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New estimates of flood exposure in developing
countries using high-resolution population data
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Current estimates of global flood exposure are made using datasets that distribute population

counts homogenously across large lowland floodplain areas. When intersected with simu-

lated water depths, this results in a significant mis-estimation. Here, we use new highly

resolved population information to show that, in reality, humans make more rational deci-

sions about flood risk than current demographic data suggest. In the new data, populations

are correctly represented as risk-averse, largely avoiding obvious flood zones. The results

also show that existing demographic datasets struggle to represent concentrations of

exposure, with the total exposed population being spread over larger areas. In this analysis

we use flood hazard data from a ~90m resolution hydrodynamic inundation model to

demonstrate the impact of different population distributions on flood exposure calculations

for 18 developing countries spread across Africa, Asia and Latin America. The results suggest

that many published large-scale flood exposure estimates may require significant revision.
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In the last 5 years, considerable efforts have been made to
develop continental and global-scale flood hazard models1–8.
When combined with data sets detailing exposure and vul-

nerability, such schemes can quantify flood risk, which can be
used by governments, insurers, and individuals to adapt to, or
mitigate, these threats. The physical processes included in the
hazard models used in these risk assessments have received
considerable attention from physical scientists1,9,10, but to date
the exposure and vulnerability components have not. This is
concerning, as arguably we know even less about the location of
people and assets, and the impact of hazards on them, than we do
about the frequency and nature of the flood hazard events
themselves.

Population maps are a key component of risk calculations8,11,
and are often used when downscaling coarser socio-economic
data sets (e.g., Gross Domestic Product (GDP)) to the resolution
of the hazard model. Calka et al.12 have noted the importance of
fine scale population density data to all classes of hazard mod-
elling and review the wide range of data sets currently available.
Population data are collected via nationally organised census
studies and, for confidentiality, are typically provided at the scale
of small administrative units known as enumeration areas. These
enumeration areas vary in size within and between countries from
~102 m2 to ~104 km2, with 33 km2 global average13. By contrast,
large-scale hazard models typically run simulations over regular
grids using either cartesian or spherical coordinate systems with
final resolutions in the range 1–30-arc seconds (~30–900 m
horizontal resolution at the equator). Gridded population density
data sets at a resolution (and accuracy) commensurate with the
hazard model output are therefore required when calculating
flood risk. A wide range of such data sets are available including
GPW (Gridded Population of the World)14, Landscan™15,
WorldPop16, GHSL (Global Human Settlement)17, GUF (Global
Urban Footprint)18, and HYDE (History Database of the Global
Environment)19. Although these products use similar input data
to derive population densities, Calka et al.12 note there is no
standardised methodology for doing this. As a result, estimates of
population density from the various global gridded data sets vary
markedly20.

To date, there have been a number of attempts to estimate
flood exposure over large scales (see Supplementary Table 1).
However, there can be large differences between the resolution at
which the hydraulic computations are performed (1 arc second to
0.5 degrees), the resolution of the hydraulic model output after
downscaling (1–30-arc seconds), the resolution of the gridded
population data (1 arc second to 5 arc minutes) and the resolu-
tion at which the final exposure calculations are performed (1 arc
second to 5 arc minutes). Almost the full range of population data
sets noted above have been employed, however studies to date do
not report flood exposure estimates consistently, with this var-
iation remaining large even when broadly consistent metrics are
being used3,7,21. Although the choice of population data only
accounts for part of the differences between these complex
modelling systems, it is clear that the effect of this choice, and its
subsequent treatment, on the output of exposure calculations
needs further investigation.

