and cloned into the into the lentiviral vector pLVX-
TetOne-Puro (Clontech). The obtained plasmids, pLVX-V5FANCM and pLVX-
V5FANCMKI17R, were used to produce lentiviruses and infect U20S cells, fol-
lowed by selection in medium containing 1 ug/ml puromycin (Merck Millipore).
Experiments were performed in medium containing 1 ug/ml doxycycline (Sigma-
Aldrich). For RNaseH1 overexpression, U20S cells were infected with retroviruses
produced using the pPLHCX-MYC-RHIWT and pLHCX-MYC-RH1D145A plas-
mids!!, followed by selection in medium containing 200 pg/ml hygromycin B
(VWR). For TRF1 overexpression, U20S cells were infected with retroviruses
produced using the pLPC-NFLAG-TRF1 (a kind gift from T. de Lange, Addgene
plasmid # 16058), followed by puromycin selection. Transgene expression was
validated by western blotting. For telomerase overexpression, U20S and HeLa cells
were infected with retroviruses produced using the pBABEpuroUThTERT + U3-
hTR-500 plasmid (a kind gift from K. Collins, Addgene plasmid #27665), followed
by puromycin selection. Viruses were produced in HEK293 cells according to
standard procedures. FANCM, RNaseH1 and TRF1 ectopic expression was vali-
dated by western blotting (see below). hTERT and hTR expression was validated by
quantitative RT-PCR on total RNA using the following oligonucleotides: hTERT-
for, 5'-agagtgtctggagcaagttge-3'; hTERTrev, 5'-cgtagtccatgttcacaatcg-3'; hTRfor, 5'-
gtggtggcecattttttgtctaac-3'; hTRrev, 5'-tgctctagaatgaacggtggaa-3'; ActinBlfor, 5'-
tccctggagaagagctacga-3'; Actin Blrev, 5'-agcactgtgttggcegtacag-3'. Actin Bl was
used as a normalizer.

siRNA-mediated protein depletion. DsiRNAs (Integrated DNA Technologies)
were transfected using the Lipofectamine RNAIMAX reagent (Invitrogen)
according to the manufacturer instructions. DsiRNAs were used at a final con-
centration of 20 nM unless otherwise indicated. Medium was changed 5 h after
transfection and samples collected 48 h after transfection unless otherwise indi-
cated. The following mRNA target sequences were used:

siFa: 5'- GGATGTTTAGGAGAACAAAGAGCTA-3;

siFb: 5'-CCCATCAAATGAAGATATGCAGAAT-3’;

siBl: 5'-GCTAGGAGTCTGCGTGCGAGGATTA-3';

siATRXa: 5'-GAGGAAACCUUCAAUUGUAACAAAGUA-3’;

siIATRXb: 5'-UGCAAGCUCUAUCAGUACUACUUAGAU-3’;

siTRF1: 5'-CUUUCUUUCUUAUUAAGGUCUUGUUGC-3';
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siRNaseH1: 5'-UUGUCUAAUGCCUACAUUUAAAGGAUG-3'.
NC1 negative control (51-01-14-03) was used as siCt.

Cell proliferation and viability assays. For colony-forming assays, cells were
transfected with siRNAs and 24 h later 300—500 cells were plated in 3 cm dishes
and grown until visible colonies were formed. Cells were stained in 1% Crystal
violet, 1% formaldehyde, 1% MeOH (Sigma-Aldrich) for 20 min at room tem-
perature, followed by washes in tap water. Plates were air-dried and photographed
with a FluorChem HD2 imaging apparatus (Alpha Innotech). Colonies were
counted using Image] software. For growth curves, cells were transfected with
siRNAs and 24 h later 1 x 10 cells were seeded in 6 cm dishes and passaged for
10 days. Cells were retransfected with siRNAs and counted every 3 days. For
fluorescence-activated cell sorting, cells were trypsinized and pelleted by cen-
trifugation at 500 x g at 4 °C for 5 min. Cell pellets were either left untreated for
viability assays or fixed in 70% ethanol at —20 °C for 30 min and treated with 25
pg/ml RNaseA (Sigma-Aldrich) in 1x PBS at 37 °C for 20 min. Cells were then
washed in 1x PBS and stained with 20 pg/ml propidium iodide (Sigma-Aldrich) in
1x PBS at 4 °C for 10 min. Flow cytometry was performed on a BD FACSCalibur or
a BD Accuri C6 (BD Biosciences). Data were analyzed using FlowJo software.

