
ARTICLE

Strong neuron-to-body coupling implies weak
neuron-to-neuron coupling in motor cortex
Patrick A. Kells1, Shree Hari Gautam 1, Leila Fakhraei1, Jingwen Li1 & Woodrow L. Shew 1

Cortical neurons can be strongly or weakly coupled to the network in which they are

embedded, firing in sync with the majority or firing independently. Both these scenarios have

potential computational advantages in motor cortex. Commands to the body might be more

robustly conveyed by a strongly coupled population, whereas a motor code with greater

information capacity could be implemented by neurons that fire more independently. Which

of these scenarios prevails? Here we measure neuron-to-body coupling and neuron-to-

population coupling for neurons in motor cortex of freely moving rats. We find that neurons

with high and low population coupling coexist, and that population coupling was tunable by

manipulating inhibitory signaling. Importantly, neurons with different population coupling

tend to serve different functional roles. Those with strong population coupling are not

involved with body movement. In contrast, neurons with high neuron-to-body coupling are

weakly coupled to other neurons in the cortical population.
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The functions carried out by the cerebral cortex require
coordinated interactions among large networks of neurons.
Whether these interactions result in a state of collective

cortical dynamics that is synchronous or asynchronous has been
debated for decades1–7. This debate stems from examining the
system at two different levels. At the macroscopic network level,
measurements of local field potential or the summed spiking
activity of a large population often reveal prominent oscillations
and synchrony8–11. In contrast, at the single-cell level, it is often
found that the spikes of any two cortical neurons are rather
independent of each other, suggesting an asynchronous, weakly
coupled cortical state (particularly in alert, awake animals)12–14.
One strategy for reconciling these dichotomous viewpoints comes
from bridging the two levels, i.e., directly comparing single neu-
ron spiking to the collective activity of the network in which the
neuron is embedded. With this approach, it was recently shown
that there is remarkable diversity among neurons; some neurons
are strongly coupled to collective population spiking activity,
whereas others are more independent15. Similarly, the strength of
correlations between single neurons and local field potential can
be diverse15–20. These facts suggest a revision of the old debate.
Instead of asking whether the cortical network is strongly or
weakly coupled, we should acknowledge that the cortex is com-
posed of both strongly and weakly coupled neurons, and turn to a
new question. Do the neurons with weak population coupling
have different roles in cortical function than neurons with strong
population coupling?

Several theoretical arguments suggest that differing degrees of
population coupling could be functionally important. For
instance, if a given cortical function is executed by a strongly
coupled population, then the function could benefit from
“strength in numbers,” gaining robustness well-suited to coherent
signaling across distant cortical regions9,21. On the other hand,
strong population coupling could manifest as fluctuations unre-
lated to the relevant signal, i.e., noise correlations, which can
undermine signal-to-noise22,23. Moreover, weaker population
coupling could be beneficial, as weaker correlations can enhance
the information capacity of population coding24–26. Recent work
in visual cortex demonstrated that neurons with high population
coupling exhibit stronger response to visual input, suggesting that
some aspects of visual coding may leverage the robustness of
strong population coupling15. Do similar functional roles of
neurons with weak and strong population coupling exist in motor
cortex? Although previous studies demonstrate that correlations
among single units can have a role in motor coding (e.g.,
refs. 27,28), and that some neurons in motor cortex appear to be
more strongly coupled to the population than others20,29, it
remains unclear whether motor coding may differ across neurons
with strong vs. weak population coupling. Here we address this
question in motor cortex of freely moving awake rats. Our pri-
mary finding is that neurons that were strongly coupled to the
population were weakly related to body movement. Conversely,
neurons with strong coupling to the body exhibited weak popu-
lation coupling.

Results
Inhibitory modulation of voluntary movement and motor
cortex. We performed microelectrode array recordings of neural
activity simultaneously with high-precision measurements of the
rats’ body movements (Fig. 1a). Body movement was captured
with 10 ms temporal resolution and submillimeter spatial reso-
lution using nine infrared cameras to track the three-dimensional
motion of eight small reflective beads attached to the rat’s head,
back, and tail. We first analyzed the body speed, averaged over all
eight beads (Fig. 1b). Unlike typical studies of the motor cortex,

this experimental system allowed us to study the unconstrained
and untrained natural voluntary movements of the rats. Studying
such natural voluntary movements is likely to be particularly
important in the context of brain disorders with abnormal
repertoires of voluntary movement, such as autism. Using 32-
channel electrode arrays chronically implanted in deep layers of
motor cortex (600–1200 μm), we obtained single-unit spiking
activity (Fig. 1b, Supplementary Fig 1) (n= 1258 single units, n
= 143 recordings, 30 min each, n= 6 rats). Considering that
consecutive recordings from the same rat are likely to entail
repeated measurements of many of the same units, a lower bound
on the number of unique units we recorded is 119. The spatial
location and extent of the electrode arrays was chosen such that
the recorded units are likely to be associated with movement of
many parts of body including the whiskers, neck, trunk, hips,
wrists, and more. Thus, we sought general relationships between
motor cortical neurons and body movement rather than detailed
coding strategies of specific motor tasks.