Global and continental scale flood inundation models now
operate at resolutions of 1–3-arc seconds (~30–90 m) and show
good skill in hazard prediction at these scales, with Critical
Success Index values up to 0.7 and Hit Rates up to 90%5,8. Local
flood models operate down to scales of a few metres22–24, and
show even higher levels of skill with pixel-scale Critical Success
Index values up to 0.9. However, the population data sets used to
date remain relatively coarse; even the ~3-arc second (90 m)
resolution WorldPop data only disaggregates census data to set-
tlements identifiable in medium resolution (30–90 m) satellite

imagery25, which effectively means only settlements a few hun-
dred metres across can be conclusively discriminated. Thus, its
true intrinsic resolution is likely to be somewhat lower than the
stated (i.e., nominal) resolution of ~90 m. Owing to the very local
nature of flooding and the propensity for humans to avoid harm,
any degradation of resolution in the hazard or population data
will likely lead to an increase in exposure estimates. There is,
therefore, a clear need for accurate population estimates at
resolutions commensurate with the latest generation of flood
hazard models.

Very high-resolution (sub-metre scale) satellite imagery pro-
vides a potential solution to this problem. These data can be used
to identify habitation centres down to the building level, enabling
the disaggregation of census data with greater fidelity. Moreover,
recent developments in artificial intelligence permit a step change
in the resolution and accuracy of country-scale population den-
sity mapping.

In this paper, we use new high-resolution (1 arc second, ~30
m) population density to map flood exposure for 18 countries26.
Tiecke et al.26 describe this new population data set, called the
High Resolution Settlement Layer (HRSL) reporting significant
skill in representing individual buildings and also marked
improvements in representing rural populations. Moreover, a
separate validation of the HRSL was conducted and is included in
the λ (HRSL Validation in Supplementary Information). This
validation procedure concluded that the HRSL population data
has considerable skill in identifying building footprints. These
data are derived from imagery capable of resolving individual
buildings the true (intrinsic) resolution will be close to the stated
(nominal) value, and commensurate with the latest generation of
large-scale flood hazard models. We intersect the high-resolution
population data with 3-arc second (~90 m) flood depth data
produced by a global-scale true hydrodynamic model27,28, to
produce estimates of the population exposed to flooding. We
compare the estimates of the populations exposed to flooding
derived in this way to estimates using two further global popu-
lation data sets: WorldPop (3-arc second, ~90 m)29 and Land-
Scan™30 (30-arc second, ~900 m). We also use the Global Human
Settlement Layer31, produced by the European Joint Research
Centre, to explore how estimates of flood risk vary across rural,
semi-urban and urban areas. The research aims to explore the
implications of emerging demographic data sets on our current
understanding of flood exposure.

Results
Exposure calculations. Estimates of flood exposure, derived using
a comprehensive ~90 m resolution hydraulic modelling frame-
work and differing population data sets, reveal a universal bias in
the calculations made using WorldPop and LandScan™ data, in
comparison with the estimated returned when using the HRSL
data. Across each of the 18 countries included here, estimates of
the population exposed to a 1 in 100 year flood (the area of land
with a 1% chance of being inundated in any given year) are
smaller when HRSL population data are used instead of World-
Pop or LandScan™ data. Table 1 shows the total population
exposed across each territory and for each population data set.
The reduction in exposed population when the HRSL data are
used to define population distribution can be as much as ~60%; in
Uganda, exposure totals reduce from ~4 M to 1.66 M when
WorldPop and LandScan™ data are replaced by HRSL. Overall,
the total population exposed to the 100 year flood in the 18
countries was calculated to be 134, 122, and 101 million when
using the LandScan™, WorldPop, and HRSL data, respectively.

Figure 1 shows the cumulative distribution of exposed
population across all of the modelled inundated area. The figure
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reveals that the distribution of exposure is markedly different
between the HRSL data and the other two population data sets.
Across all regions, the majority of the modelled inundation is in
areas where WorldPop and LandScan™ data indicate populations
are situated. Conversely, when the HRSL data are used, only a
very small proportion of modelled wet cells are in areas with a
non-zero population count, meaning exposure is spread over a far
smaller proportion of the hazard area. For example, in Malawi,
~80% of modelled wet cells overlay inhabited areas according to
the WorldPop and LandScan™ population data, compared with
only ~2% when the HRSL population data are used. This
phenomenon involving the total population exposed being spread
across a far larger number of modelled wet cells is found across all
countries studied, indicating that even in countries where
exposure totals are similar between each population data set,
the concentration of exposure is markedly different. This is
evident when looking at the exposure totals calculated for Haiti.
Here, estimates of total population exposed to flooding range

