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Anion-adaptive crystalline cationic material
for 99TcO4

− trapping
Lei Mei 1, Fei-ze Li1, Jian-hui Lan1, Cong-zhi Wang1, Chao Xu2, Hao Deng1, Qun-yan Wu1, Kong-qiu Hu1,

Lin Wang 1, Zhi-fang Chai1,3, Jing Chen2, John K. Gibson4 & Wei-qun Shi1

Efficient anion recognition is of great significance for radioactive 99TcO4
− decontamination,

but it remains a challenge for traditional sorbents. Herein, we put forward a tactic using

soft crystalline cationic material with anion-adaptive dynamics for 99TcO4
− sequestration.

A cucurbit[8]uril-based supramolecular metal-organic material is produced through a multi-

component assembly strategy and used as a sorbent for effective trapping of TcO4
−.

Excellent separation of TcO4
−/ReO4

− is demonstrated by fast removal kinetics, good

sorption capacity and high distribution coefficient. Remarkably, the most superior selectivity

among metal-organic materials reported so far, together with good hydrolytic stability,

indicates potential for efficient TcO4
− removal. The structure incorporating ReO4

− reveals

that the supramolecular framework undergoes adaptive reconstruction facilitating the

effective accommodation of TcO4
−/ReO4

−. The results highlight opportunities for devel-

opment of soft anion-adaptive sorbents for highly selective anion decontamination.
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99

Tc, a long-lived (t1/2= 2.13 × 105 y) radioisotope of
technetium, is an abundant and problematic nuclear
waste component and potent radioactive pollution

source1,2. Complex chemical behavior of 99Tc hampers separation
of uranium and plutonium during reprocessing of spent nuclear
fuel, and high volatility of 99Tc species (Tc2O7) constrains
incorporation into glass waste forms via high-temperature vitri-
fication. 99Tc, as a stable TcO4

− in its dominant+ 7 oxidation
state, is highly water soluble and can migrate readily in the
environment, thereby posing severe environmental risks. There-
fore, efficient capture of radioactive 99Tc has received consider-
able attention for both nuclear waste management and
contaminant remediation purposes.

Solvent extraction and ion exchange are two well-established
effective methods for removal of TcO4

− from aqueous media3–6.
In solvent extraction, extractants with anion recognition cap-
ability can achieve high selectivity for TcO4

− 4,7–9, but practical
applications are limited by cost and inefficiency. Ion exchange
is developed as an alternative of traditional extraction. Despite
the ease of implementation and the expected efficient recovery
of TcO4

− based on ion-exchange method5,10, the total perfor-
mance of sorbent materials used seems not to be competent.
For example, most traditional polymeric materials exhibit slow
anion exchange kinetics and poor radiation resistance11,12, while
inorganic cationic materials such as layered double hydroxide
(LDH)13, sulfides14, and borates15,16 exhibit low sorption capacity
and poor selectivity. The emergence of hydrolytically stable
cationic metal–organic materials (MOMs) has led to potent
applications for capture of oxyanion pollutants3,17–20. High
porosity, structural diversity, and functional tunability21–23 ren-
der these hybrid materials as promising candidates for TcO4

−

removal24,25. However, there is still demand for improvement
in terms of selectivity of TcO4

− sorbents, with enhanced dis-
crimination for TcO4

−/ReO4
− over other anions as a particularly

desirable attribute.
There is no doubt that anion receptors7,9,26–29 of TcO4

− have
the best ion selectivity. A rational approach for improving the
selectivity of solid sorbents is to give sorbent materials an ideal
ion-recognition capability by direct functionalization of tradi-
tional solid sorbents with covalently attached anion receptors
(Fig. 1a)30,31, but unfortunately, chemical modification method
generally suffers from the necessity for elaborate syntheses
and possible deactivation of functional recognition groups after
implanting in bulk materials. Herein, inspired by molecular
recognition of anion receptors, we put forward an alternative
tactic that circumvents this drawback via an easily prepared
anion-adaptive sorbent material that can behave like an anion
receptor itself (Fig. 1b)32–36. Conceptually, this soft sorbent
material is capable of dynamically tuning the structural
arrangement of its framework in response to different anions,
enabling attainment of an optimized pore size and shape match
for maximum interactions with, and the resulting selectivity for
target anions such as TcO4