To obtain a broader range of behavioral and neural states, we
compared normal rats with those with pharmacologically altered
inhibitory synaptic signaling. Low doses of GABAA antagonist or
agonist were administered to manipulate inhibition. In one
cohort of animals (group 1, n= 3 rats), we studied systemic
changes in inhibition (pentylenetetrazol (PTZ) at 30 mg/kg
intraperitoneally (IP) or muscimol at 2 mg/kg IP). In group 1,
we performed 31 no drug recordings, 18 muscimol recordings,
and 16 PTZ recordings. In another cohort (group 2, n= 3 rats),
we studied local changes in inhibition employing local drug
infusion in motor cortex (20–1280 μM of bicuculline or
muscimol). In group 2, we performed 38 no drug recordings,
19 muscimol recordings, and 21 bicuculline recordings. We
anticipated that such alterations of the balance of excitation and
inhibition would alter the collective population activity of motor
cortex, thus changing population coupling. By controlling
population coupling in this way, we aimed to more thoroughly
explore the link between population coupling and motor
function.

Before examining changes in population coupling, we first
show how our manipulations of inhibition affected some basic
aspects of body movement and spike rates in the motor cortex.
First, we found that systemically suppressed inhibition was
correlated with increased voluntary animal movement (Fig. 1c,
Spearman’s ρ= 0.73, p < 10–4), whereas systemically enhanced
inhibition decreased movement (ρ=− 0.46, p < 10–3). (We note
that here and throughout the text the p-values were determined
based on tests described in the Online Methods section). Spike
rates were not significantly correlated with these systemic
inhibitory manipulations (Fig. 1d). In contrast, the concentration
of locally applied muscimol was positively correlated with body
movement (Fig. 1c, ρ= 0.49, p < 10–3) and anticorrelated with
spike rates (Fig. 1d, ρ=− 0.15, p < 0.02). Local bicuculline
concentration was not significantly correlated with either firing
rates or body movement.

Inhibitory modulation of population coupling in the motor
cortex. Next we assessed how the firing of each single unit was
related to the collective activity of the network in which it was
embedded; we computed the population coupling of each
unit15,30. In brief, population coupling quantifies how the spike
count time series of one unit co-varies with the summed spike
count time series of the rest of the recorded population (Meth-
ods). As observed previously in the sensory cortex15 and motor
cortex29, we observed that some neurons were strongly coupled to
the population, while others fired more independently (Fig. 2a).
Population coupling was most often positive (correlated with the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09478-2

2 NATURE COMMUNICATIONS |         (2019) 10:1575 | https://doi.org/10.1038/s41467-019-09478-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


population average), but for some neurons population coupling
was negative (anticorrelated). Across units, population coupling
varied over three orders of magnitude. However, it was rather
stable on the timescale of one recording. Population coupling for
the first half of each recording was strongly correlated with that

during the second half (Pearson’s ρ= 0.80, p= 0). Moreover, the
population coupling of a neuron was largely the same whether the
animal was at rest or in motion (ρ= 0.81, p= 0, Fig. 2b). This
observation suggests that population coupling is more strongly
determined by the properties of the neuron and its connections
rather than the behavioral state of the animal, consistent with
previous studies in the sensory cortex15. In contrast with the
unaltered spike rates (Fig. 1d), systemically enhanced inhibition
resulted in a prominent increase in population coupling (ρ= 0.7,
p= 0, Fig. 2c). Local enhancement of inhibition also increased
population coupling (ρ= 0.3, p= 0, Fig. 2c). Interestingly, locally
blocking inhibition also resulted in increased population coupling
(ρ= 0.2, p < 0.01, Fig. 2c). These results demonstrate that popu-
lation coupling is sensitive to the balance of excitation and
inhibition. Moreover, the results suggest that the normal motor
cortex (with unaltered inhibition) operates at a minimum in
population coupling; disrupting inhibition increases population
coupling whether the disruption entails enhanced or suppressed
inhibition.