Western blotting. Cells were trypsinized and pelleted by centrifugation at 500 x g
at 4 °C for 5 min. Pellets were resuspended in 2x lysis buffer (4% SDS, 20% Gly-
cerol, 120 mM Tris-HCI pH 6.8), boiled at 95 °C for 5min and centrifuged at
1600 x g at 4 °C for 10 min. Supernatant were recovered and protein concentrations
were determined by Lowry assay using bovine serum albumin (BSA; Sigma-
Aldrich) as standard. 20-40 pg of proteins were supplemented with 0.004% Bro-
mophenol blue and 1% B-Mercaptoethanol (Sigma-Aldrich), incubated at 95 °C for
5 min, separated in 6 or 10% polyacrylamide gels, and transferred to nitrocellulose
membranes (Maine Manufacturing, LLC) using a Trans-Blot SD Semi-Dry
Transfer Cell apparatus (Bio-Rad). The following primary antibodies were also
used: mouse monoclonal anti-FANCM (CV5.172, 1:1000 dilution); mouse mono-
clonal anti-Golgin 97 (Molecular Probes, A-21270, 1:5000 dilution); rabbit poly-
clonal anti-KAP1 (Bethyl Laboratories, A300-274A, 1:2000 dilution); rabbit
polyclonal anti-pKAP1 (Ser 824) (Bethyl Laboratories, A300-767A, 1:2000 dilu-
tion); mouse monoclonal anti-CHKI (Santa Cruz Biotechnology, sc-8408, 1:1000
dilution); rabbit monoclonal anti-pCHK1 Ser 345 (Cell Signaling, 2348, 1:500
dilution); rabbit polyclonal anti-RPA32 (Bethyl Laboratories, A300-244A, 1:3000
dilution); rabbit polyclonal anti-pRPA32 Ser 33 (Bethyl Laboratories, A300-246A,
1:1000 dilution); rabbit polyclonal anti-Lamin B1 (GeneTex, GTX103292, 1:1000
dilution); rabbit polyclonal anti-RNaseH1 (GeneTex, GTX117624, 1:500 dilution);
mouse monoclonal anti-beta Actin (Abcam, ab8224, 1:5000 dilution); rabbit
polyclonal anti-BLM (Bethyl Laboratories, A300-110A, 1:3000 dilution); rabbit
polyclonal anti-PML (a kind gift from M. Carmo-Fonseca, iMM, Lisbon, Portugal,
1:1000 dilution); rabbit polyclonal anti-PARP1 (Cell Signaling, 9542, 1:1000 dilu-
tion); mouse monoclonal anti-POLD3 (Novus Biologicals, H00010714-M01, 1:500
dilution); rabbit polyclonal anti-ATRX (Bethyl Laboratories, A301-045A-T, 1:1000
dilution); sheep polyclonal anti-TRF1 (R&D Systems, AF5300, 1:1000 dilution).
Secondary antibodies were HRP-conjugated goat anti-mouse and goat anti-rabbit
IgGs (Bethyl Laboratories, A90-116P and A120-101P, 1:2000 dilution) and HRP-
conjugated donkey anti-sheep IgG (Novus Bio, NBP1-75437, 1:3000 dilution).
Signal detection was performed using the ECL detection reagents (GE Healthcare)
and a FluorChem HD2 imaging apparatus (Alpha Innotech).