−. Specifically, the desirable anion-
adaptive sorbent material should have two crucial attributes
of structural dynamics and anion-responsive capability, which
can be easily achieved in self-organization-based supramolecular
materials bearing recognition sites37,38. Glycoluril derivatives
containing abundant –CH or –CH2 motifs as potent anion-
recognition sites, among which endo-type bambusurils can serve
as anion receptors39–41, while exo-type cucurbiturils exhibit
anion-binding affinity through outer-surface interaction (Fig. 1c),
can be used to prepare a class of anion-adaptive cationic materials
for specific anion removal42–45. A multicomponent assembly
strategy is proposed for synthesizing such sorbents based on a
versatile glycoluril-based macrocyclic host, cucurbit[8]uril (CB8).
The CB8 macrocycle used here plays a vital role in accomplishing

both the construction of a supramolecular network46–48 and
anion recognition (Fig. 1d), and endows both important attri-
butes mentioned above: (a) abundant CH and CH2 groups on its
waist for outer-surface hydrogen-bonding recognition to promote
the TcO4

− capture; (b) flexibility of the CB8 encapsulation motif
allowing dynamics of the overall supramolecular framework49–51.

In this work, a CB8-based cationic supramolecular metal–
organic framework, SCP-IHEP-1 ([Cu((bpy)2@CB8)(H2O)4]
(NO3)2·18H2O), is constructed by the supramolecular collabora-
tive assembly. As expected, this material is demonstrated to be an
efficient and selective sorbent capable of reversibly sequestrating
TcO4

−/ReO4
− by trapping them in specific tetrahedral pores

created by CB8 moieties arranged in order. The anion-adaptive
capability of this supramolecular sorbent toward effective TcO4

−

recognition resembles the dynamic behavior of the receptor
during ion recognition, and can be taken as a representative
TcO4

−-specific smart sorbent material.

Results
Assembly of SCP-IHEP-1 based on CB8. The cationic supra-
molecular framework material, SCP-IHEP-1, was synthesized via
assembly of CB8, 4,4′-bipyridine (bpy) and Cu(NO3)2 under
hydrothermal conditions. It crystallizes in monoclinic space
group P21/n (Supplementary Table 1) as pale blue block crystals
(Supplementary Figure 1). Crystal structure of SCP-IHEP-1
reveals that all the four components (CB8, bpy, Cu2+, and NO3

−)
(Supplementary Figure 2) are included during the self-assembly
process, and the main building unit of the supramolecular
framework of SCP-IHEP-1 (Fig. 2a) is a one-dimensional (1D)
metal–organic polyrotaxane chain (Fig. 2b) based on encapsula-
tion motif, 2bpy@CB8, linked by Cu2+ (Fig. 1c). Given the
potential for competition between metal coordination and
supramolecular encapsulation of bpy, one-pot synthesis of SCP-
IHEP-1 having both types of connectivities for bpy suggests
stepwise assembly, with initial supramolecular encapsulation
of bpy in CB8 followed by assembly into a 1D chain via bpy-
Cu2+ coordination (Supplementary Figure 3). This assembly
mechanism was corroborated by an alternative two-step
method in which isolation of the dimeric bpy units encapsu-
lated in CB8, 2bpy@CB8, in the form of [(bpy)2@CB8]0.5·
[(bpy)2@CB8]0.5·19H2O (Supplementary Figure 4 and 5) is fol-
lowed by assembly with the metal ions provided as Cu(NO3)2. It
is notable that, whereas 2G@H encapsulation, where G denotes
a guest molecule, and H a host, is common for host CB846–48,52,
this motif is rare for neutral guest such as bpy in CB853. Actually,
formation of 2bpy@CB8 in aqueous solution involves a large
favorable enthalpy change as a result of release of high-energy
water (Supplementary Figure 6 and Supplementary Table 2),
which should be taken as the main driving force for this
encapsulation54,55 and results in different degrees of pi–pi
stacking (Supplementary Figure 4) and a variety of hydrogen
bonds between CB8 and bpy (Supplementary Figure 7 and Sup-
plementary Table 3).

Cationic 1D polyrotaxane chains in SCP-IHEP-1 can further
assemble into a three-dimensional (3D) supramolecular frame-
work via cross-linkage of a large number of interchain hydrogen
bonds (Supplementary Figure 8 and Supplementary Table 4). The
nitrate counterions are located in tetrahedral cavities formed
by four neighboring CB8 from the 1D chains (Fig. 2d, e and
Supplementary Figure 9), and also contributed a lot to the
formation of final supramolecular framework via anion-directed
assembly (Fig. 2f). Analysis of the local nitrate anion environment
reveals its interaction with only two CB8 macrocycles of the
tetrahedral cavity through a limited number of hydrogen bonds
(Supplementary Figure 10), suggesting weak interaction with
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main 1D backbones of SCP-IHEP-1 and the potential for
exchange with oxyanions having more favorable interactions,
such as TcO4

−/ReO4
−.

