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Accurate autocorrelation modeling substantially
improves fMRI reliability
Wiktor Olszowy 1,2, John Aston3, Catarina Rua1 & Guy B. Williams1

Given the recent controversies in some neuroimaging statistical methods, we compare the

most frequently used functional Magnetic Resonance Imaging (fMRI) analysis packages:

AFNI, FSL and SPM, with regard to temporal autocorrelation modeling. This process,

sometimes known as pre-whitening, is conducted in virtually all task fMRI studies. Here, we

employ eleven datasets containing 980 scans corresponding to different fMRI protocols and

subject populations. We found that autocorrelation modeling in AFNI, although imperfect,

performed much better than the autocorrelation modeling of FSL and SPM. The presence of

residual autocorrelated noise in FSL and SPM leads to heavily confounded first level results,

particularly for low-frequency experimental designs. SPM’s alternative pre-whitening method,

FAST, performed better than SPM’s default. The reliability of task fMRI studies could be

improved with more accurate autocorrelation modeling. We recommend that fMRI analysis

packages provide diagnostic plots to make users aware of any pre-whitening problems.
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Functional magnetic resonance imaging (fMRI) data are
known to be positively autocorrelated in time1. It results
from neural and hemodynamic sources, but also from

scanner-induced low-frequency drifts, respiration, and cardiac
pulsation, as well as from movement artifacts not accounted for
by motion correction2. If this autocorrelation is not accounted
for, spuriously high fMRI signal at one time point can be
prolonged to the subsequent time points, which increases the
likelihood of obtaining false positives in task studies3. As a result,
parts of the brain might erroneously appear active during an
experiment. The degree of temporal autocorrelation is different
across the brain4. In particular, autocorrelation in gray matter is
stronger than in white matter and cerebrospinal fluid, but it also
varies within gray matter.

AFNI5, FSL6, and SPM7, the most popular packages used in
fMRI research, first remove the signal at very low frequencies (for
example using a high-pass filter), after which the residual tem-
poral autocorrelation is estimated from the residuals of an initial
Ordinary Least Squares (OLS) model and is removed in a process
called pre-whitening. In AFNI temporal autocorrelation is mod-
eled voxel-wise. For each voxel, an autoregressive-moving-
average ARMA(1,1) model is estimated8. The two ARMA(1,1)
parameters are estimated only on a discrete grid and are not
spatially smoothed. For FSL, a Tukey taper is used to smooth the
spectral density estimates voxel-wise. These smoothed estimates
are then additionally smoothed within tissue type. Woolrich
et al.9 has shown the applicability of the FSL’s method in two
fMRI protocols: with repetition time (TR) of 1.5 and of 3 s, and
with voxel size 4 × 4 × 7 mm3. By default, SPM estimates temporal
autocorrelation globally as an autoregressive AR(1) plus white
noise process10. SPM has an alternative approach: FAST, but we
know of only three studies, which have used it11–13. FAST uses
a dictionary of covariance components based on exponential
covariance functions13. More specifically, the dictionary is of
length 3p and is composed of p different exponential time con-
stants along their first and second derivatives. By default, FAST
employs 18 components. Like SPM’s default pre-whitening
method, FAST is based on a global noise model.

Lenoski et al.14 compared several fMRI autocorrelation mod-
eling approaches for one fMRI protocol (TR= 3 s, voxel size
3.75 × 3.75 × 4 mm3). The authors found that the use of the global
AR(1), of the spatially smoothed AR(1) and of the spatially
smoothed FSL-like noise models resulted in worse whitening
performance than the use of the non-spatially smoothed noise
models. Eklund et al.15 showed that in SPM the shorter the TR,
the more likely it is to get false positive results in first-level (also
known as single subject) analyses. It was argued that SPM often
does not remove a substantial part of the autocorrelated noise.
The relationship between shorter TR and increased false positive
rates was also shown for the case when autocorrelation is not
accounted3.

In this study we investigate the whitening performance of
AFNI, FSL, and SPM for a wide variety of fMRI blood-oxygen-
level-dependent protocols. We analyze both the default SPM’s
method and the alternative one: FAST. Furthermore, we analyze
the resulting specificity-sensitivity trade-offs in first-level fMRI
results, and investigate the impact of pre-whitening on second-
level analyses. We observe better whitening performance for
AFNI and SPM tested with option FAST than for FSL and SPM.
Imperfect pre-whitening heavily confounds first-level analyses.

Results
Whitening performance of AFNI, FSL, and SPM. To investigate
the whitening performance resulting from the use of noise models
in AFNI, FSL, and SPM, we plotted the power spectra of

the general linear model (GLM) residuals. Figure 1 shows the
power spectra averaged across all brain voxels and subjects for
smoothing of 8 mm and assumed boxcar design of 10 s of rest
followed by 10 s of stimulus presentation. The statistical inference
in AFNI, FSL, and SPM relies on the assumption that the resi-
duals after pre-whitening are white. For white residuals, the
power spectra should be flat. However, for all the datasets and all
the packages, there was some visible structure. The strongest
artifacts were visible for FSL and SPM at low frequencies. At high
frequencies, power spectra from FAST were closer to 1 than
power spectra from the other methods. Figure 1 does not show
respiratory spikes, which one could expect to see. This is because
the figure refers to averages across subjects. We observed
respiratory spikes when analyzing power spectra for single sub-
jects (not shown).

Resulting specificity-sensitivity trade-offs. In order to investi-
gate the impact of the whitening performance on first-level
results, we analyzed the spatial distribution of significant clusters
in AFNI, FSL, and SPM. Figure 2 shows an exemplary axial slice
in the Montreal Neurological Institute (MNI) space for 8 mm
smoothing. It was made through the imposition of subjects’
binarized significance masks on each other. Scale refers to the
percentage of subjects within a dataset where significant activa-
tion was detected at the given voxel. The x-axis corresponds to
four assumed designs. Resting state data were used as null data.
Thus, low numbers of significant voxels were a desirable outcome,
as this was suggesting high specificity. Task data with assumed
wrong designs were used as null data too. Thus, clear differences
between the true design (indicated with red boxes) and the wrong
designs were a desirable outcome. For FSL and SPM, often the
relationship between lower assumed design frequency (boxcar40
vs. boxcar12) and an increased number of significant voxels was
visible, in particular for the resting state datasets: “FCP Beijing”,
“FCP Cambridge”, and “Cambridge Research into Impaired
Consciousness (CRIC)”. For null data, significant clusters in
AFNI were scattered primarily within gray matter. For FSL and
SPM, many significant clusters were found in the posterior cin-
gulate cortex, while most of the remaining significant clusters
were scattered within gray matter across the brain. False positives
in gray matter occur due to the stronger positive autocorrelation
in this tissue type compared to white matter4. For the task
datasets: “NKI checkerboard TR= 1.4 s”, “NKI checkerboard TR
= 0.645 s”, “BMMR checkerboard”, and “CRIC checkerboard”
tested with the true designs, the majority of significant clusters
were located in the visual cortex. This resulted from the use of
visual experimental designs for the fMRI task. For the impaired
consciousness patients (CRIC), the registrations to MNI space
were imperfect, as the brains were often deformed.