Fluorescence in situ hybridization (FISH). Metaphase spreads were prepared by
incubating cells with 200 ng/ml Colchicine (Sigma-Aldrich) for 2-6 h, mitotic cells
were harvested by shake-off and incubated in 0.075 M KCl at 37 °C for 10 min.
Chromosomes were fixed in ice-cold methanol/acetic acid (3:1) and spread on glass
slides. Slides were treated with 20 pg/ml RNase A (Sigma-Aldrich), in 1x PBS at
37°C for 1h, fixed in 4% formaldehyde (Sigma-Aldrich) in 1x PBS for 2 min, and
then treated with 70 pg/ml pepsin (Sigma-Aldrich) in 2 mM glycine, pH 2 (Sigma-
Aldrich) at 37 °C for 5 min. Slides were fixed again with 4% formaldehyde in 1x
PBS for 2 min, incubated subsequently in 70, 90 and 100% ethanol for 5 min each,
and air-dried. A Cy3-conjugated C-rich telomeric PNA probe (TelC-Cy3; 5'-Cy3-
OO-CCCTAACCCTAACCCTAA-3’; Panagene) diluted in hybridization solution
(10 mM Tris-HCI pH 7.2, 70% formamide, 0.5% blocking solution (Roche) was
applied onto the slides followed by one incubation at 80 °C for 5min and one at
room temperature for 2 h. Slides were washed twice in 10 mM Tris-HCl pH 7.2,
70% formamide, 0.1% BSA and three times in 0.1 M Tris-HCI pH 7.2, 0.15 M NaCl,
0.08% Tween-20 at room temperature for 10 min each. For native FISH experi-
ments on interphase nuclei, cells grown on coverslips were incubated in CSK buffer
(100 mM NacCl, 300 mM sucrose, 3 mM MgCl,, 10 mM PIPES pH 6.8, 0.5% Triton-
X) for 7 min on ice. Cells were then fixed in 4% formaldehyde in 1x PBS for 10 min
and permeabilized with CSK buffer for 5 min at room temperature. RNaseH
treatments were performed by incubating slides with 30 U of RNaseH (Takara) in
1x RNaseH buffer or only with buffer at 37 °C for 2 h. Hybridizations and washes
were performed as above but using a TYE 563-conjugated G-rich telomeric LNA
probe (TelG-TYE 563; 5'-TYE563-T*TAGGGT*TAGGGT*TAGGG-3', asterisks
indicate LNA nucleotides; Exiqon). DNA was counterstained with 100 ng/ml DAPI
(Sigma-Aldrich) in 1x PBS and slides were mounted in Vectashield (Vectorlabs).

Images were acquired with an Olympus IX 81 microscope equipped with a
Hamamatsu ORCA-ER camera and a x60/1.42NA oil PlanApo N objective, or a
Zeiss Cell Observer equipped with a cooled Axiocam 506 m camera and a x63/
1.4NA oil DIC M27 PlanApo N objective. Image analysis was performed using
Image] and Photoshop software.

Combined FISH and EdU incorporation/detection. Twenty-four hours after
siRNA transfection, cells were incubated in 10 uM RO-3306 (Selleckchem). 21.5h
later 10 uM EdU (Thermo Fisher Scientific) was added to the culture medium,
followed by a 2.5 h incubation. Cells were first stained as for DNA FISH using the
TelC-Cy3 probe and then washed twice with 1x PBS followed by EdU detection
using the Click-iT EdU Alexa Fluor 488 Imaging Kit (Thermo Fisher Scientific)
according to the manufacturer’s instructions. DNA was counterstained with 100
ng/ml DAPI in 1x PBS and coverslips were mounted on slides in Vectashield.
Image acquisition and analysis were as for DNA FISH.

Indirect immunofluorescence (IF). Cells grown on coverslips were incubated in
CSK bulffer for 7 min on ice. All subsequent treatments were performed at room
temperature. Cells were fixed with 4% formaldehyde (Sigma-Aldrich) in 1x PBS for
10 min, permeabilized with CSK buffer for 5 min, and incubated in blocking
solution (0.5% BSA, 0.1% Tween-20 in 1x PBS) for 1 h. Coverslips were incubated
in blocking solution containing primary antibodies for 1 h, washed three times with
0.1% Tween-20 in 1x PBS for 10 min each, and incubated with secondary
antibodies diluted in blocking solution for 50 min. DNA was counterstained with
100 ng/ml DAPI in 1x PBS. For combined IF and DNA FISH, cells were again fixed
with 4% formaldehyde in 1x PBS for 10 min, washed three times with 1x PBS,
incubated in 10 mM Tris-HCI pH 7.2 for 5 min and then denatured and hybridized
with TelC-Cy3 probes as described above. DNA was counterstained with 100 ng/ml
DAPI in 0.1 M Tris-HCI pH 7.2, 0.15 M NaCl, 0.08% Tween-20 and coverslips
were mounted on slides in Vectashield. The following primary antibodies were
used: rabbit polyclonal anti-pRPA32 pSer 33 (Bethyl Laboratories, A300-246A,
1:1000 dilution); rabbit polyclonal anti-53BP1 (Abcam, ab21083, 1:1000 dilution);
mouse monoclonal anti-TRF2 (Millipore, 05-521, 1:500 dilution); rabbit polyclonal
anti-BLM (Bethyl, A300-110A, 1:5000 dilution); rabbit polyclonal anti-PML (a
kind gift from M. Carmo-Fonseca, iMM, Lisbon, Portugal, 1:500 dilution); mouse
monoclonal anti-RAD51 (Abcam, ab213, 1:100 dilution); mouse monoclonal anti-
POLD3 (Novus Biologicals, H00010714-MO01, 1:100 dilution); rabbit polyclonal
anti-RAP1 (Bethyl, A300-306A, 1:500 dilution). Secondary antibodies were Alexa
Fluor 568-conjugated donkey anti-rabbit IgGs (Thermo Fisher Scientific, A10042)
and Alexa Fluor 488-conjugated donkey anti-mouse IgGs (Thermo Fisher Scien-
tific, A21202). Image acquisition and analysis were as for DNA FISH.