between 3.14 M and 3.09 M for the WorldPop and HRSL derived
estimates respectively, constituting a small change of −1%.
However, in the case of the WorldPop data this exposure is
spread over an area of ~40,000 km2, compared with an area of
~3700 km2 when using HRSL data. Figure 2 further highlights
these differences in exposure concentration, displaying popula-
tion data and the resulting exposed population for the area
around Lilongwe city, in Malawi. First, there are significant
differences in the way populations are mapped, with the
WorldPop and LandScan™ data returning a non-zero population
density across almost the entire region. When these populations
are intersected with the 1 in 100 year hazard data, the result is
that almost all the modelled wet cells in the region generate
exposure (Fig. 2e, f). Conversely, the HRSL demographic data
distribute populations across a far smaller area, resulting in much
higher population densities. When these data are intersected with
the 1 in 100 year hazard data, the majority of the modelled hazard
area does not generate exposure (Fig. 2d). However, far higher

Table 1 Population located in the 1 in 100 year floodplain (millions)

Country WorldPop LandScan™ HRSL WorldPop change % LandScan™ change %

Burkina Faso 2.40 2.72 1.74 −27 −36
Cambodia 6.26 6.86 4.69 −25 −32
Ghana 3.17 3.83 2.57 −19 −33
Haiti 3.14 3.22 3.09 −1 −4
Madagascar 4.41 4.66 3.50 −21 −25
Malawi 2.54 2.50 1.61 −37 −36
Mexico 30.36 30.08 24.37 −20 −19
Mozambique 5.69 6.38 3.76 −34 −41
Philippines 43.86 50.12 42.65 −3 −15
Puerto Rico 0.81 0.80 0.68 −16 −16
Rwanda 0.95 1.03 0.59 −37 −42
South Africa 3.39 4.86 2.02 −41 −59
Sri Lanka 3.62 4.52 2.84 −22 −37
Tanzania 7.72 7.86 5.29 −32 −33
Uganda 4.18 4.56 1.66 −60 −64
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Fig. 1 Distribution of exposed population. Cumulative distribution of the population living in the 1 in 100 year floodplain distributed across all the modelled
floodplain cells. Red indicates WorldPop exposure, Yellow the LandScan™ exposure, and Blue the exposure calculated using the HRSL data
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concentrations of exposure emerge which, when summed,
produce total values broadly comparable to those returned by
the use of WorldPop data.

Exposure across land use types. Further analysis, estimating
flood exposure for the 1 in 10 and 1 in 1000 year flood events,
show that the results found for the 1 in 100 year flood event are
consistent across multiple return periods, with the HRSL con-
sistently returning the lowest total exposure (Fig. 3). Indeed, the
results show that as hazard intensity increases, the discrepancy
between the HRSL results and the other population data increase.

Analysis of the population exposed to flooding across urban,
semi-urban and rural area (see Methods) revealed that both the
WorldPop and LandScan™ data sets estimate rural populations to
be most exposed; exposed rural populations make up 47% and
44% of the total population exposed for WorldPop and Land-
Scan™ data, respectively (Fig. 4). Conversely, the HRSL data
estimate that urban populations drive the majority of the
exposure, constituting 42% of the total population exposed.
Figure 4 reveals that in terms of total population exposed,
estimates in semi-urban and urban areas are broadly similar
across all population data sets, with the majority of the positive
bias in WorldPop and LandScan™ estimates being derived in rural
areas. The results also show that across urban, semi-urban, and
rural areas, the coarser resolution LandScan™ data returns the
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Fig. 2 Example of Exposure Mapping in Malawi. Example of population data and generated exposure maps for Lilongwe city, in Malawi. a, b, c display the
HRSL, WorldPop, and LandScan™ population data sets, respectively. d, e, f show the population located in the 100 year floodplain for each demographic
data set, respectively
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Fig. 3 Total exposed population. Total population exposed (millions) across
all 18 countries, for the 1 in 10, 1 in 100, and 1 in 1000 year flood events
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flooding across rural, semi-urban, and urban areas (millions)
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highest exposure totals. Indeed, the results indicate a negative
correlation between the resolution of demographic data and the
total population exposed to flooding. In addition to contrasting
exposure values, Fig. 5 reveals significant differences in the areas
deriving flood exposure, with > 95% of the total exposed area
(area where both hazard and population data are non-zero) being
rural in nature for the WorldPop and LandScan™ data sets,
whereas only ~1% of the total exposed area was defined as being
urban. In the case of the HRSL data, more than a quarter of the
total exposed area (25.7%) was defined as being urban and only
55.1% rural. These results further emphasise the overestimation
of flood exposure in rural areas that arises when existing
demographic data sets are used.