In contrast, coordination assembly simply from bpy and Cu
(NO3)2 in the absence of CB8 macrocycles results in a twofold
interpenetrating 3D framework based on six-coordinated copper
nodes with deformed octahedral geometry (namely as Cu-bpy,
see Supplementary Table 1 and Supplementary Figure 11). In
addition to the nitrate directly binding to a copper center,
there should be a disordered nitrate anion in the pore of 3D
framework to balance the charge.

After exposure of SCP-IHEP-1 crystals for 12 h at 298 K to
aqueous solutions with pH values ranging from 3 to 11, the
structure as determined by powder X-ray diffraction (PXRD)
remained essentially unchanged (Fig. 3a). The results suggest

thermal and hydrolytic stability, despite the flexible supramole-
cular framework. Meanwhile, in contrast to significant dehydra-
tion of Cu-bpy at low temperatures (Supplementary Figure 12),
SCP-IHEP-1 did not undergo any significant decomposition
until over 205 °C (Fig. 3b), suggesting its high thermal stability.

Sorption performance for ReO4
− removal. ReO4

− was initially
used as a nonradioactive structural analog of 99TcO4

− to assess
anion exchange of SCP-IHEP-1. Batch kinetics experiment shows
that removal of ReO4

− by SCP-IHEP-1 follows the pseudo-first-
order model (Supplementary Figure 13 and Supplementary
Table 5), and is achieved to 88% removal at 1 min and to over
95% after 10 min (Fig. 4a). The fast kinetics of ReO4

− exchange
by SCP-IHEP-1 is superior to those of other cationic
metal–organic materials such as SLUG-2120, UiO-66-NH3

+17,
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with macrocyclic motifs bearing anion-recognition ability (orange lines: backbones of solid sorbents; green circles: anion receptors; purple balls marked as
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and Ni(II)-based MOF19, all of which take over 24 h to
reach exchange equilibrium for sequestering ReO4

−. It is notably
that, SCP-IHEP-1 also shows faster removal rate and much
higher removal ratio than its CB8-free counterpart Cu-bpy
(an equilibrium time of 30 min and a final removal ratio of
20%, Supplementary Figure 14 and Supplementary Table 6).

As revealed by the sorption isotherm experiment (Fig. 4b),
the calculated maximum sorption capacity of SCP-IHEP-1
based on the Langmuir model is 157 mg Re g−1 sorbent
corresponding to 211 mg ReO4

− g−1 sorbent (Supplementary
Figure 15 and Supplementary Table 7), which is higher
than those for LDH (130 mg ReO4

− g−1)13, NDTB-1 (49 mg
ReO4

− g−1)15,]16, and UiO-66-NH3
+ (159 mg ReO4

− g−1)17.
Assuming that all the nitrate ions can be exchanged, the

sorption capacity of SCP-IHEP-1 for ReO4
− observed here

reaches to as high as 93% of the theoretical value (226 mg g−1),
suggesting its nearly perfect exchange tendency for ReO4

−.
Moreover, the distribution coefficient (Kd) of SCP-IHEP-1
toward ReO4

− is 2.6 × 105 mL g−1 (Supplementary Table 8),
which is also comparable to recently emerging high-
performance cationic MOFs, SCU-100, and SCU-101
(Table 1)24,25, and ensures the decontamination depth of
ReO4

−. In contrast, ReO4
− removal by CB8-free Cu-bpy can

only achieve a poor separation efficiency (Kd: ~1 × 103 mL g−1,
Supplementary Table 8), which is two orders of magnitude
lower than that of SCP-IHEP-1. Correspondingly, the derived
maximum sorption capacity of 138 mg ReO4

− g−1 (Supplemen-
tary Figure 16 and Supplementary Table 9) only reaches 14%
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of the theoretical value (950 mg ReO4
− g−1 assuming all the

anions could be exchangeable.
In terms of structural reversibility, over 96% of sorbed ReO4

−

could be exchanged with NO3
− in a desorption solution of 0.5 M

NaNO3, and the regenerated material retains over 92% of removal
percentage after two cycles. The removal percentage of SCP-
IHEP-1 for ReO4

− keeps at a high level (>96%) within a wide
pH range of 4−10 (Fig. 4c) and remains up to 60% at more
acidic media with a pH value of 2, revealing a good hydrolytic
stability and high separation capability. Studies on the effect of
temperature (Supplementary Figure 17) indicates that the present
anion exchange may be an exothermic process with an enthalpy
change of −25.76 kJ mol−1 (Supplementary Table 10).