Genomic DNA analysis. Genomic DNA was isolated by phenol:chloroform
extraction and treatment with 40 pg/ml RNaseA, followed by ethanol precipitation.
Reconstituted DNA was digested with Hinfl and Rsal (New England Biolabs) and
again purified by phenol:chloroform extraction. For TRF analysis, 2 g of digested
DNA were separated on 0.6% agarose gels, which were vacuum-dried at 50 °C for
50 min. Gels were hybridized at 50 °C overnight with telomeric oligonucleotide
probes (5'-(TTAGGG)s—3' or 5-(CCCTAA)s—3'), 5'-end labeled with T4 poly-
nucleotide kinase (New England Biolabs) and [y-32P]ATP. Post-hybridization
washes were twice in 2x SSC, 0.2% SDS for 20 min and once in 0.5x SSC, 0.2% SDS
for 30 min at 50 °C. After radioactive signal acquisition, gels were incubated in
denaturing solution (1.5 M NaCl, 0.5 M NaOH) at room temperature for 20 min
and then hybridized at 55 °C overnight with a double-stranded telomeric probe
(Telo2 probe), radioactively labeled using Klenow fragment (New England Biolabs)
and [a-32P]dCTP. Post-hybridization washes were twice in 2x SSC, 0.2% SDS for
20 min and once in 0.2x SSC, 0.2% SDS for 30 min at 55 °C. For dot-blot hybri-
dizations, 1 ug of genomic DNA digested as above was denatured for 5 min at 98 °C
or left untreated and dot-blotted on nylon membranes. Membranes were first
hybridized with telomeric oligonucleotide probes as above. After radioactive signal
acquisition, gels were incubated in denaturing solution as above and then re-
hybridized overnight to radiolabeled Alu-repeat oligonucleotides (5'-
GTGATCCGCCCGCCTCGGCCTCCCAAAGTG-3") at 50 °C. Post-hybridization
washes were twice in 2x SSC, 0.2% SDS for 20 min and once in 0.5x SSC, 0.2% SDS
for 30 min at 50 °C. For C-circle assays, 150-500 ng of digested DNA were incu-
bated with 7.5 U phi29 DNA polymerase (New England Biolabs) in the presence of
dATP, dTTP and dGTP (1 mM each) at 30 °C for 8 h, followed by heat-inactivation
at 65 °C for 20 min. Amplification products were dot-blotted onto nylon mem-
branes (GE Healthcare) and hybridized to a radiolabeled Telo2 probe as above. For
two-dimensional gel electrophoresis 10 ug of digested DNA were separated on 0.6%
agarose gels (pulsed field certified agarose; Bio-Rad) at 30 V for 7 h, followed by
excision of the lane and separation of the DNA in the second dimension on 1.1%
agarose gels (UltraPure agarose; Life Technologies) at 100 V for 3 h. DNA was then
transferred onto nylon membranes, denatured and hybridized to a radiolabeled
Telo2 probe as above. Radioactive signals were detected using a Typhoon FLA 9000
imager (GE Healthcare) and quantified using Image] software.