Additional comparison approaches. The above analysis referred
to the spatial distribution of significant clusters on an exemplary
axial slice. As the results can be confounded by the comparison
approach, we additionally investigated two other comparison
approaches: the percentage of significant voxels and the positive
rate. Supplementary Fig. 1 shows the average percentage of sig-
nificant voxels across subjects in 10 datasets for smoothing of
8 mm and for 16 assumed boxcar experimental designs. As more
designs were considered, the relationship between lower assumed
design frequency and an increased percentage of significant
voxels in FSL and SPM (discussed before for Fig. 2) was even
more apparent. This relationship was particularly interesting for
the “CRIC checkerboard” dataset. When tested with the true
design, the percentage of significant voxels for AFNI, FSL, SPM,
and FAST was similar: 1.2, 1.2, 1.5, and 1.3%, respectively.
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Fig. 1 Power spectra of the GLM residuals in native space averaged across brain voxels and across subjects for the assumed boxcar design of 10 s of rest
followed by 10 s of stimulus presentation (boxcar10). The dips at 0.05 Hz are due to the assumed design period being 20 s (10 s+ 10 s). For some
datasets, the dip is not seen as the assumed design frequency was not covered by any of the sampled frequencies. The frequencies on the x-axis go up to
the Nyquist frequency, which is 0.5/repetition time. If after pre-whitening the residuals were white (as it is assumed), the power spectra would be flat.
AFNI and SPM’s alternative method: FAST, led to best whitening performance (most flat spectra). For FSL and SPM, there was substantial autocorrelated
noise left after pre-whitening, particularly at low frequencies

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09230-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1220 | https://doi.org/10.1038/s41467-019-09230-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


However, AFNI and FAST returned much lower percentages of
significant voxels for the assumed wrong designs. For the
assumed wrong design “40”, FSL and SPM returned on average a
higher percentage of significant voxels than for the true design:
1.4 and 2.2%, respectively. Results for AFNI and FAST for the
same design showed only 0.3 and 0.4% of significantly active
voxels.

Overall, at an 8 mm smoothing level, AFNI and FAST
outperformed FSL and SPM showing a lower average percentage
of significant voxels in tests with the wrong designs: on average

across 10 datasets and across the wrong designs, the average
percentage of significant voxels was 0.4% for AFNI, 0.9% for FSL,
1.9% for SPM, and 0.4% for FAST.

As multiple comparison correction depends on the smoothness
level of the residual maps, we also checked the corresponding
differences between AFNI, FSL, and SPM. The residual maps
seemed to be similarly smooth. At an 8 mm smoothing level, the
average geometric mean of the estimated full width at half
maxima of the Gaussian distribution in x-, y-, and z-dimensions
across the 10 datasets and across the 16 assumed designs was
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Fig. 2 Spatial distribution of significant clusters in AFNI (left), FSL (middle), and SPM (right) for different assumed experimental designs. Scale refers to the
percentage of subjects where significant activation was detected at the given voxel. The red boxes indicate the true designs (for task data). Resting state
data were used as null data. Thus, low numbers of significant voxels were a desirable outcome, as it was suggesting high specificity. Task data with
assumed wrong designs were used as null data too. Thus, large positive differences between the true design and the wrong designs were a desirable
outcome. The clearest cut between the true and the wrong/dummy designs was obtained with AFNI’s noise model. FAST performed similarly to AFNI’s
noise model (not shown)
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10.9 mm for AFNI, 10.3 mm for FSL, 12.0 mm for SPM, and
11.8 mm for FAST. Moreover, we investigated the percentage of
voxels with z-statistic above 3.09. This value is the 99.9% quantile
of the standard normal distribution and is often used as the
cluster defining threshold. For null data, this percentage should
be 0.1%. The average percentage across the 10 datasets and across
the wrong designs was 0.6% for AFNI, 1.2% for FSL, 2.1% for
SPM, and 0.4% for FAST.

Supplementary Figs. 2, 3 show the positive rate for smoothing
of 4 and 8 mm. The general patterns resemble those already
discussed for the percentage of significant voxels, with AFNI and
FAST consistently returning lowest positive rates (familywise
error rates, FWER) for resting state scans and task scans tested
with wrong designs. For task scans tested with the true designs,
the positive rates for the different pre-whitening methods
were similar. The black horizontal lines show the 5% false
positive rate, which is the expected proportion of scans with at
least one significant cluster if in reality there was no experimen-
tally induced signal in any of the subjects’ brains. The dashed
horizontal lines are the confidence intervals for the proportion of
false positives. These were calculated knowing that variance of
a Bernoulli(p) distributed random variable is p(1− p). Thus, the
confidence intervals were 0:05 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:05 � 0:95=np

, with n denoting
the number of subjects in the dataset.

Since smoothing implicitly affects the voxel size, we considered
different smoothing kernel sizes. We chose 4, 5, and 8 mm, as
these are the defaults in AFNI, FSL, and SPM. No smoothing was
also considered, as for 7T data this preprocessing step is
sometimes avoided16,17. With a wider smoothing kernel, the
percentage of significant voxels increased (not shown), while the
positive rate decreased (Supplementary Figs. 2, 3). Differences
between AFNI, FSL, SPM, and FAST discussed above for the four
comparison approaches and smoothing of 8 mm were consistent
across the four smoothing levels.