Uptake selectivity. Studies on ReO4
− exchange selectivity show

that SCP-IHEP-1 still selectively removes ReO4
− in the presence

of one equivalent of several competing anions including NO3
−,

SO4
2−, CO3

2−, PO4
3−, or ClO4

− (Fig. 4d). Although ReO4
−

removal diminishes somewhat when competing with structurally
similar ClO4

−, it remains as high as 91% (Supplementary
Table 11). Under similar conditions, ReO4

− removal by

SCU-10124 does not exceed 90%, and removal by PAF-1-F56 is
only ca. 20% in the presence of SO4

2− or PO4
3−.

Given the high concentration of nitrate ion in high level
nuclear waste stream, the competing effect of excess nitrate
anions is critical during TcO4

− removal. Moreover, for certain
types of nuclear waste, high-concentration SO4

2− is also another
potent competing anions. Therefore, ReO4

− removal with higher
concentrations of competing NO3

− and SO4
2− were further

studied to check the uptake selectivity of ReO4
−. As shown in

Fig. 3e, removal of ReO4
− remains as high as 96% for a molar

ratio of NO3
− to ReO4

− of 20:1, and is 84% for a ratio of 100:1
(Supplementary Table 12). Remarkably, an increase in SO4

2− has
little effect on the uptake of ReO4

− (Fig. 3f), with removal falling
only from 98 to 92% when the SO4

2−:ReO4
− ratio increases from

1:1 to 4000:1 (Supplementary Table 13).
Removal selectivity of SCP-IHEP-1 toward TcO4

−/ReO4
− can

be partially ascribed to its inherent feature of inorganic–organic
hybrid material based on multi-component collaborative assem-
bly. Generally, anions with higher charge density such as SO4

2−

often have better uptake than those with lower charge density
(TcO4

−/ReO4
−) during the sorption process with inorganic

anion sorbents13,15,16. However, this order always is reversed for
organic polymers and inorganic–organic hybrid materials,
which is taken as a Hofmeister phenomenon57. This Hofmeister
behavior might be originated from the hydrophobic nature
of organic backbones of these materials, as evidenced by the
methylene/methylidyne-rich tetrahedral pores of SCP-IHEP-1.3

A similar trend is observed for other MOMs bearing local
hydrophobic cavities or pores24,25,58. That is to say, considering
the differences in hydration energy of anions, the preference for
larger poorly hydrated ReO4

− anions over NO3
− or SO4

2−

reflects the important role of hydration/dehydration in the
anion exchange, which is consistent with the exothermic feature
of exchange observed above.

TcO4
− removal from simulated nuclear wastes. The overall

selectivity of SCP-IHEP-1 toward ReO4
− against NO3

− and SO4
2−

observed here is better than those of MOF-typed (SCU-101)25 and
polymeric network-typed (SCU-CPN-1)57 anionic exchange
materials with excellent ReO4

−/TcO4
− removal performance

emerging recently, making it a promising candidate for selective
sequestration of TcO4

− from waste solutions, even in the presence
of high concentration of competing anions. To assess the potential
application of SCP-IHEP-1 in real nuclear solutions containing
radioactive TcO4

−, removal experiments for TcO4
− were also

tested. Uptake kinetics of TcO4
− by SCP-IHEP-1 is as fast as

that of ReO4
−, achieving ~80% removal at 1 min and over 90%

after 10min (Fig. 5), and nearly quantitative removal after 2 h. In a
simplified simulated waste stream containing 9.8 ppm 99TcO4

−

in 0.03M HNO3 (i.e., a NO3
− concentration ~ 500 times

higher than TcO4
−), although the TcO4

− removal is affected by
the high-concentration competing NO3

−, the removal percentage
of TcO4

− is still up to 79.2% using a solid-to-liquid ratio (SLR)
of 0.5, which is superior to the removal by SCU-100 (59.3% with
a SLR of 1.0)25 and SCU-101 (75.2% with a higher SLR of 10)24

and represents the best removal performance for 99TcO4
− among

cationic MOMs reported so far.