Northern blotting. Total RNA was isolated using the TRIzol reagent (Invitrogen)
and treated three times with DNasel (New England Biolabs). Fifteen micrograms of
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RNA was separated on 1.2% agarose gels containing 0.7% formaldehyde. RNA was
then transferred onto nylon membranes and hybridized to a radiolabeled Telo2
probe as above. Ethidium bromide (Sigma-Aldrich) stained tRNAs were used to
control for loading. Radioactive signals were detected using a Typhoon FLA 9000
imager (GE Healthcare) and quantified using Image] software.

Chromatin immunoprecipitation (ChIP). 10 cells were harvested by scraping and
resuspended in 1 ml of 1% formaldehyde at room temperature for 15 min. After
quenching with 125 mM glycine, cells were washed three times in 1x PBS by
centrifuging at 800 x g for 5 min. Cell pellets were resuspended in 500 pl of lysis
buffer (1% SDS, 50 mM Tris-HCl pH 8, 10 mM EDTA pH 8) supplemented with
cOmplete Protease Inhibitor Cocktail (Roche) and sonicated twice using a Bior-
uptor apparatus (Diagenode) at 4 °C (settings: 30 s “ON” / 30 s “OFF”; power:
“High”; time: 15 min). Cellular debris were pelleted by centrifugation at 1600 x g at
4°C for 10 min and 100 pl of supernatant were mixed with 1.1 ml of IP buffer (1%
Triton X-100, 20 mM Tris-HCI pH 8, 2mM EDTA pH 8, 150 mM NaCl). Diluted
extracts were precleared by incubation with 50 ul of protein A/G-sepharose beads
(GE Healthcare) blocked with sheared E. coli genomic DNA and BSA at 4 °C for 30
min on a rotating wheel, followed by centrifugation at 800 x g at 4 °C for 5 min.
Cleared extracts were incubated with 1 ug of anti-FANCM mouse monoclonal
antibody (CE56.1,72) at 4°C for 4 h on a rotating wheel. Immunocomplexes were
isolated by incubation with blocked protein A/G beads at 4 °C overnight on a
rotating wheel. Beads were washed four times with wash buffer 1 (0.1% SDS, 1%
Triton X-100, 2 mM EDTA pH 8, 150 mM NaCl, 20 mM Tris-HCI pH 8) and once
with wash buffer 2 (0.1% SDS, 1% Triton X-100, 2 mM EDTA pH 8, 500 mM NaCl,
20 mM Tris-HCI pH 8) by centrifuging at 800 x g at 4 °C for 5 min. Beads were
then incubated in 100 pl of elution buffer (1% Triton X-100, 20 mM Tris-HCI pH
8,2mM EDTA pH 8, 150 mM NaCl) containing 40 pg/ml RNaseA at 37 °C for 1 h,
followed by incubation at 65 °C overnight to reverse crosslinks. DNA was purified
using the Wizard SV Gel and PCR Clean-up kit (Promega), dot-blotted onto nylon
membranes and hybridized overnight to a radiolabeled Telo2 probe as for TRF
analysis. After signal detection membranes were stripped and re-hybridized
overnight to radiolabeled Alu-repeat oligonucleotides as above. Radioactive signals
were detected using a Typhoon FLA 9000 imager (GE Healthcare) and quantified
using Image]J software.

DNA:RNA immunoprecipitation (DRIP). Cells were harvested by scraping and
lysed in 1 ml of RA1 buffer (Macherey—Nagel) containing 1% v/v f-
mercaptoethanol and 100 mM NaCl. Nucleic acids were extracted with phenol/
chloroform/isoamyl alcohol (25:24:1 saturated with 10 mM Tris-Cl pH 7.0, 1 mM
EDTA) and precipitated with isopropanol followed by centrifugation at 15,000 x g
at 4 °C for 10 min. Pellets were washed in 70% ethanol, resuspended in 200 pul Tris-
EDTA, 100 mM NaCl and sonicated using a Bioruptor apparatus (Diagenode) at
4°C (settings: 30s “ON” / 30 s “OFF”; power: “High”; time: 5 min). Five micro-
grams of nucleic acids was incubated with 1 ug of $9.6 antibody (a kind gift from B.
Luke, IMB, Mainz, Germany) in IP buffer (0.1% SDS, 1% Triton X-100, 10 mM
HEPES pH 7.2, 0.1% sodium deoxycholate, 275 mM NaCl) at 4 °C for 5h on a
rotating wheel. For RNaseH control experiments, nucleic acids were incubated with
60 U of RNaseH in 1x RNaseH buffer or only with buffer at 37 °C for 3 h prior to
incubation with the $9.6 antibody. Immunocomplexes were isolated by incubation
with protein G Sepharose beads (GE Healthcare) blocked with sheared E. coli DNA
and BSA. Beads were washed four times in IP buffer by centrifuging at 800 x g, and
incubated in elution buffer (50 mM Tris-Cl pH 8, 10 mM EDTA, 0.5% SDS)
containing 10 pug/ml proteinase K (Sigma-Aldrich) and 40 pg/ml RNase A at 50 °C
for 30 min. Beads were centrifuged as above and supernatants recovered.
Isopropanol-precipitated DNA was dot-blotted onto nylon membranes and
hybridized to radiolabeled 5’-(TTAGGG)s—3’ oligonucleotides as for TRF analysis.
After signal detection membranes were stripped and re-hybridized to radiolabeled
Alu-repeat oligonucleotides as for ChIP analysis. Radioactive signals were detected
using a Typhoon FLA 9000 imager (GE Healthcare) and quantified using Image]
software.