Further results are available from https://github.com/
wiktorolszowy/fMRI_temporal_autocorrelation/tree/master/figures

Event-related design studies. In order to check if differences in
autocorrelation modeling in AFNI, FSL, and SPM lead to dif-
ferent first-level results for event-related design studies, we ana-
lyzed the CamCAN dataset. The task was a sensorimotor one
with visual and audio stimuli, to which the participants respon-
ded by pressing a button. The design was based on an m-
sequence18. Supplementary Fig. 4 shows (1) power spectra of the
GLM residuals in native space averaged across brain voxels and
across subjects for the assumed true design (E1), (2) average
percentage of significant voxels for three wrong designs and the
true design, (3) positive rate for the same four designs, and (4)
spatial distribution of significant clusters for the assumed true
design (E1). Only smoothing of 8 mm was considered. The
dummy event-related design (E2) consisted of relative stimulus
onset times generated from a uniform distribution with limits 3
and 6 s. The stimulus duration times were 0.1 s.

For the assumed low-frequency design (B2), AFNI’s auto-
correlation modeling led to the lowest familywise error rate as
residuals from FSL and SPM again showed a lot of signal at low
frequencies. However, residuals from SPM tested with option
FAST were similar at low frequencies to AFNI’s residuals. As a
result, the familywise error rate was similar to AFNI. For high
frequencies, power spectra from SPM tested with option FAST
were more closely around 1 than power spectra corresponding to
the standard three approaches (AFNI/FSL/SPM). For an event-
related design with very short stimulus duration times (around
zero), residual positive autocorrelation at high frequencies makes
it difficult to distinguish the activation blocks from the rest

blocks, as part of the experimentally induced signal is in the
assumed rest blocks. This is what happened with AFNI and SPM.
As their power spectra at high frequencies were above 1, we
observed for the true design a lower percentage of significant
voxels compared to SPM tested with option FAST. On the other
hand, FSL’s power spectra at high frequencies were below 1. As a
result, FSL decorrelated activation blocks from rest blocks
possibly introducing negative autocorrelations at high frequen-
cies, leading to a higher percentage of significant voxels than SPM
tested with option FAST. Though we do not know the ground
truth, we might expect that AFNI and SPM led for this event-
related design dataset to more false negatives than SPM with
option FAST, while FSL led to more false positives. Alternatively,
FSL might have increased the statistic values above their nominal
values for the truly but little active voxels.

Slice timing correction. As slice timing correction is an estab-
lished preprocessing step, which often increases sensitivity19, we
analyzed its impact on pre-whitening for two datasets for which
we knew the acquisition order: “CRIC checkerboard” and
“CamCAN sensorimotor”. “CRIC checkerboard” scans were
acquired with an interleave acquisition starting with the second
axial slice from the bottom (followed with fourth slice, etc.), while
“CamCAN sensorimotor” scans were acquired with a descending
acquisition with the most upper axial slice being scanned first. We
considered only the true designs. For the two datasets and for the
four pre-whitening methods, slice timing correction changed the
power spectra of the GLM residuals in a very limited way (Sup-
plementary Fig. 5). Regardless of whether slice timing correction
was performed or not, pre-whitening approaches from FSL and
SPM left substantial positive autocorrelated noise at low fre-
quencies, while FAST led to even more flat power spectra than
AFNI. We also investigated the average percentage of significant
voxels (Supplementary Table 1). Slice timing correction changed
the amount of significant activation only negligibly, with the
exception of AFNI’s pre-whitening in the “CamCAN sensor-
imotor” scans. In the latter case, the apparent sensitivity increase
(from 7.64 to 13.45% of the brain covered by significant clusters)
was accompanied by power spectra of the GLM residuals falling
below 1 for the highest frequencies. This suggests negative
autocorrelations were introduced at these frequencies, which
could have led to statistic values being on average above their
nominal values.

Group studies. To investigate the impact of pre-whitening on the
group level, we performed via SPM summary statistic analyses,
and via AFNI’s 3dMEMA8 we performed mixed effects analyses.
To be consistent with a previous study on group analyses20, we
considered one-sample t-test with sample size 20. For each
dataset, we considered the first 20 subjects. We exported coeffi-
cient maps and t-statistic maps (from which standard errors can
be derived) following 8 mm spatial smoothing and pre-whitening
from AFNI, FSL, SPM, and FAST. Both for the summary statistic
analyses and for the mixed effects analyses, we employed cluster
inference with cluster defining threshold of 0.001 and significance
level of 5%. Altogether, we performed 1312 group analyses: 2 (for
summary statistic/mixed) × 4 (for pre-whitening) × (10 × 16+ 4)
(for the first 10 datasets tested with 16 boxcar designs each and
for the eleventh dataset tested with four designs). We found
significant activation for 236 analyses, which we listed in Sup-
plementary Data.

For each combination of group analysis model and pre-
whitening (2 × 4), we ran 164 analyses. As five datasets were task
datasets, 159 analyses ran on null data. Supplementary Table 2
shows FWER for the summary statistic and mixed effects null
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data analyses, and for the four pre-whitening approaches. On
average, FWER for the mixed effects analyses was almost twice
higher than FWER for the summary statistic analyses. The use of
AFNI’s pre-whitening led to highest FWER, while FAST led to
lower FWER than the SPM’s default approach.

Figure 3 shows the percentage of significant voxels for four task
datasets with assumed true designs. Results for the “CRIC
checkerboard” dataset are not shown, as no significant clusters
were found at the group level. This occurred due to several of the
subjects having deformed brains, which led to the group brain
mask not covering the primary visual cortex. For the “BMMR
checkerboard” dataset, the brain mask was limited mainly to the
occipital lobe and the percentage relates to the field of view that
was used. Both for the summary statistic analyses and for the
mixed effects analyses, we observed little effect of pre-whitening.
For task data tested with true designs, we found only negligible
differences between the summary statistic analyses and the mixed
effects analyses.

Noteworthily, for the event-related task dataset “CamCAN
sensorimotor” tested with the true design, the use of FAST led to
slightly higher amount of significant activation compared to the
default SPM’s method, while FSL led to much higher amount of
significant activation. This means that for this event-related
design dataset, the sensitivity differences from the first-level
analyses propagated to the second level. This happened both for
the summary statistic model and for the mixed effects model.