Mechanism for selective ReO4
− uptake. ReO4

− (and by infer-
ence TcO4

−) exchange of SCP-IHEP-1 was monitored by Fourier
transform infrared spectroscopy (FTIR) (Fig. 6a), PXRD patterns
(Fig. 6b), and energy dispersive X-ray spectroscopy (EDS)
(Fig. 6c). Single crystals of ReO4

− incorporated material (SCP-
IHEP-1-Re) were also obtained and subject to X-ray diffraction
structural determination on the Beijing Synchrotron Radiation
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Facility (BSRF) (Supplementary Figure 18). A comparison of
simulated PXRD pattern of crystalline SCP-IHEP-1-Re and actual
PXRD of SCP-IHEP-1 after ReO4

− exchange (Supplementary
Figure 19) confirms that they are totally identical to each other,
and crystallographic analysis at the molecular level will be very
helpful to understand the recognition mechanism of SCP-IHEP-1
toward ReO4

− as well as TcO4
−. Similarly, ReO4

− uptake of
Cu-bpy was also evidenced by the signals of ReO4

− or Re in
FTIR (Supplementary Figure 20) and EDS (Supplementary Fig-
ure 21) after exchange experiments. PXRD comparison

(Supplementary Figure 22) between Cu-bpy after ReO4
−

exchange and ReO4
− incorporated crystalline analog of Cu-bpy

(Supplementary Figure 23) suggests a possible ReO4
−-induced

transformation of Cu-bpy to Cu-bpy-Re along with significant
change of Cu2+ coordination sphere and total topological struc-
ture, although there might be also a small amount of other
undefined products.

Analysis on the crystal structure of SCP-IHEP-1-Re reveals
that ReO4

− is trapped in tetrahedral pores surrounded by four
adjacent CB8 molecules (Fig. 6d) and fixed by a mass of hydrogen
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bonds between anion oxygen atoms and outer-surface CH
and CH2 groups (a total of 15 such bonds with an average
O·H distance of 2.71 Å) (Supplementary Table 3). The crystal
structure of SCP-IHEP-1-Re reveals close-packing mode similar
to SCP-IHEP-1 but with a change of stacking orientation
originated from its single-crystal-to-single-crystal (SCSC) trans-
formation upon ReO4

− incorporation (Fig. 7a). Compared to
the coordination environment of NO3

− in SCP-IHEP-1,
encapsulation of ReO4

− is achieved by the rearrangement of
surrounding CB8 moieties with a resulting slight deformation
of the tetrahedral pores (Fig. 7b). The above results indicate that
the removal of TcO4

−/ReO4
− by SCP-IHEP-1 is mainly

attributed to anion-adaptive reorganization of the CB8-based
pores, which can dynamically adapt to the encapsulated
anionic guest.

A comparison of this CB8-based MOM sorbent material with
Cu-bpy or other CB8-free MOM sorbents material such as
SLUG-2120,41 and SBN58 reveals that the removal of TcO4

−/
ReO4

− by SCP-IHEP-1 leads to little structural change of
supramolecular framework, while anion removal by the latter
ones rely on coordination of target anions with metal centers
accompanied by irreversible significant structural arrangement
(Supplementary Figure 24). Evidently, the inherent flexibility of
soft supramolecular framework of SCP-IHEP-1 facilitates a fast
dynamic recognition process, and thus enables superior kinetics
as well as good reversibility of anion exchange. Especially, the

involvement of CB8 macrocycles in SCP-IHEP-1 plays a vital
role in directing supramolecular assembly process, and can be
indeed an important contributor to high selectivity in terms
of constructing ordered pores for anion trapping and interacting
with trapped anions through a mass of hydrogen bonds. The
fast kinetics, reversibility and selectivity as well as high efficiency
by this type of soft supramolecular material make it outcompetes
with traditional cationic MOM sorbents.

In order to understand the driving force underlying the
specific ReO4

−/TcO4
− uptake, theoretical calculation methods

were used to analyze the interactions of CB8-based host cationic
framework with different anions (NO3

−, ReO4
−, and TcO4

−)
within SCP-IHEP-1 or SCP-IHEP-1-Re. The GGA-PBE59 func-
tional implemented in VASP 5.460 was used to optimize the unit
cells of the crystals, allowing relaxation of all the atom
coordinates. With the fully optimized unit cells, three anion-
containing tetrahedral pore models based on a simplified host
system [H] consisting of the key components of the CB8
macrocycles were built (Supplementary Figure 25). Electrostatic
potential (ESP) distribution analysis of these simplified models
shows that, the portal carbonyls of CB8 exhibit negative ESP,
while the waist CH2/CH groups exhibit positive ESP that
facilitates interaction with negative-charged moieties such as
NO3