The most prominent change in population coupling arose for
enhanced inhibition (either local or systemic.) To better under-
stand this result, we studied a parsimonious network-level
computational model (Fig. 3a, b). The model consisted of 1000
binary probabilistic integrate-and-fire neurons (80% excitatory,
20% inhibitory, more details in Methods). We measured
population coupling based on a subset of 20 neurons. First, our
model confirmed that increasing local inhibition decreases
firing rates, as in the experiments. However, unlike our
experiments, our model predicted that a purely local enhance-
ment of inhibition should result in decreased population coupling
(Fig. 3c). Considering a more holistic view of the system,
our model offers a resolution of this apparent conflict between the
model and the experiments. When muscimol acts globally,
similar to that in our experiments with systemic manipulations of
inhibition, regions that feed input to primary motor cortex (e.g,
thalamus or premotor cortex) may also decrease their firing.
Even for our experiments with local changes in inhibition, it is
likely that our pharmacological manipulation is not strictly local,
perhaps affecting nearby premotor areas of cortex. Thus, in all
our experiments (both local and systemic), we should expect a
decrease in the input to the neurons we recorded from.
Therefore, we next used our model to test how changes in input
relate to changes in population coupling. We found decreases
in input can dramatically increase population coupling (Fig. 3d).
Moreover, a combination of enhanced local inhibition
together with decreased input (Fig. 3e), which is the case for
our experiments, can accurately reproduce our experimental
findings of muscimol-induced increases in population coupling
(Fig. 2c).
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Fig. 1 Inhibitory modulation of voluntary, unconstrained movement. a The
positions of eight beads, attached to the body of a freely moving rat, were
measured in three dimensions with submillimeter, 10ms precision using a
nine-camera motion-tracking system. Colored lines show three orthogonal
projections of the bead trajectories. Scale bars indicate 5 cm. b We
recorded the speed of all eight beads (colored lines) and analyzed their
average (black) in relation to single-unit spiking activity simultaneously
recorded in motor cortex. A spike raster for 12 units is shown. c Systemic
enhancement or reduction of inhibition resulted in decreased or increased
voluntary movement, respectively, compared with unaltered inhibition.
Local enhancement of inhibition increased movement. d Spike rates were
distributed lognormally and reduced by local enhancement of inhibition, but
not significantly altered by other manipulations. In c and d, shaded
rectangles delineate quantiles (25th−75th dark, 10th−90th medium, 5th
−95th light); white lines mark median
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According to its mathematical definition, population coupling
could depend on the number of neurons in the recorded
population. We confirmed that in our experimental results there
is no correlation between population coupling and the number of
units recorded (Supplementary Fig. 2). Therefore, we pooled data
from multiple recordings. In our model, we kept fixed the number
of examined units so that this is not an issue. We also found that
population coupling was not correlated with firing rate for the
rats with local inhibitory manipulations. For the systemic
inhibitory manipulations, there was a weak anticorrelation
between spike rate and population coupling (ρ=− 0.17, p <
10–5).

Peak body coupling for low population coupling. Next, we
quantified the “body coupling” of each neuron, i.e., how strongly
each single unit’s firing was related to the rat’s body movements.
We did this in two ways, examining two different properties of
each unit: movement-triggered-average spike rate (MTASR) and
spike-triggered-average body speed (STABS).

First, for our analysis based on MTASR, we focused our
analysis on periods of time when the rat voluntarily initiated or
terminated body movement (Fig. 4a). Movement onset and
cessation were defined, respectively, as the moment when the
body speed of the rat exceeds or drops below the time-averaged
body speed. The time-averaged body speed is close to zero,
because the rats spent considerable time at rest. We found that
different neurons exhibited diverse changes in firing rates related

to movement; all combinations of increased, decreased, and
unchanged firing were observed for both movement onset and
movement cessation (Fig. 4b), consistent with previous find-
ings31–33. We defined body coupling BCM as the standard
deviation (SD) of the MTASR waveform. Thus, neurons with a
flat MTASR waveform (e.g., bottom row in Fig. 4b) have low BCM

and neurons with strong modulation apparent in the MTASR
(e.g., top two rows of Fig. 4b) have high BCM. This was done
separately for both movement onset events and cessation events.
We found that neurons with high BCM for movement onset
typically had high BCM for movement cessation as well (ρ= 0.86,
p= 0, Fig. 4c). Finally, we averaged the two values for movement
onset and cessation to obtain one BCM value for each neuron for
comparison with population coupling (Fig. 4d). For all drug
conditions, ~31% of neurons exhibited significant BCM. Here,
significance was judged as having higher BCM than 95% of
1000 surrogate control values obtained by shifting spike times
relative to body movement times. BCM was negatively correlated
with spike rate for both local (ρ=− 0.8, p= 0) and global (ρ=−
0.8, p= 0) inhibitory manipulations. Similar to population
coupling, BCM was rather stable on the timescale of one
recording. BCM for the first half of each recording was strongly
correlated with that during the second half (Pearson’s ρ= 0.74, p
= 0).

We found that neurons with high population coupling had low
BCM, whereas the neurons with high BCM had low population
coupling (Fig. 4d). This qualitative finding was consistent across
different inhibitory manipulations. Moreover, the neurons with
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Fig. 2 Minimal population coupling for unaltered inhibition. a Spike count time series for the collective population activity (black, summed over all units)
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the lowest values of population coupling also had low body
coupling. Thus, there was an optimal, rather low value of
population coupling with peak body coupling (Fig. 4d). The
quantitative value of the optimal population coupling shifted to a
higher value when inhibition was enhanced (Fig. 4d). For each
condition (unaltered, enhanced, and reduced inhibition), the
non-monotonic, peaked relationship between BCM and popula-
tion coupling was statistically significant at a level of p < 0.02 (see
Methods). Interestingly, for local enhancement of inhibition, all
the neurons were on the left side of the peak, whereas local
reduction of inhibition resulted in most neurons on the right side
of the peak (Fig. 4d).