Discussion
In the case of FSL and SPM for the datasets “FCP Beijing”, “FCP
Cambridge”, “CRIC RS”, and “CRIC checkerboard”, there was a
clear relationship between lower assumed design frequency and
an increased percentage of significant voxels. This relationship
exists when positive autocorrelation is not removed from the
data3. Autocorrelated processes show increasing variances at
lower frequencies. Thus, when the frequency of the assumed
design decreases, the mismatch between the true autocorrelated
residual variance and the incorrectly estimated white noise var-
iance grows. In this mismatch, the variance is underestimated,
which results in a larger number of false positives.

An interesting case was the checkerboard experiment con-
ducted with impaired consciousness patients, where FSL and SPM
found a higher percentage of significant voxels for the design with
the assumed lowest design frequency than for the true design. As
this subject population was unusual, one might suspect weaker or
inconsistent response to the stimulus. However, positive rates for
this experiment for the true design were all around 50%, sub-
stantially above other assumed designs.

Compared to FSL and SPM, the use of AFNI’s and FAST noise
models for task datasets resulted in larger differences between the

true design and the wrong designs in the first-level results. This
occurred because of more accurate autocorrelation modeling in
AFNI and in FAST. In our analyses, FSL and SPM left a sub-
stantial part of the autocorrelated noise in the data and the sta-
tistics were biased. For none of the pre-whitening approaches
were the positive rates around 5%, which was the significance
level used in the cluster inference. This is likely due to imperfect
cluster inference in FSL. High familywise error rates in first-level
FSL analyses were already reported21. In our study the familywise
error rate following the use of AFNI’s and FAST noise models
was consistently lower than the familywise error rate following
the use of FSL’s and SPM’s noise models. Opposed to the average
percentage of significant voxels, high familywise error rate
directly points to problems in the modeling of many subjects.

The highly significant responses for the Nathan Kline Institute
(NKI) datasets are in line with previous findings15, where it was
shown that for fMRI scans with short TR it is more likely to
detect significant activation. The NKI scans that we considered
had TR of 0.645 and 1.4 s, in both cases much shorter than the
usual TRs. Such short TRs are now possible due to multiband
sequences22. The shorter the TR the higher the correlations
between adjacent time points3. If positive autocorrelation in the
data is higher than the estimated level, then false positive rates
will increase. The former study15 only referred to SPM. In
addition to the previous study, we observed that the familywise
error rate for short TRs was substantially lower in FSL than in
SPM, though still much higher than for resting state scans at TR
= 2 s (“FCP Beijing” and “CRIC RS”). FSL models autocorrelation
more flexibly than SPM, which seems to be confirmed by our
study. For short TRs, AFNI’s performance deteriorated too, as
autocorrelation spans much more than one TR and an ARMA
(1,1) noise model can only partially capture it.

Apart from the different TRs, we analyzed the impact of spatial
smoothing. If more smoothing is applied, the signal from gray
matter will be often mixed with the signal from white matter. As
autocorrelation in white matter is lower than in gray matter4,
autocorrelation in a primarily gray matter voxel will likely
decrease following stronger smoothing. The observed relation-
ships of the percentage of significant voxels and of the positive
rate from the smoothing level can be surprising, as random field
theory is believed to account for different levels of data
smoothness. The relationship for the positive rate (familywise
error rate) was already known15,21. The impact of smoothing and
spatial resolution was investigated in a number of previous stu-
dies23–25. We considered smoothing only as a confounder.
Importantly, for all four levels of smoothing, AFNI and FAST
outperformed FSL and SPM.

Our results confirm Lenoski et al.14, insofar as our study also
showed problems with SPM’s default pre-whitening. Interestingly,
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Fig. 3 Group results for four task datasets with assumed true designs. Summary statistic analyses and mixed effects analyses led to only negligibly different
percentages of significant voxels
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Eklund et al.21 already compared AFNI, FSL, and SPM in the
context of first-level fMRI analyses. AFNI resulted in substantially
lower false positive rates than FSL and slightly lower false positive
rates than SPM. We also observed lowest false positive rates for
AFNI. Opposed to that study21, which compared the packages in
their entirety, we compared the packages only with regard to pre-
whitening. It is possible that pre-whitening is the most crucial
single difference between AFNI, FSL, and SPM, and that the
relationships described by Eklund et al.21 would look completely
different if AFNI, FSL, and SPM employed the same pre-
whitening. For one dataset, Eklund et al.21 also observed that SPM
led to worst whitening performance.

The differences in first-level results between AFNI, FSL, and
SPM, which we found could have been smaller if physiological
recordings had been modeled. The modeling of physiological
noise is known to improve whitening performance, particularly
for short TRs2,12,13. Unfortunately, cardiac and respiratory signals
are not always acquired in fMRI studies. Even less often are the
physiological recordings incorporated to the analysis pipeline.
Interestingly, a recent report suggested that the FSL’s tool ICA
FIX applied to task data can successfully remove most of the
physiological noise26. This was shown to lower the familywise
error rate at the group level compared to previous findings20.
Such an approach corresponds to more accurate pre-whitening.
However, in our analyses the different pre-whitening methods
affected the group level analyses only in a very negligible way.
While Eklund et al.20 found that group-level analyses are strongly
confounded by spatial autocorrelation modeling, we found that
single subject analyses were strongly confounded by the pre-
whitening accuracy.

In our main analysis pipeline we did not perform slice timing
correction. For two datasets, we additionally considered slice
timing correction and observed very similar first-level results
compared to the case without slice timing correction. The
observed little effect of slice timing correction is likely a result of
the temporal derivative being modeled within the GLM frame-
work. This way a large part of the slice timing variation might
have been captured without specifying the exact slice timing. For
the only case where slice timing correction led to noticeably
higher amount of significant activation, we observed negative
autocorrelations at high frequencies in the GLM residuals. If
one did not see the power spectra of the GLM residuals, slice
timing correction in this case could be thought to directly
increase sensitivity, while in fact pre-whitening confounded the
comparison.

FSL is the only package with a benchmarking paper of its pre-
whitening approach9. The study employed data corresponding to
two fMRI protocols. For one protocol TR was 1.5 s, while for the
other protocol TR was 3 s. For both protocols, the voxel size was
4 × 4 × 7 mm3. These were large voxels. We suspect that the FSL’s
pre-whitening approach could have been overfitted to this data.
Regarding SPM, pre-whitening with simple global noise models
was found to result in profound bias in at least two previous
studies14,27. SPM’s default is a simple global noise model. How-
ever, SPM’s problems could be partially related to the estimation
procedure. First, the estimation is approximative as it uses a
Taylor expansion10. Second, the estimation is based on a subset of
the voxels. Only voxels with p < 0.001 following inference with no
pre-whitening are selected. This means that the estimation
strongly depends both on the TR and on the experimental
design3.