− and ReO4
− (Supplementary Figure 26 and Supplementary

Table 14). Besides the ESP maps, hydrogen bonding orbital
interaction analysis from the MO perspective were also studied,
and the results reveal that orbital interactions contribute to
several hydrogen bonds as evidenced by that of [H] and ReO4

−

(Supplementary Figure 27).
To further clarify hydrogen bonding interactions between CB8-

based host [H] and anions, quantum theory of atoms in
molecules (QTAIM) analysis was performed at the B3LYP-D3
(BJ)/6-311+G(d,p) level of theory (see Supplementary Methods
for details). Several bond critical points (BCPs) between [H]
and oxygen atoms of NO3

− and ReO4
− can be observed

(Supplementary Figure 28), indicating noncovalent interactions
between CB8-based host [H] and these anions. The parameters
of electron density (ρ), Laplacian of electron density (∇2ρ),
kinetic energy density (G), and potential energy density (V) at
the representative BCPs are listed in Supplementary Table 15.
These values are in the range 0.02 < ρ < 0.07 e/Å3, 0.2 <∇2ρ <
0.8 e/Å5, 4.5 <G < 18.3 kJ/mol/Bohr3, −15.7 < V < -3.1 kJ/mol/
Bohr3, respectively. For shorter H-Bond lengths (e.g., 2.511 Å),
these values are within the scope of weak hydrogen bonding,
while the larger ones belong to van der Waals interactions61–63.
These intermolecular interactions can be further detected by
independent gradient model (IGM)64 analysis and reduced
density gradient (RDG)65 analysis (Fig. 8 and Supplementary
Figure 29 and 30), and proved be weak hydrogen bonding (light-
blue area in isosurfaces) and van der Waals interactions
(green area in isosurfaces). The results are in excellent agreement
with the QTAIM analysis. Besides, the low-density and

Table 1 Comparison of ReO4
− removal performance between different cationic materials

Materials Kd (mL g−1) Removal rate
(ReO4

−-NO3
−) (%)

Removal rate
(ReO4

−-SO4
2−) (%)

Removal rate
(ReO4

−-PO4
3−) (%)

Removal rate
(ReO4

−-ClO4
−) (%)

Ref.

LDH 262 – – – – 25

NDTB-1 652 – – – – 25

PAF-1-F 2.55 × 105 19 21 – 56

UiO-66-NH3
+ – – 50 15 21 17

SCU-100 3.3 × 105 – 98.5 98.7 – 25

SCU-101 7.5 × 105 91.7 85.6 89.2 87.2 24

SCP-IHEP-1 2.6 × 105 98.4 98.5 98.8 91.4 This work
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Fig. 5 Removal of TcO4
− as a function of contact time in the absence

of competing anion NO3
− (blue line; TcO4

−: NO3
−= 1: 0, c0= 10mg L−1,

V= 40mL, m= 20mg, and pH= 7.00) and in the presence of 0.03M
NO3

− (green line; TcO4
−: NO3

−= 1: 500, c0= 10 mg L−1, V= 10 mL,
m= 5mg, and pH= 6.89). Error bars represent the s.d. of uncertainty
for each point
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low-gradient spikes of RDG analysis also confirm the presence
of noncovalent interactions (Supplementary Figure 31). In all,
the calculation results suggest the vital role of hydrogen bonds
in stabilizing the [H]-anion inclusion motifs and thus
facilitating the effective accommodation of target anions in the
flexible cationic supramolecular framework.

We computed hydration energies, binding energies and total
energies for anion exchange with [H] based on anion-containing

tetrahedral pore models built as above (see Supplementary
Figure 32). The computed total energies (BEaq) are similar for
TcO4

− and ReO4
−, and both of them are larger than that of NO3

−-
[H] model (Supplementary Table 16). Further energy analysis
shows that difference of anion-[H] binding energies (ΔBEgas) for
all these three models are not significant, whilst the difference of
hydration energy (ΔEhyd) between ReO4

− and NO3
− is dominant.

This result suggests the vital role of hydrophobic nature of
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CB8-based methylene/methylidyne-rich tetrahedral pores of SCP-
IHEP-1 in selective TcO4

−/ReO4
− removal, and thus provides a

valuable evidence for the Hofmeister bias selectivity of SCP-IHEP-1
mentioned before.