Next, we tested a different definition of body coupling based on
the STABS for each unit. This definition of body coupling BCS is
not biased toward the somewhat arbitrarily defined events of
movement initiation and termination considered above in the
BCM analysis. For each unit, we obtained the STABS waveform
for the period preceding and following the spike trigger time by ±
1 s (Fig. 5a). To quantify body coupling we computed the SD of
the STABS waveform. A flat STABS waveform would occur if
spikes are independent of movement, resulting in a low BCS

value. Consistent with the diversity of MTASR waveforms
(Fig. 4b), the STABS waveforms were diverse; some exhibited
sharp increases, other broad decreases, etc. (Fig. 5b). Approxi-
mately 44% of neurons exhibited significant BCS values. We
found that neurons with high BCM tended to have high BCS as
well; these values were correlated (ρ= 0.7, p= 0, Fig. 5c), but
often quite different, suggesting that BCS and BCM provide
somewhat different views of how a neuron is related to body
movement. BCS was negatively correlated with spike rate for both
local (ρ=− 0.5, p= 0) and global (ρ=− 0.6, p= 0) inhibitory

manipulations. BCS for the first half of each recording was
strongly correlated with that during the second half (Pearson’s ρ
= 0.62, p= 0). We note that, in principle, a neuron could begin
firing only during periods of sustained high body speed, which
would result in a flat STABS waveform and, thus, low BCS.
However, in our experiments, such constant high-speed motion
was extremely unusual.

We found that our primary conclusions held for this new
definition of body coupling. The highest values of BCS were found
for neurons with low population coupling and the neurons with
strongest population coupling exhibited low BCS (Fig. 5d). For all
experiments, we observed a peak in BCS at low but nonzero
population coupling. The peak was statistically significant with p
< 0.02 (see Methods).

In Figs. 4d and 5d, population coupling was calculated based
on a rather coarse time resolution with the spike count computed
in 250 ms time bins. Next, we sought to determine whether the
peaked relationship between body coupling and population
coupling also holds at finer timescales. We tested 100, 50, and
10 ms time bins. First, we found that population coupling at 250
ms resolution was highly correlated with that computed with
different time resolutions (Supplementary Fig 5a, ρ= 0.97 for
100 ms, ρ= 0.93 for 50 ms, ρ= 0.77 for 10 ms, all p < 10–10).
More importantly, we found that for all of these temporal
resolutions and for both types of body coupling, the peaked
relationship remained statistically significant with p < 0.05, except
for BCM at 10 ms and 50 ms resolution, which was not significant
(Supplementary Fig. 5b).

The results shown in Figs. 4d and 5d include all recorded units
pooled across different recordings and across the six rats.
Considering that variability across recordings was substantial
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(Supplementary Fig. 6), this raises the questions: is our primary
result—i.e., a peaked relationship between body coupling and
population coupling—apparent at the single-animal and single-
recording level, without pooling? First, we tested our findings
within single recordings. For each single recording with at least 5
units recorded (this included 129 recordings), we fit a second-
order polynomial to the body coupling vs. population coupling
data (examples shown in Fig. 6a, b). We used the shape of the best
fit line to judge consistency with our main results. We found that
a well-above-chance number of single recordings were consistent
with our main result of a peaked relationship between BCM and
population coupling (77 out of 129 sessions, p < 0.02, see
Methods). We also found that 82 out of 129 sessions were
consistent with our peaked BCS vs. population coupling result (p
< 0.002, see Methods). Next, we tested our findings for individual

animals. For both BCM (Supplementary Fig. 3) and BCS

(Supplementary Fig. 4), we found that most single animals were
consistent with our pooled results, showing a peak. Finally, we
tested how variability across recording sessions contributed to our
results. For each session, we normalized body coupling and
population coupling values by the median for that session, thus
reducing session-to-session variability. Our results shifted, but
were qualitatively improved by this normalization (Fig. 6c, d),
which suggests that within-session variability is important, and
that session-to-session variability does not explain our results. For
these single-session-normalized results, body coupling and
population coupling exhibited a significant peaked relationship
(p < 0.001, see Methods). Thus, we can conclude that our main
findings are not simply an artifact of pooling multiple experi-
ments. At the single animal, and even at the single-recording
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level, our measurements are consistent with our main finding of a
peaked relationship between body coupling and population
coupling.

All of our results, up to this point, have been based on the body
speed, averaged over all eight motion-tracking beads. This raises
important questions. Are we averaging away important details of
body motions? If we defined body coupling based on more
detailed aspects of body movement, would our results still hold;
would we still find a peaked relationship between body coupling
and population coupling? To address these questions, we defined
a third type of body coupling, called BCD, which is similar to BCS,
but accounts for more detailed aspects of body motion. First, we
analyzed the movements of the 8 tracking beads to extract 27
aspects of motion including: (1) the center-of-mass speed of the
beads, (2) the angular speed of right–left turning motion, (3) the
angular speed of up–down rearing motion, (4–27) three
orthogonal components of bead velocity measured relative to
the body center line (see Methods). Then, we computed the spike-
triggered average waveform for each of these aspects of motion
(Fig. 7a). To make them comparable to each other in magnitude,
we z-scored them relative to 100 surrogate waveforms based on
spike times with a random time shift relative to the body data. We
found that different units exhibited complex relationships with
these aspects of body motion. Some units were strongly related
with angular turning motion, others with the center-of-mass
motion, and others with relative velocity of particular beads
(Fig. 7a). We define BCD for a single unit based on the aspect of
movement, which has the largest “bump” in its spike-triggered
average. Similar to the definition of BCS, the size of a “bump” is
computed as the SD (across time) of the z-scored spike-triggered
average waveform. Thus, e.g., if a unit fires strongly for a slight
leftward movement of the rat’s head, but fires independently of
the center-of-mass motion, BCD will be high, reflecting this