If the second-level analysis is performed with a summary sta-
tistic model, the standard error maps are not used. Thus, standard
models like the summary statistic approach in SPM should not be
affected by imperfect pre-whitening28. On the other hand, resi-
dual positive autocorrelated noise decreases the signal differences

between the activation blocks and the rest blocks. This is relevant
for event-related designs. Bias from confounded coefficient maps
can be expected to propagate to the group level. We showed that
pre-whitening indeed confounds group analyses performed with a
summary statistic model. However, more relevant is the case of
mixed effects analyses, for example when using 3dMEMA in
AFNI8 or FLAME in FSL29. These approaches additionally
employ standard error maps, which are directly confounded by
imperfect pre-whitening. Bias in mixed effects fMRI analyses
resulting from non-white noise at the first level was already
reported30. Surprisingly, we did not observe pre-whitening-
induced specificity problems for analyses using 3dMEMA,
including for very short TRs. Importantly, this means that
imperfect pre-whitening does not meaningfully affect group
results when using 3dMEMA. It indicates that the between-
subject variability in the considered datasets was negligible
compared to the within-subject variability, and that 3dMEMA
operates on the ratio of the within-subject variability to the
between-subject variability rather than on the absolute variability
values.

For task datasets tested with true designs, the results from
summary statistic analyses differed very little compared to
3dMEMA results. FLAME was also shown to have similar sensi-
tivity compared to summary statistic analyses31. However, mixed
effects models should be more optimal than summary statistic
models as they employ more information. Although group ana-
lysis modeling in task fMRI studies needs to be investigated fur-
ther, it is beyond the scope of this paper. As mixed effects models
employ standard error maps, bias in them should be avoided.

Problematically, for resting state data treated as task data, it is
possible to observe activation both in the posterior cingulate
cortex and in the frontal cortex, since these regions belong to the
default mode network32. In fact, in Supplementary Fig. 18 in
Eklund et al.20 the spatial distribution plots of significant clusters
indicate that the significant clusters appeared mainly in the
posterior cingulate cortex, even though the assumed design for
that analysis was a randomized event-related design. The rest
activity in these regions can occur at different frequencies and can
underlie different patterns33. Thus, resting state data are not
perfect null data for task fMRI analyses, especially if one uses an
approach where a subject with one small cluster in the posterior
cingulate cortex enters an analysis with the same weight as a
subject with a number of large clusters spread throughout the
entire brain. Task fMRI data are not perfect null data either, as an
assumed wrong design might be confounded by the underlying
true design. For simulated data, a consensus is needed how to
model autocorrelation, spatial dependencies, physiological noise,
scanner-dependent low-frequency drifts, and head motion. Some
of the current simulation toolboxes34 enable the modeling of all
these aspects of fMRI data, but as the later analyses might heavily
depend on the specific choice of parameters, more work is needed
to understand how the different sources of noise influence each
other. In our study, results for simulated resting state data were
substantially different compared to acquired real resting state
scans. In particular, the percentage of significant voxels for the
simulated data was much lower, indicating that the simulated
data did not appropriately correspond to the underlying brain
physiology. Considering resting state data where the posterior
cingulate cortex and the frontal cortex are masked out could be
an alternative null. Because there is no perfect fMRI null data, we
used both resting state data with assumed dummy designs and
task data with assumed wrong designs. Results for both approa-
ches coincided.

Unfortunately, although the vast majority of task fMRI analyses
is conducted with linear regression, the popular analysis packages
do not provide diagnostic plots. For old versions of SPM, the
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external toolbox SPMd generated them35. It provided a lot of
information, which paradoxically could have limited its popular-
ity. We believe that task fMRI analyses would strongly benefit if
AFNI, FSL, and SPM provided some basic diagnostic plots. This
way the investigator would be aware, for example, of residual
autocorrelated noise in the GLM residuals. We provide a simple
MATLAB tool (GitHub: plot_power_spectra_of_GLM_residuals.
m) for the fMRI researchers to check if their analyses might be
affected by imperfect pre-whitening.

To conclude, we showed that AFNI and SPM tested with
option FAST had the best whitening performance, followed by
FSL and SPM. Pre-whitening in FSL and SPM left substantial
residual autocorrelated noise in the data, primarily at low fre-
quencies. Though the problems were most severe for short TRs,
different fMRI protocols were affected. We showed that the
residual autocorrelated noise led to heavily confounded first level
results. Low-frequency boxcar designs were affected the most.
Due to better whitening performance, it was much easier to
distinguish the assumed true experimental design from the
assumed wrong experimental designs with AFNI and FAST than
with FSL and SPM. This suggests superior specificity-sensitivity
trade-off resulting from the use of AFNI’s and FAST noise
models. False negatives can occur when the design is event-
related and there is residual positive autocorrelated noise at high
frequencies. In our analyses, such false negatives propagated to
the group level both when using a summary statistic model and a
mixed effects model, although only to a small extent. Surprisingly,
pre-whitening-induced false positives did not propagate to the
group level when using the mixed effects model 3dMEMA. Our
results suggest that 3dMEMA makes very little use of the stan-
dard error maps and does not differ much from the SPM’s
summary statistic model.

Results derived from FSL could be made more robust if a
different autocorrelation model was applied. However, currently,
there is no alternative pre-whitening approach in FSL. For SPM,
our findings support more widespread use of the FAST method.