Discussion
We put forward a tactic using anion-adaptive cationic material
with structural dynamics for 99TcO4

− sequestration. As a

conceptual prototype, a soft supramolecular material, SCP-IHEP-
1, was synthesized and has been demonstrated to exhibit
excellent removal performance of TcO4

− (and ReO4
−), especially

in selectivity against competing anions. This exceptional perfor-
mance is attributed to the anion-adaptive rearrangement of
the CB8-surrounded pores, which can adapt to the encapsulated
anionic guest. Hydration energy difference between displaced
NO3

− and target oxoanions should be the essential driving

aa

b

a

c

ReO4
–

NO3
–

19.275 Å18.442 Å

17.246 Å18.332 Å

c

Fig. 7 ReO4
− exchange-triggered structural transformation of SCP-IHEP-1. a Single-crystal-to-single-crystal (SCSC) transformation from SCP-IHEP-1 to

SCP-IHEP-1-Re upon ReO4
− incorporation. b Adaptive structural transformation of CB8-based tetrahedral cavity after encapsulation of ReO4

−

a b

Fig. 8 Intermolecular interactions (isosurfaces: 0.005 a.u.) for different models using IGM analysis. a CB8-based host [H] and NO3
−; b CB8-based host

[H] and ReO4
− (blue represents a strong attraction, and red denotes a strong repulsion). All isosurfaces are colored according to a BGR (blue-green-red)

scheme over the electron density range −0.05 < sign(λ2)ρ < 0.05 a.u

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09504-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1532 | https://doi.org/10.1038/s41467-019-09504-3 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


force for facilitating selective TcO4
− uptake of sorbents with

hydrophobic pores. The result suggests the potential of this
anion-adaptive cationic material SCP-IHEP-1 for effective TcO4

−

removal, and most importantly, paves a way for developing
high efficiency sorbents for anion removal based on soft sorbent
materials with anion-adaptive dynamics and efficient anion
recognition capability to achieve selective and specific anion
binding.

Methods
Materials. Caution! Tc-99 possesses significant health risks when inhaled or
digested and should be handled according to standard precautions and procedures.
All Tc-99 studies were conducted in a licensed laboratory dedicated to
radiological investigations. Cucurbit[8]uril (CB8) was synthesized according to
the previously-reported literature66. 4,4′-bipyridine (bpy), Cu(NO3)2, NH4ReO4,
and other reagents were analytically pure and used as received. 99TcO4

− stock
solutions were prepared by dissolving certain amounts of NH4TcO4 (99%) in
deionized water or NO3

− solution as desired.

One-pot synthesis of SCP-IHEP-1. An aliquot of 0.2 M Cu(NO3)2 aqueous
solution (200 μL, 0.04 mmol) was added to a suspension of 4,4′-bipyridine (bpy)
(0.006 g, 0.04 mmol) and CB8 (0.026 g, 0.02 mmol) in water (2 mL) in a stainless-
steel vessel. The mixture was sealed, and kept at 150 °C for 48 h. After cooling to
room temperature, the obtained blue microcrystals of SCP-IHEP-1 were filtered,
rinsed with water and ethanol three times, and dried in air at room temperature.
Yield: 0.026 g (59% based on CB8).

Two-step synthesis of SCP-IHEP-1. (a) 2bpy@CB8: 4,4′-bipyridine (bpy) (0.006
g, 0.04 mmol) was added to a suspension of CB8 (0.026 g, 0.02 mmol) in water (2
mL). After incubation in a stainless-steel vessel at 150 °C for 24 h, colorless block
crystals of 2bpy@CB8 were obtained in a quantitative yield during cooling to room
temperature. The structure of 2bpy@CB8 was confirmed by single-crystal structure
determination as [(bpy)2@CB8]0.5·[(bpy)2@CB8]0.5·19H2O (Figure S4) and 1H-
NMR spectra (Figure S5). 1H NMR (500 MHz, D2O, δ ppm): 8.49 (m, 8H); 7.42
(m, 8H), 5.84 (d, 16H), 5.52 (s, 16H), 4.22 (d, 16H). (b) SCP-IHEP-1: 0.2 M Cu
(NO3)2 aqueous solution (500 μL, 0.04 mmol) was added to a suspension of
2bpy@CB8 intermediate obtained as described above in water (2 mL) in a stainless-
steel vessel. The mixture was sealed, and kept at 150 °C for 48 h. After cooling to
room temperature, light-blue block crystals of SCP-IHEP-1 were obtained in a high
yield (~0.045 g, >99%).