relationship. We found that our results held for BCD; the
relationship between population coupling and BCD exhibited a
statistically significant peak (p < 0.03, Fig. 7b).

Discussion
In conclusion, we report that during unconstrained, untrained
body movement, neurons in the motor cortex are functionally
segregated according to how strongly they are coupled to the
population in which they are embedded. We observe a tendency
for a peaked function relating body coupling to population cou-
pling. Those neurons with extremely high or extremely low
population coupling are weakly related to body movement. Those
neurons with the strongest relationships to body movement have
intermediate, low population coupling.

What are the implications of our findings in the context of the
theoretical benefits and drawbacks of coordinated firing and
population coding, as discussed above in our introduction sec-
tion? The peaked nature of the relationship between body cou-
pling and population coupling suggests that the motor cortex may
make a compromise, which balances benefits and drawbacks. The
neurons that are most associated with body movement—i.e.,
those with peak body coupling—have small but nonzero popu-
lation coupling. They are weakly coordinated but not completely
asynchronous. This suggests that the output population of the
motor cortex might balance competing needs; trading high-
capacity motor code (a benefit of weak coordination) for some
robustness (a benefit of strong coordination). Similar trade-offs
with optimal performance at intermediate levels of coordination
have been observed in other aspects of cortical function as
well25,34–37. However, there remains a substantial population of
neurons in the motor cortex that have much higher levels of
coordination among themselves, but are weakly associated with
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body movements. The functional role of these neurons is less
clear, but could be involved with diverse internal operations of
the cortex. Perhaps their higher level of coordination facilitates
robust signal exchange with other cortical areas, but this remains
to be tested.

It is interesting to compare our findings with the pioneering
study of population coupling by Okun et al.15 in visual
cortical areas. There, it was shown that neurons in the sensory
cortex with strong population coupling were strongly engaged in
sensory function. More specifically, population coupling was
correlated with response to visual stimuli (in V1) and visuomotor
actions (in V4). Our findings, in contrast, show that neurons in
the motor cortex with strong population coupling are
weakly engaged by motor function. This switch from one func-
tional principle to another between visual and motor cortical
areas highlights a specific difference in potential coding strategies
for input vs. output operations in cortical circuits. It would
seem that output operations employ neurons with weak popu-
lation coupling, whereas input operations employ neurons with
strong population coupling. One implication of this point
might be in optimizing brain–machine–interface systems. By
choosing neurons with low population coupling (but not too

low), the control of the machine might be more successful, taking
advantage of the “natural” principle we have found here.
Choosing neurons with high population coupling, in contrast,
might make control worse, because they are more influenced by
rich, noisy internal cortical dynamics, which could complicate
control signals. Future experiments would be required to test this
idea.

One similarity between our results and those found in visual
areas was that population coupling was largely unchanged during
ongoing activity and times of functional engagement (visual sti-
mulation15 or, in our case, body movement). In this context, our
results are consistent with the possibility that population coupling
is a stable property of a neuron, perhaps governed by network
anatomical structure as shown by Okun et al.15. However, our
experiments and model demonstrate that anatomical structure is
not the sole determining factor for population coupling; it can
also be tuned by manipulating the balance of excitation and
inhibition. Our computational model further suggests that the
distribution of population coupling in a cortical network is rather
sensitive to the input that network receives from external sources.
Reduced input can substantially increase both the mean and
variability of population coupling.
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Our results indicate that increased inhibition not only increases
population coupling, but also changes the relationship between
population coupling and body coupling. This finding may have
implications for brain disorders associated with increased inhi-
bition, such as Rett syndrome38 and Down syndrome39. Our
results show that when inhibition is increased, the neurons with
strong body coupling shift toward higher population coupling.
This means that these output neurons become more strongly
influenced by the ongoing population activity within the cortex.
This leaking of cortical “noise” into the output signals to the body
could result in abnormal motor function. Future work may test
this possibility directly in animal models of Rett syndrome and
Down syndrome.

Our results demonstrate that a complete description of motor
cortex must account for both the coordinated collective activity
generated by some neurons (those with strong population cou-
pling) and the asynchronous firing of other neurons (those with
weak population coupling). In our study, distinguishing these
differences in how single neurons relate to the population
revealed fundamental differences in their functional roles. Our
results suggest that neurons in the motor cortex can be categor-
ized along a continuum. At one extreme, “internal” neurons
engage strongly with each other (high population coupling), but
have little to do with controlling body movement. At the other
end of the continuum, “external” neurons fire relatively inde-
pendently of each other (low population coupling) and issue
commands that control the body. Excessive inhibition can disrupt
this scenario, causing neurons that are normally external to
become more strongly influenced by internal fluctuations.