Exposure calculations at different resolutions. Table 2 presents
the results of a sensitivity analysis, varying the resolution of both
hazard and population data. When all population data are
aggregated to ~900 m horizontal resolution, the total population
exposed is > 120 million. Coarsening of the hazard data reveals a
larger increase in total exposure; when the hazard data is aggre-
gated to ~900 m resolution, the total population exposed is ~200
million regardless of the resolution of the population data.
Finally, for each of the aggregated resolutions, the HRSL returned
the lowest estimate of total population exposed.

Discussion
The results presented here indicate that analyses of the number of
people exposed to flooding undertaken with existing population
data sets may be significant overestimates. This finding was found
to be consistent across multiple return periods, suggesting that
exposure estimates conducted using the HRSL data are not more
sensitive to changes in the magnitude of hazard intensity when
compared with the results from the WorldPop and LandScan™
data. Consequently, the findings presented here are expected to be
robust to uncertainties in the underlying hazard data. The results
also highlight the importance of using highly resolved flood
hazard data to conduct estimates of flood exposure at large scales;

only a combination of both high-resolution population data and
high-resolution hazard data results in exposure reductions.
Moreover, the results suggest that exposure estimates are parti-
cularly sensitive to the resolution of the underlying hazard data;
with a coarsening of the hazard data resulting in a near doubling
of the total population exposed (Table 2). Even when the HRSL
data are aggregated to the resolutions of WorldPop and Land-
Scan™ data, we see similar trends as those detected when calcu-
lating exposure at their native resolutions. This suggests that the
conclusions drawn are not solely artefacts of the differing reso-
lutions between the population data, but that the HRSL data are
intrinsically more accurate. Aside from the differences in total
exposed population, the results also show how concentrations of
exposure vary markedly between the different population data
sets. Although the total exposed population calculated using the
new HRSL is lower across all countries, this exposed population is
also confined to a much smaller area. Moreover, the results
suggest that existing population data sets significantly over-
estimate rural flood exposure, with only a very small proportion
of the total exposed area being urban in nature. Critically, it is
exposure hotspots in new urban centres that appear to be driving
increased flood losses in developing regions; Di Baldassarre
et al.32 report that rapid and intensive urbanisation in flood-
prone areas is driving dramatic increases in flood exposure across
Africa. This largely unplanned encroachment onto floodplain
areas creates concentrations of exposure, resulting in an ampli-
fication of losses when flood events occur. The results shown here
suggest that pre-existing demographic data sets struggle to
represent the significance of these exposure hotspots. This mis-
estimation of exposure concentration would have significant
implications for decision makers looking to use these data for
adaption and mitigation. With increasing flood losses being lar-
gely attributed to increased urbanisation, it seems crucial that
these areas are correctly represented.