In vitro R-loop resolution assays. Flag-FANCM-8HIS:FAAP24 complex was
purified using a baculovirus expression system in Sf9 cells. Cells were pelleted at
500 x g and lysed on ice in 0.5 M NaCl, 0.02 M Triethanolamine pH 7.5, 1 mM
DTT, 10% glycerol plus mammalian protease inhibitors (Sigma-Aldrich) and
sonicated on ice 5x 10's bursts. Clarified lysates were incubated with equilibrated
Flag M2 resin (Sigma-Aldrich) for 1h and 4 °C. Flag resin was subjected to 5x
batch washes and eluted with 100 pg/ml Flag peptide. Pooled FANCM-FAAP24
containing elutions were diluted to a final concentration of 100 mM NacCl, 20 mM
TEA pH7.5, 10% glycerol, 1 mM DTT (Buffer B) and bound to 400 ul ssDNA
affinity resin (Sigma-Aldrich). The resin was washed with 10 CV of buffer B.
FANCM-FAAP24 complexes were eluted with buffer B containing 0.5 M NaCl.
Two micrograms of pcDNA6-Telo or pcDNA6-TeloR plasmids containing a ~1 kb
fragment of human telomeric repeats cloned downstream of a T7 promoter were
in vitro transcribed using T7 polymerase (New England Biolabs) in presence of
CTP, GTP, ATP (2.25 mM each) 825 nM [a-32PJUTP (3000 Ci/mmol; Perkin
Elmer). Reactions were stopped by heating to 65 °C for 20 min followed by RNase
A (EpiCentre) treatment in 330 mM NaCl. R-loop-containing plasmids were

purified by two phenol:chloroform extractions. Unincorporated nucleotides were
removed by passing nucleic acids twice through S-400 columns (GE Healthcare).
R-loop unwinding reactions (10 pl final volume) contained 1 nM R-loop plasmids,
1 mM ATP, 2.5 nM FANCM-FAAP24 in R-loop buffer (6.6 mM Tris pH 7.5, 3%
glycerol, 0.1 mM EDTA, 1 mM DTT, 0.5 mM MgCl,). Reactions were performed at
37°C for 10 min and then stopped by adding 2 pl of stop buffer (10 mg/ml pro-
teinase K (New England Biolabs), 1% SDS) and incubating at 37 °C for 15 min.
Samples were run on 0.8% agarose TAE gels in TAE buffer (40 mM Tris, 20 mM
acetic acid, 1 mM EDTA) at 100 V for 60-90 min, followed by gel drying and
autoradiography.

Statistical analysis. For direct comparison of two groups, we employed a paired
two-tailed Student’s ¢ test using Microsoft Excel or a nonparametric two-tailed
Mann—Whitney U test using GraphPad Prism. For comparison of two or more
factors for each group and their interaction, we used a two-way analysis of variance
(ANOVA) followed by Tukey’s HSD for the pairwise comparisons. The analysis
was carried out using the aov and TukeyHSD functions of R version 3.3.2. The
significance levels are from the Tukey’s HSD adjusted P values. P values are
indicated as: *P < 0.05, **P < 0.005, ***P < 0.001, ****P < 0.0001.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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