Online methods
Animals. All procedures were carried out in accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and
approved by University of Arkansas Institutional Animal Care
and Use Committee (protocol #14048). We studied adult male
rats (n= 6, Rattus Norvegicus, Sprague–Dawley outbred, Harlan
Laboratories, TX, USA). Given the animal-to-animal variability
and complexity of the data analysis, there is no feasible way to
pre-specify either an effect size or a good number of experiments.
We found that three animals (~40 recordings per animal) for
each condition were sufficient to obtain significant results,
accounting for multiple comparisons. No randomization method
was used in assigning animals to group 1 or group 2.

Electrophysiology. We studied two groups of rats. For group 1,
microelectrode arrays (A8x4–2mm-200–200–413-CM32, Neuro-
nexus) were chronically implanted with shank tips at a depth of
1300 μm from the pia, thus targeting most electrodes to deep cor-
tical layers of primary motor cortex. Here we report recordings that
were taken at least 2 weeks after implantation surgery. For group 2,
we used a different type of microelectrode array (Buzsaki32-CM32,
Neuronexus), which has electrodes that are spaced more densely in
space. For both groups, the electrode arrays were oriented such that
the plane of electrodes was perpendicular to the dorsal surface and
parallel to the midline. The electrodes spanned 1.4mm in the
rostrocaudal direction, centered at a point 0.5mm caudal from
bregma and 2mm lateral from midline. The probe position was
chosen deliberately to sample from neurons that are associated with
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a wide range of different body motions. Considering previous
intracortical microstimulation studies, the region we sampled is
involved in many aspects of body movement including hip flexion,
trunk movements, pronation, wrist extension, elbow flexion, neck
movement, and vibrissa movement40. The Buzsaki type probes were
chosen for our second set of recordings with the goal of improving
spike sorting41. In addition, the rats in group 2 had a microcannula
included in the chronic implant for local drug delivery (26GA guide
cannula, 33GA injection cannula, Plastics One, Roanoke, VA,
USA). The guide cannula was implanted with its tip touching, but
not penetrating the cortical surface about 500 μm from the point
where the electrodes were inserted. Broadband recordings (30min
duration) of extracellular voltage fluctuations were performed with
30 kHz sample rate (Cerebus, Blackrock Microsystems). Signals
were digitized by a lightweight circuit (1 cm from implant) and then
transmitted via a commutator to the recording system. The wire
between the rat and the commutator was spring supported, such
that minimal vertical forces were applied to the rat when the rat’s
head was at a natural height relative to the stage, thus facilitating
free movement of the rat. After filtering (250–5000Hz band pass),
potential spike waveforms were cut based on negative threshold
crossing and sorted based on principal components of spike
waveforms using Offline Sorter (Plexon), for group 1 rats. For
group 2 rats, spike sorting was done with the Klusta software
(https://github.com/kwikteam/klusta), which was developed for
electrode arrays with many closely spaced recording sites, such as
our Buzsaki style probes, as described previously41.

Motion tracking. A nine-camera motion tracking system (Flex:
V100R2, Naturalpoint) was used to track the three-dimensional
positions of eight reflective beads (MCP1125, Naturalpoint, 3 mm
diameter), temporarily adhered along the rat’s neck, back, rear hips,
and base of tail. The camera frame rate was 100 Hz and the system
tracked the bead positions with submillimeter resolution. The rats
were placed on a 30 cm × 30 cm square stage inside of a dark box
and allowed to move freely, without constraint or trained task,
during each 30min recording. Each rat underwent three acclima-
tization sessions before recording to avoid excessive stress. Each
acclimatization session was 15–20min in duration. The position of
each bead was first smoothed by low-pass filtering (cutoff at 5 Hz)
and then differentiated to compute the speed of each bead.

Pharmacology. For group 1 rats, 1 h before every recording the
rat was given an IP injection of either sterile saline (sham con-
dition), saline+muscimol (2 mg/kg), or saline+ PTZ (30 mg/
kg). Muscimol is a GABAA agonist42 and PTZ is a known con-
vulsant that binds to GABAA receptors43 and increases neuronal
excitability by affecting calcium channels44. One sham recording
(first) and one drugged recording (second) were performed on
each recording day for each rat. The time between consecutive
recordings on one day for one rat was 1.5 h. One or two day
breaks between recording days were given.

For group 2 rats, the small volumes (1–2 μL, 0.2 μL/min for 5
or 10 min) of drug (muscimol or bicuculline methiodide)
dissolved in sterile saline or just saline (sham condition) was
injected through the microcannula. The injection was done using
a syringe pump (Bioanalytical Systems, Inc., IN, USA). Bicucul-
line is a GABAA antagonist45. Multiple concentrations were
tested for both muscimol and bicuculline including 20, 40, 80,
160, 320, 640, and 1280 μM. We found that many of the effects of
the local drug manipulations were quite small for the lower drug
concentrations. To obtain a clearer view of drug effects, we
divided the experiments into two groups for some of our results.
The “strong” group included concentrations 320, 640, and 1280
μM; the “weak” group included 20, 40, 80, and 160 μM.