Differences in the distribution of exposure reflect differences in
the methods used to disperse populations, with census population
data being spread across a far wider area in the WorldPop and
LandScan™ data. Nevertheless, the results clearly demonstrate the
significance of resolving populations at resolutions that are
commensurate with emerging high-resolution global flood
models7,9,10. The latest large-scale flood hazard models can
resolve flood hazard at resolutions of ~30–90 m, which can be
considered sufficient to allow the representation of the true spatial
complexity of flood hazard8. However, to move from estimates of
flood hazard to estimates of flood risk, data that represent the
spatial heterogeneity of people and assets with commensurate
resolution and accuracy are also clearly required. Otherwise, as
demonstrated here, inaccurate representations of exposure may
persist, rendering the output of increasingly complex flood hazard
models ineffective as decision-making tools. Overall our results
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Fig. 5 Proportion of areas returning exposure. Proportion of area returning an exposure value, across rural, semi-urban, and urban areas

Table 2 Total population living in the 1 in 100 year floodplain
(millions) summed across all 18 countries, for varying
resolutions of both hazard and population data

Population data

30m 90m 900m

HRSL HRSL WP HRSL WP LS

Hazard 90m 101 102 122 124 130 134
900m 196 196 205 197 205 203
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show that estimates of flood exposure undertaken using existing
population data may significantly mis-represent these quantities.
Calculations with new high-resolution population data resulted in
exposure reductions across all countries analysed. These results
suggest that, in terms of flood exposure, human populations are
more risk-averse than current demographic data suggest, with
populations largely avoiding the most hazardous areas. However,
the results also demonstrate that concentrations of exposure vary
markedly. The HRSL returns larger concentrations of exposure,
suggesting that although there is a reduction in the total number
of people exposed, these populations are confined to a smaller
area. Moreover, exposure calculations undertaken with existing
demographic data may substantially overestimate flood risk in
rural areas and produce underestimates in urban centres. The
results have significant implications for any end-users looking to
use emerging large-scale flood risk data sets to inform decision
making and suggest that existing estimates may require sig-
nificant revision. Moving forward, alongside the development of
increasingly complex hazard models, the development of accurate
data sets defining the location of people and assets will also be
required if robust estimates of risk are to be generated.

Methods
Flood hazard model. A global flood hazard model framework was used to define
flood hazard across 18 developing countries; Burkina Faso, Cambodia, Ghana, Haiti,
Madagascar, Malawi, Mexico, Mozambique, Philippines, Puerto Rico, Rwanda, South
Africa, Sri Lanka, Tanzania, and Uganda. This framework covers both fluvial (riv-
erine) and pluvial (flash-flood) perils, providing estimates of flood hazard at 3-arc
second (~90m) resolution. Fluvial flooding is simulated in all river basins with
upstream catchment areas larger than 50 km2, whereas pluvial hazard is captured
across all catchment sizes via the simulation of intense rainfall directly onto the
modelled topography. River channel location and bathymetry are derived from the
HydroSHEDS global hydrography data set33. A sub-grid hydraulic model28 is
employed enabling all channels, including those smaller than the ~90m resolution of
the model, to be explicitly represented using a computationally efficient local inertial
formulation of the shallow water equations27. Coupling a remotely sensed hydro-
graphy data set with a sub-grid hydraulic model enables the comprehensive repre-
sentation of flooding from river channels across all areas, including data-poor regions.
Model input boundary conditions are derived from a regionalised flood frequency
analysis conducted at the global scale34. In principle, this method links river and
rainfall gauges to upstream catchment characteristics and local climatology respec-
tively, with gauged regions linked to un-gauged areas using these descriptors. A full
description of the hazard modelling framework used here, along with a model vali-
dation, is presented by Sampson et al.5 The study reports that, in a validation exercise
comparing model output against high-resolution government data in the UK and
Canada, the modelling framework captured between two thirds and three quarters of
the area determined to be hazardous. A further validation study, conducted by Wing
et al.8, reported that a large-scale modelling framework similar to that used in this
study was capable of matching high-quality flood hazard data in the United States to
within the likely error of local scale models.