Methods
Data. In order to explore a range of parameters that may affect autocorrelation, we
investigated 11 fMRI datasets (Table 1). These included resting state and task
studies, healthy subjects and a patient population, different TRs, magnetic field
strengths, and voxel sizes. We also used anatomical MRI scans, as they were needed
for the registration of brains to the MNI atlas space. Functional Connectomes
Project (FCP)36, NKI37, and CamCAN data38 are publicly shared anonymized data.
Data collection at the respective sites was subject to their local institutional review
boards (IRBs), who approved the experiments and the dissemination of the
anonymized data. For the 1000 FCP, collection of the Beijing data was approved by
the IRB of State Key Laboratory for Cognitive Neuroscience and Learning, Beijing
Normal University; collection of the Cambridge data was approved by the

Massachusetts General Hospital partners' IRB. For the Enhanced NKI Rockland
Sample, collection and dissemination of the data were approved by the NYU
School of Medicine IRB. For the analysis of an event-related design dataset, we used
the CamCAN dataset (Cambridge Centre for Ageing and Neuroscience, www.cam-
can.org). Ethical approval for the study was obtained from the Cambridgeshire 2
(now East of England - Cambridge Central) Research Ethics Committee. The study
from Magdeburg, “BMMR checkerboard”39, was approved by the IRB of the Otto
von Guericke University. The study of CRIC was approved by the Cambridge Local
Research Ethics Committee (99/391). In all studies all subjects or their consultees
gave informed written consent after the experimental procedures were explained.
One rest dataset consisted of simulated data generated with the neuRosim package
in R40. Simulation details can be found in Supplementary Information.

Analysis pipeline. For AFNI, FSL, and SPM analyses, the preprocessing, brain
masks, brain registrations to the 2 mm isotropic MNI atlas space, and multiple
comparison corrections were kept consistent (Fig. 4). This way we limited the
influence of possible confounders on the results. In order to investigate whether
our results are an artifact of the comparison approach used for assessment, we
compared AFNI, FSL, and SPM by investigating (1) the power spectra of the GLM
residuals, (2) the spatial distribution of significant clusters, (3) the average per-
centage of significant voxels within the brain mask, and (4) the positive rate:
proportion of subjects with at least one significant cluster. The power spectrum
represents the variance of a signal that is attributable to an oscillation of a given
frequency. When calculating the power spectra of the GLM residuals, we con-
sidered voxels in native space using the same brain mask for AFNI, FSL, and SPM.
For each voxel, we normalized the time series to have variance 1 and calculated the
power spectra as the square of the discrete Fourier transform. Without variance
normalization, different signal scaling across voxels and subjects would make it
difficult to interpret power spectra averaged across voxels and subjects.

Apart from assuming dummy designs for resting state data as in recent
studies15,21,20, we also assumed wrong (dummy) designs for task data, and we used
resting state scans simulated using the neuRosim package in R40. We treated such
data as null data. For null data, the positive rate is the familywise error rate, which
was investigated in a number of recent studies15,21,20. We use the term “significant
voxel” to denote a voxel that is covered by one of the clusters returned by the
multiple comparison correction.

All the processing scripts needed to fully replicate our study are at https://
github.com/wiktorolszowy/fMRI_temporal_autocorrelation. We used AFNI
16.2.02, FSL 5.0.10, and SPM 12 (v7219).

Preprocessing. Slice timing correction was not performed as part of our main
analysis pipeline, since for some datasets the slice timing information was not
available. In each of the three packages we performed motion correction, which
resulted in six parameters that we considered as confounders in the consecutive
statistical analysis. As the 7T scans from the “BMMR checkerboard” dataset were
prospectively motion corrected41, we did not perform motion correction on them.
The “BMMR checkerboard” scans were also prospectively distortion corrected42.
For all the datasets, in each of the three packages we conducted high-pass filtering
with frequency cutoff of 1/100 Hz. We performed registration to MNI space only
within FSL. For AFNI and SPM, the results of the multiple comparison correction
were registered to MNI space using transformations generated by FSL. First,
anatomical scans were brain extracted with FSL’s brain extraction tool43. Then,
FSL’s boundary-based registration was used for registration of the fMRI volumes to
the anatomical scans. The anatomical scans were aligned to 2 mm isotropic MNI
space using affine registration with 12 degrees of freedom. The two transformations
were then combined for each subject and saved for later use in all analyses,

Table 1 Overview of the employed datasets

Study Experiment Place Design No. subjects Field [T] TR [s] Voxel size [mm] No. voxels Time points

FCP Resting state Beijing N/A 198 3 2 3.1 × 3.1 × 3.6 64 × 64 × 33 225
Resting state Cambridge, US N/A 198 3 3 3 × 3 × 3 72 × 72 × 47 119

NKI Resting state Orangeburg, US N/A 30 3 1.4 2 × 2 × 2 112 × 112 × 64 404
Resting state Orangeburg, US N/A 30 3 0.645 3 × 3 × 3 74 × 74 × 40 900

CRIC Resting state Cambridge, UK N/A 73 3 2 3 × 3 × 3.8 64 × 64 × 32 300
neuRosim Resting state (Simulated) N/A 100 NA 2 3.1 × 3.1 × 3.6 64 × 64 × 33 225
NKI Checkerboard Orangeburg, US 20 s off+ 20 s on 30 3 1.4 2 × 2 × 2 112 × 112 × 64 98

Checkerboard Orangeburg, US 20 s off+ 20 s on 30 3 0.645 3 × 3 × 3 74 × 74 × 40 240
BMMR Checkerboard Magdeburg 12 s off+ 12 s on 21 7 3 1 × 1 × 1 182 × 140 × 45 80
CRIC Checkerboard Cambridge, UK 16 s off+ 16 s on 70 3 2 3 × 3 × 3.8 64 × 64 × 32 160
CamCAN Sensorimotor Cambridge, UK Event-related 200 3 1.97 3 × 3 × 4.44 64 × 64 × 32 261

For the enhanced NKI data, only scans from release 3 were used. Out of the 46 subjects in release 3, scans of 30 subjects were taken. For the rest, at least 1 scan was missing. For the BMMR data, there
were 7 subjects at 3 sessions, resulting in 21 scans. For the CamCAN data, 200 subjects were considered only
FCP Functional Connectomes Project, NKI Nathan Kline Institute, BMMR Biomedical Magnetic Resonance, CRIC Cambridge Research into Impaired Consciousness, CamCAN Cambridge Centre for Ageing
and Neuroscience
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including in those started in AFNI and SPM. Gaussian spatial smoothing was
performed in each of the packages separately.

Statistical analysis. For analyses in each package, we used the canonical hemo-
dynamic response function (HRF) model, also known as the double gamma model.
It is implemented the same way in AFNI, FSL, and SPM: the response peak is set at
5 s after stimulus onset, while the post-stimulus undershoot is set at around 15 s
after onset. This function was combined with each of the assumed designs using the
convolution function. To account for possible response delays and different slice
acquisition times, we used in the three packages the first derivative of the double
gamma model, also known as the temporal derivative. We did not incorporate
physiological recordings to the analysis pipeline, as these were not available for
most of the datasets used.