Data analysis. Population coupling of neuron i was calculated as
defined in prior studies15,

Cpop;i ¼
1
Ni

XT
t¼1

fi tð ÞPi tð Þ; ð1Þ

where fiðtÞ is the spike count of neuron i in time bin t, Ni is the
total number of spikes for neuron i over the entire duration of the
recording, and the population spike count time series is given by

Pi tð Þ ¼
X
j≠i

fj tð Þ � μj

� �
; ð2Þ

where μj is the mean spike count for neuron j. We chose time bins
of duration 0.25 s to approximately match the minimal timescales
of body movement, but our results were robust to changes in the
choice of time bin (results for time bins with 100, 50, and 10 ms
shown in Supplementary Fig. 5). Clearly population coupling will
be poorly estimated if the total number of recorded neurons is
small. Thus, we excluded from analysis all recordings with fewer
than 5 units recorded.

We studied body coupling defined in three different ways. One
type of body coupling BCM was defined using the MTASR
waveform. Two types of MTASR waveforms were constructed.
First, movement onset times were used for triggers. Second,
movement cessation times were used for triggers. Spike rate was
calculated in a period ± 1 s around the movement trigger times with
10ms time resolution. The MTASR waveform was low-pass filtered
at 1.5 Hz and then normalized by its mean. Then, the SDs of the
onset MTASR and the cessation MTASR were computed. BCM was
defined as the mean of the onset and cessation values of SD.

The second type of body coupling, BCS, was defined for each unit
as the SD of the STABS waveform. The STABS waveform was
constructed for a period ± 1 s around the spike times of the unit
with 10ms time resolution. The waveform was low-pass filtered at
1.5 Hz and then normalized by its mean. Finally, BCS was
computed as the SD of this filtered, normalized STABS waveform.

The third type of body coupling, BCD, was defined to account for
more detailed aspects of body movement. BCD was calculated based
on multiple spike-triggered-average detailed body movement
(STADBM) waveforms. For each unit, we constructed a STADBM
for the 27 aspects of body movement described in the main text.
The steps for extracting the 27 aspects of body motion are as
follows. First, we calculated the center-of-mass position at every
time point (equal mass weighting of each of the eight beads). This
was used in two ways as follows: (1) to compute center-of-mass
speed and (2) to help define the body vector. The body vector was
defined as the best fit line (in three dimensions) to three points
including the center of mass, the head tracking bead, and the
tracking bead near the base of the neck. The end of the fit line
closest to the head defined the pointing direction of the body vector.
Two angles were then computed based on the body vector at each
time point. The left–right turning angle was defined as the angle
between a fixed horizontal line and the projection of the body
vector onto a horizontal plane. The up–down rearing angle was
defined as the angle between the body vector and its projection onto
a horizontal plane. Finally, the three orthogonal components of
velocity of each tracking bead were computed relative to the body
vector. The directions of these components were (1) along the
rostrocaudal body axis, (2) the horizontal right–left axis, relative to
the body, and (3) up–down axis relative to horizontal. This relative
motion captured changes in posture, body curvature, and other
small motions relative to the body axis.

Both population coupling and body coupling are prone to poor
estimates for neurons with very low spike rates. To avoid such
low sampling errors, we excluded from our analysis neurons with
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spike rates < 0.5 Hz. We also tried different firing rate thresholds
(0.5, 0.2, 0.1 Hz) and found that our results did not change much.

In several places in the manuscript, we examine the relation-
ship between two quantities with a Spearman’s correlation
coefficient and a corresponding p-value. The p-value represents
the probability of the null hypothesis that the two quantities are
uncorrelated. The p-value is calculated based on many random
shuffles of the data ordering.

To assess the statistical significance of a non-monotonic peaked
relationship between body coupling (y) and population coupling
(x), we performed the following several steps. First, considering a
peaked relationship between y and x, then we call x* the particular
value of x, which is closest to the peak in y. To identify x*, we
tested every measured value of x, except for a small number (at
least 10) of points at the extremes of the x range. For each possible
choice of x*, we computed a Spearman’s correlation coefficient ρleft
for the points to the left of the peak (those with x < x*) and
another correlation coefficient ρright for the points to the right of
the peak (those with x > x*). A peaked relationship should give
ρleft > 0 and ρright < 0. We excluded the choices of putative x* that
did not meet this criterion. For each putative x*, we then defined
the peakiness P to be the smaller of ρleft and − ρright (i.e., high P
requires both sides of the peak to have strong correlations). P= 1
for a noiseless, perfect peak, and near zero for uncorrelated data.
Then we chose x* to be the value of x that maximizes P. Then we
repeated this process for 1000 surrogate shuffled datasets for
which population coupling values were randomized relative to the
body coupling values. For each shuffled dataset, we computed the
best x* and its corresponding peakiness P (in cases where there
was no valid x*, we set P to 0). The p-value reported in the main
text is the probability of finding a surrogate shuffled dataset with a
greater P than our actual measured P.