Population data. In this study, exposure is defined by the intersection of hazard
(flood model output) and population data, the way in which hazard and population
data interact (vulnerability), to produce estimates of risk, has not been considered. To
estimate the number of people exposed to flooding, flood hazard data from the
hydraulic model framework described above was intersected with three different
population density maps, these were: the HRSL35, WorldPop29, and LandScan™ 30.
The HRSL is a new population data set produced jointly by Facebook, Columbia
University and the World Bank. Unlike the data sets produced by WorldPop and
LandScan™, which use multi-variate models to disaggregate census population data,
HRSL utilises cutting edge convolutional neural networks to identify individual
buildings from high-resolution satellite imagery. Population census data are then
distributed among these buildings to produce population density maps. The final data
set is a 1-arc second (30m) resolution population density map for the year 2015.
Tiecke et al.26 outline a number of validation exercises for the HRSL data, including
the testing of building identification using the Malawi Third Integrated Household
Survey (IHS3). This survey recorded the location of > 11,000 households nationwide
and is thus independent of remote-sensing methods. When used as a validation data
set, the results revealed that 98.3% of IHS3 household locations coincided with HRSL
populated cells/pixels. A separate analysis of 3 different population data sets was
undertaken for a single region near Blantyre, Malawi, where buildings were manually
identified and labelled. A comparison of HRSL, GUF, and GHSL revealed that in
urban areas 99%, 82%, and 83 % of buildings were identified correctly. However, in
rural areas the percentages of buildings identified were 82%, 6%, and 4% for HRSL,
GUF, and GHSL data sets, respectively.

The results indicate that HRSL has a far superior performance in rural areas,
where existing data sets perform poorly. A separate validation of each of the
population data sets was also undertaken as a part of this study (see HRSL
Validation in Supplementary Information). This procedure compared each
population data set against building footprints taken from the Open Street Map
(OSM) project (Supplementary Table 2). The comparison concluded that the HRSL
data have considerable skill in replicating OSM data (Supplementary Fig. 1),
whereas the WorldPop and LandScan™ data had little to no skill in replicating
building footprints (Supplementary Tables 2–5). Population density maps provided
by WorldPop use remotely sensed data in a dasymetric modelling approach to
estimate population densities at 3-arc second (~90 m) resolution16. This method
uses a range of remotely sensed data sets, including night-time light data and water
surface masks, to produce a prediction layer defining the likely population
distribution. The data sets used to produce the prediction layer vary between
different regions, with some input data sets being produced at a resolution coarser
than the stated 3-arc second resolution. This population prediction layer is used to
distribute census population data, with the 2015 population density maps being
used in this study. The coarsest resolution (30-arc second, ~900 m) population
density data used here was provided by LandScan™ 30. These data were also
produced using a multi-variable dasymetric modelling approach to disaggregate
census data within administrative boundaries. Similar to the WorldPop
methodology, the method uses a range of input data sets to distribute census
information, with input data and methods varying between different regions.

To estimate the total number of people living in floodplain regions, the hazard
layers were intersected with HRSL, WorldPop, and LandScan™ data. To enable this,
each population data set was disaggregated to the ~30 m resolution of the HRSL
data set. This disaggregation was conducted by taking the population totals at a
coarser resolution and distributing them among the higher resolution cells. To
ensure consistency in the total population values between the different
demographic data sets, both the WorldPop and LandScan™ data were scaled
and the country level to ensure that population totals matched the HRSL
population totals. Intersection with the hazard data involved summing pixel
values from the population map for all wet cells in the hazard map (i.e., all cells
with a water depth greater than zero). To enable a sensitivity analysis across
different resolutions both the HRSL and WorldPop data had to be aggregated to
coarser resolutions. This aggregation was undertaken by taking the sum of the
population present in the grid cells at a higher resolution. Aggregation of the
hazard data was undertaken by taking an average of all higher resolution cells and
applying a 10 cm depth threshold to all resulting depth calculations, whereby all
cells with a depth < 10 cm are set to zero. This depth threshold is the same
threshold applied directly to the ~90 m flood hazard model output. To enable an
analysis across different land use types, the Global Human Settlement Layer31

produced by the European Joint Research Centre was used to define urban, semi-
urban, and rural areas.

Data availability
Each of the population data sets used here are available via the relevant references
provided. The HRSL can be found at https://www.ciesin.columbia.edu/data/hrsl/. The
flood hazard data used are available for academic use, for more information contact
info@fathom.global. The code for the hydraulic model is owned by Fathom Ltd and is
not available to be shared.
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