We estimated the statistical maps in each package separately. AFNI, FSL,
and SPM use restricted maximum likelihood (ReML), where autocorrelation is
estimated given the residuals from an initial OLS model estimation. The ReML
procedure then pre-whitens both the data and the design matrix, and estimates the
model. We continued the analysis with the statistic maps corresponding to the t-
test with null hypothesis being that the full regression model without the
canonical HRF explains as much variance as the full regression model with

the canonical HRF. All three packages produced brain masks. The statistic
maps in FSL and SPM were produced within the brain mask only, while in
AFNI the statistic maps were produced for the entire volume. We masked the
statistic maps from AFNI, FSL, and SPM using the intersected brain masks
from FSL and SPM. We did not confine the analyses to a gray matter mask,
because autocorrelation is at strongest in gray matter4. In other words, false
positives caused by imperfect pre-whitening can be expected to occur mainly
in gray matter. By default, AFNI and SPM produced t-statistic maps, while
FSL produced both t- and z-statistic maps. In order to transform the t-statistic
maps to z-statistic maps, we extracted the degrees of freedom from each analysis
output.

Next, we performed multiple comparison correction in FSL for all the analyses,
including for those started in AFNI and SPM. First, we estimated the smoothness
of the brain-masked four-dimensional residual maps using the smoothest function
in FSL. Knowing the DLH parameter, which describes image roughness, and the
number of voxels within the brain mask (VOLUME), we then ran the cluster
function in FSL on the z-statistic maps using a cluster defining threshold of 3.09
and significance level of 5%. This is the default multiple comparison correction in
FSL and it refers to one-sided testing. Finally, we applied previously saved MNI
transformations to the binary maps which were showing the location of the
significant clusters.
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Fig. 4 The employed analyses pipelines. For SPM, we investigated both the default noise model and the alternative noise model: FAST. The noise models
used by AFNI, FSL, and SPM were the only relevant difference (marked in a red box)
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Code availability
All the processing scripts needed to fully replicate our study are at https://github.com/
wiktorolszowy/fMRI_temporal_autocorrelation.

Data availability
FCP36, NKI37, and CamCAN data38 are publicly shared anonymized data. CRIC and
BMMR scans can be obtained from us upon request. The simulated data can be
generated again using our GitHub script simulate_4D.R.

Received: 24 May 2018 Accepted: 25 February 2019

References
1. Bullmore, E. et al. Statistical methods of estimation and inference for

functional MR image analysis. Magn. Reson. Med. 35, 261–277 (1996).
2. Lund, T. E., Madsen, K. H., Sidaros, K., Luo, W.-L. & Nichols, T. E. Non-white

noise in fMRI: does modelling have an impact? Neuroimage 29, 54–66
(2006).

3. Purdon, P. L. & Weisskoff, R. M. Effect of temporal autocorrelation due to
physiological noise and stimulus paradigm on voxel-level false-positive rates
in fMRI. Hum. Brain Mapp. 6, 239–249 (1998).

4. Worsley, K. J. et al. A general statistical analysis for fMRI data. Neuroimage 15,
1–15 (2002).

5. Cox, R. W. AFNI: software for analysis and visualization of functional
magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173
(1996).

6. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S.
M. FSL. Neuroimage 62, 782–790 (2012).

7. Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. & Nichols, T. E.
Statistical Parametric Mapping: the Analysis of Functional Brain Images
(Academic Press, Cambridge 2011).

8. Chen, G., Saad, Z. S., Nath, A. R., Beauchamp, M. S. & Cox, R. W. FMRI group
analysis combining effect estimates and their variances. Neuroimage 60,
747–765 (2012).

9. Woolrich, M. W., Ripley, B. D., Brady, M. & Smith, S. M. Temporal
autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14,
1370–1386 (2001).

10. Friston, K. J. et al. Classical and Bayesian inference in neuroimaging:
applications. Neuroimage 16, 484–512 (2002).

11. Todd, N. et al. Evaluation of 2D multiband EPI imaging for high-resolution,
whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage
artifacts. Neuroimage 124, 32–42 (2016).

12. Bollmann, S., Puckett, A. M., Cunnington, R. & Barth, M. Serial correlations in
single-subject fMRI with sub-second TR. Neuroimage 166, 152–166
(2018).

13. Corbin, N., Todd, N., Friston, K. J. & Callaghan, M. F. Accurate modeling of
temporal correlations in rapidly sampled fMRI time series. Hum. Brain Mapp.
39, 3884–3897 (2018).

14. Lenoski, B., Baxter, L. C., Karam, L. J., Maisog, J. & Debbins, J. On the
performance of autocorrelation estimation algorithms for fMRI analysis. IEEE
J. Sel. Top. Signal Process. 2, 828–838 (2008).

15. Eklund, A., Andersson, M., Josephson, C., Johannesson, M. & Knutsson, H.
Does parametric fMRI analysis with SPM yield valid results?—An empirical
study of 1484 rest datasets. Neuroimage 61, 565–578 (2012).

16. Walter, M., Stadler, J., Tempelmann, C., Speck, O. & Northoff, G. High
resolution fMRI of subcortical regions during visual erotic stimulation at 7 T.
Magn. Reson. Mater. Phys., Biol. Med. 21, 103–111 (2008).

17. Polimeni, J. R., Renvall, V., Zaretskaya, N. & Fischl, B. Analysis strategies for
high-resolution UHF-fMRI data. Neuroimage 168, 296–320 (2017).

18. Buračas, G. T. & Boynton, G. M. Efficient design of event-related fMRI
experiments using M-sequences. Neuroimage 16, 801–813 (2002).

19. Sladky, R. et al. Slice-timing effects and their correction in functional MRI.
Neuroimage 58, 588–594 (2011).

20. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences
for spatial extent have inflated false-positive rates. Proc. Natl Acad. Sci. USA
113, 7900–7905 (2016).

21. Eklund, A., Nichols, T., Andersson, M. & Knutsson, H. Empirically
investigating the statistical validity of SPM, FSL and AFNI for single subject
fMRI analysis. In Biomedical Imaging (ISBI), 2015 IEEE 12th International
Symposium on, 1376–1380 (IEEE, 2015).