Synthesis of Cu-bpy. An aliquot of 0.2 M Cu(NO3)2 aqueous solution (500 μL,
0.10 mmol) was added to a suspension of 4,4′-bipyridine (bpy) (0.016 g, 0.10
mmol) in water (1.5 mL) in a stainless-steel vessel. The mixture was sealed, and
heated slowly to 150 °C in a period of 24 h, and kept at 150 °C for another 48 h.
After slowly cooling to room temperature in a period of 24 h, the obtained blue
regular plate-like crystals of Cu-bpy were filtered, rinsed with water three times,
and dried in air at room temperature. Yield: 0.013 g.

Synthesis of SCP-IHEP-1-Re. To elucidate the exchange and recognition
mechanism for SCP-IHEP-1 with ReO4

− (and by inference TcO4
−), crystals of

ReO4
−-incorporated SCP-IHEP-1 sorbent were synthesized through an in situ

assembly method. The detailed synthesis procedure is as follows: 0.2 M Cu(NO3)2
aqueous solution (200 μL, 0.04 mmol) and 0.2 M NH4ReO4 aqueous solution
(400 μL, 0.04 mmol) was added to a suspension of 2bpy@CB8 obtained as
described above in water (2 mL) in a stainless-steel vessel. The mixture was sealed,
and kept at 150 °C for 48 h. After cooling to room temperature, small light-blue
prismatic crystals of SCP-IHEP-1-Re were obtained. The PXRD pattern of SCP-
IHEP-1 after ReO4

− uptake collected is fully consistent with the simulated PXRD
pattern based on crystal data for SCP-IHEP-1-Re obtained above, suggesting
identical structures.

Synthesis of Cu-bpy-Re. An aliquot of 0.2 M Cu(NO3)2 aqueous solution (500 μL,
0.10 mmol) and 0.2 M NH4ReO4 aqueous solution (400 μL, 0.04 mmol) was added
to a suspension of 4,4′-bipyridine (bpy) (0.006 g, 0.04 mmol) in water (2.0 mL) in a
stainless-steel vessel. The mixture was sealed, and heated slowly to 150 °C in a
period of 24 h, and kept at 150 °C for another 48 h. Blue block crystals of Cu-bpy-
Re were obtained after slowly cooling to room temperature in a period of 24 h.

X-ray single-crystal structure determination. X-ray diffraction data for SCP-
IHEP-1, Cu-bpy, and Cu-bpy-Re were acquired on a Bruker D8 VENTURE X-ray
CMOS diffractometer with a Cu Kα X-ray source (λ= 1.54178 Å) at room tem-
perature. Data frames were collected using the program APEX 3 and processed
using the program SAINT routine in APEX 3. Data collection for 2bpy@CB8 and
SCP-IHEP-1-Re was acquired with synchrotron radiation at Beijing Synchrotron
Radiation Facility (BSRF, λ= 0.72 Å) using a MAR CCD detector. The crystal was

mounted in nylon loops and cooled in a cold nitrogen-gas stream at 100 K. Data
were indexed, integrated and scaled using DENZO and SCALEPACK from the
HKL program suite. All crystal structures were solved by means of direct methods
and refined with full-matrix least squares on SHELXL-9767, and refined with full-
matrix least squares on SHELXL-201467,68. The crystal data of all compounds are
given in Supplementary Table 1.

Batch experiments. All the sorption experiments were conducted using the
batch sorption method. The solid/liquid ratio performed in all batch experiments
was 0.5 g L−1. In a typical experiment, 4 mg of SCP-IHEP-1 or Cu-bpy was added
into 8 mL of aqueous solution with a certain concentration of ReO4

−. The pH values
of the solutions were adjusted as required using NaOH and HNO3 and were
measured on a digital pH-meter. The mixture was stirred for a specified time
(t, min) at a specified temperature (T, K), and separated with a 0.22 μm nylon
membrane filter. The concentrations of ReO4

− in aqueous solution were determined
by inductively coupled plasma optical emission spectrometry (ICP-OES, Horiba
JY2000-2).

Data availability
Details for measurements and characterization, detailed experimental procedures,
computational methods are given in the Supplementary Methods. The X-ray
crystallographic coordinates for structures reported in this study have been deposited in
the Cambridge Crystallographic Data Center under accession numbers CCDC: 1874188
(2bpy@CB8), 1874189 (SCP-IHEP-1), 1874190 (SCP-IHEP-1-Re), 1894900 (Cu-bpy),
and 1894899 (Cu-bpy-Re), respectively. These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/data_request/cif). All data are either provided in the Article
and its Supplementary Information or available from the corresponding author upon
request.
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