For statistical assessment of whether single recording sessions
were consistent with the peaked relationship between body coupling
and population coupling, we did the following. First, we fit a second-
order polynomial to the body coupling vs. population coupling
points for the recording. Only recordings with at least 5 units were
considered. The recording was deemed consistent with our main
finding if either of two criteria were met for the best fit polynomial.
The first criterion was that the fit have a negative coefficient for the
quadratic term, i.e., downward curvature (as all peaks have), and
that the maximum of the fit be within 10% from the peak found for
the pooled data. As mentioned above, the peak for the pooled data
was the value of x* with the highest P. In some cases where the first
criterion was not met, most of the units had population coupling
values that were not spanning the peak found for the pooled data,
falling mostly to the left or right of the peak instead (examples
shown in Fig. 6a, b). In this case, we tested a second criterion based
on the slope of the fit. If most of the units were left of the peak and
the slope was positive, the recording was deemed consistent with our
main result. If most of the units were right of the peak and the slope
was negative, the recording was deemed consistent with our main
result. Here, to be more precise, “most of the units” means more
than half of the range of population coupling spanned by the
measured units. The slope was averaged over the range of the fit that
was either to the right or left of the peak, according to where most of
the units were. Finally, after counting the number of single
recordings that were consistent with our main findings, we assessed
the statistical significance of this count by repeating the whole
process with randomized data (body coupling values shuffled across
units and recordings, without changing population coupling). The
randomization resulted in a new peak location for the pooled data
and a randomized set of points within each recording for fitting the
second-order polynomial.

Investigators were not blinded to different groups and
conditions during data analysis.

Computational model. The model consisted of N= 1000 binary
neurons. The state si(t) of neuron i at time t is either 0 (not
spiking) or 1 (spiking), which is determined according to the
following equation.

si tð Þ ¼
1 with probability piðtÞ

0 otherwise

�
ð3Þ

pi tð Þ ¼ σ ηþ
XN
j¼1

Wijsjðt � 1Þ
" #

ri tð Þ
 !

ð4Þ

where σ(x) constrains x to be between 0 and 1, σ(x)= 0 for x ≤ 0,
σ(x)= 1 for x ≥ 1, and σ(x)= x for 0 < x < 1. The sum
represents input from other neurons, which fired at time t− 1
and external input to the network is represented by the
constant η. Firing probability is reduced by the activity-dependent
factor

ri tð Þ ¼ 1þ χ þ α
Xt�1

τ¼t�Tr

siðτÞ
" # !�1

ð5Þ

where the timescale of history dependence is Tr= 100 time steps
and the magnitude α= 0.1. Local inhibition is modeled by the
variable χ (χ > 0 entails enhanced inhibition, χ < 0 entails reduced
inhibition). In Fig. 3c, η was held fixed at 8 × 10−4 and we tested
five values of χ= 0.2, 0.1, 0, − 0.1, and − 0.2. In Fig. 3d, χ was
held fixed at 0 and we tested five values of η= 2 × 10−4, 4 × 10−4,
8 × 10−4, 1.6 × 10−3, and 3.2 × 10−3. In Fig. 3e, η= 4 × 10−4, 2 ×
10−3, 5 × 10−3, and χ= 0.1, 0, and − 0.1 were used respectively
for the three cases: high I+ low input, mid I+mid input, and
low I+ high input.

The model was run for 50,000 time steps. Spike count time
series were constructed using time bins of duration 50 time steps.
Population coupling was computed based on groups of 20
neurons (this mimics the fact that we experimentally measured
from a small subset of neurons). We obtained 1000 population
coupling values, one for each neuron, based on 50 non-
overlapping subsets of 20.

The N xN matrix W models the network structure and
synapse weights. W was constructed in four steps. First, an N xN
matrix of numbers was drawn from a lognormal distribution
with mean 0.5 and variance 1, consistent with experimental
observations46,47. Second, inhibitory neurons were designated
by multiplying 20% of the columns of W by − 1. Third, some of
the inputs for each neuron were set to zero (i.e., disconnected),
such that the number of inputs (in-degree) were distributed
lognormally across neurons (mean in-degree was 20, variance was
500). Such a long-tailed distribution of in-degree was important
to better match experimentally observed firing rate distributions.
Finally, the entire matrix was divided by a constant such that the
largest eigenvalue of the matrix was 1, which ensures that the
network dynamics are stable (neither growing nor decaying in
time, on average), as studied in previous work48,49.

Data availability
The neural and body movement data that support the findings of this study are freely
available for download from Figshare (https://doi.org/10.6084/m9.figshare.7562192).

Code availability
The Matlab code we developed for testing the statistical significance of a peak in noisy
data is freely available for download from Figshare (https://doi.org/10.6084/m9.
figshare.7562192).
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