22. Larkman, D. J. et al. Use of multicoil arrays for separation of signal from
multiple slices simultaneously excited. J. Magn. Reson. Imaging 13, 313–317
(2001).

23. Geissler, A. et al. Influence of fMRI smoothing procedures on replicability of
fine scale motor localization. Neuroimage 24, 323–331 (2005).

24. Weibull, A., Gustavsson, H., Mattsson, S. & Svensson, J. Investigation of
spatial resolution, partial volume effects and smoothing in functional MRI
using artificial 3D time series. Neuroimage 41, 346–353 (2008).

25. Mueller, K., Lepsien, J., Möller, H. E. & Lohmann, G. Commentary: cluster
failure: why fMRI inferences for spatial extent have inflated false-positive
rates. Front. Hum. Neurosci. 11, 345 (2017).

26. Eklund, A., Knutsson, H. & Nichols, T. E. Cluster failure revisited: impact of
first level design and physiological noise on cluster false positive rates. Hum.
Brain Mapp. 1–16 (2018).

27. Friston, K. et al. To smooth or not to smooth?: bias and efficiency in fMRI
time-series analysis. Neuroimage 12, 196–208 (2000).

28. Friston, K. J., Stephan, K. E., Lund, T. E., Morcom, A. & Kiebel, S. Mixed-
effects and fMRI studies. Neuroimage 24, 244–252 (2005).

29. Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M. & Smith, S. M.
Multilevel linear modelling for FMRI group analysis using Bayesian inference.
Neuroimage 21, 1732–1747 (2004).

30. Bianciardi, M., Cerasa, A., Patria, F. & Hagberg, G. Evaluation of mixed effects
in event-related fMRI studies: impact of first-level design and filtering.
Neuroimage 22, 1351–1370 (2004).

31. Mumford, J. A. & Nichols, T. Simple group fMRI modeling and inference.
Neuroimage 47, 1469–1475 (2009).

32. Raichle, M. E. et al. A default mode of brain function. Proc. Natl. Acad. Sci.
USA 98, 676–682 (2001).

33. Stark, C. E. & Squire, L. R. When zero is not zero: the problem of ambiguous
baseline conditions in fMRI. Proc. Natl Acad. Sci. USA 98, 12760–12766
(2001).

34. Welvaert, M. & Rosseel, Y. A review of fMRI simulation studies. PLoS ONE 9,
e101953 (2014).

35. Luo, W.-L. & Nichols, T. E. Diagnosis and exploration of massively univariate
neuroimaging models. Neuroimage 19, 1014–1032 (2003).

36. Biswal, B. B. et al. Toward discovery science of human brain function. Proc.
Natl Acad. Sci. USA 107, 4734–4739 (2010).

37. Nooner, K. B. et al. The NKI-Rockland sample: a model for accelerating the
pace of discovery science in psychiatry. Front. Neurosci. 6, 1–11 (2012).

38. Shafto, M. A. et al. The Cambridge Centre for Ageing and Neuroscience
(Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary
examination of healthy cognitive ageing. BMC Neurol. 14, 204 (2014).

39. Hamid, A. I. A., Speck, O. & Hoffmann, M. B. Quantitative assessment of
visual cortex function with fMRI at 7 Tesla-test-retest variability. Front. Hum.
Neurosci. 9, 1–11 (2015).

40. Welvaert, M., Durnez, J., Moerkerke, B., Verdoolaege, G. & Rosseel, Y.
neuRosim: an R package for generating fMRI data. J. Stat. Softw. 44, 1–18
(2011).

41. Thesen, S., Heid, O., Mueller, E. & Schad, L. R. Prospective acquisition
correction for head motion with image-based tracking for real-time fMRI.
Magn. Reson. Med. 44, 457–465 (2000).

42. In, M.-H. & Speck, O. Highly accelerated PSF-mapping for EPI distortion
correction with improved fidelity. Magn. Reson. Mater. Phys. Biol. Med. 25,
183–192 (2012).

43. Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17,
143–155 (2002).

Acknowledgements
We would like to thank Michał Kosicki, Paul Browne, Anders Eklund, Thomas Nichols,
Karl Friston, Richard Reynolds, Carsten Allefeld, Paola Finoia, Adrian Carpenter, Alison
Sleigh, Gang Chen, and Guillaume Flandin for much valuable advice. Furthermore, we
would like to thank the James S. McDonnell Foundation for funding the image acqui-
sitions of the Cambridge Research into Impaired Consciousness (CRIC) group, and the
CRIC group for sharing their data. Oliver Speck, Michael Hoffmann, and Aini Ismafairus
Abd Hamid from the Otto von Guericke University provided us with the 7T data. We
also thank the Neuroimaging Informatics Tools and Resources Clearinghouse and all of
the researchers who have contributed with data to the 1000 Functional Connectomes
Project and to the Enhanced Nathan Kline Institute - Rockland Sample. The informatics
platform used for our data analyses was funded under an MRC research infrastructure
award (MR/M009041/1). G.B.W. and J.A. acknowledge support from the EPSRC Centre
for Mathematics in Healthcare (EP/N014588/1). W.O. was in receipt of scholarships
from the Cambridge Trust and from the Mateusz B. Grabowski Fund. Also, W.O. was
supported by the Guarantors of Brain.

Author contributions
W.O., J.A. and G.B.W. designed the study; W.O. conducted the study; W.O., J.A., C.R.
and G.B.W. analyzed the data; W.O. wrote the paper.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09230-w

10 NATURE COMMUNICATIONS |         (2019) 10:1220 | https://doi.org/10.1038/s41467-019-09230-w |www.nature.com/naturecommunications

https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation
https://github.com/wiktorolszowy/fMRI_temporal_autocorrelation
www.nature.com/naturecommunications


Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09230-w.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous
reviewers for their contribution to the peer review of this work. Peer reviewer reports are
available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09230-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1220 | https://doi.org/10.1038/s41467-019-09230-w |www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-019-09230-w
https://doi.org/10.1038/s41467-019-09230-w
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Accurate autocorrelation modeling substantially improves fMRI reliability
	Results
	Whitening performance of AFNI, FSL, and SPM
	Resulting specificity-sensitivity trade-offs
	Additional comparison approaches
	Event-related design studies
	Slice timing correction
	Group studies

	Discussion
	Methods
	Data
	Analysis pipeline
	Preprocessing
	Statistical analysis

	References
	References
	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	ACKNOWLEDGEMENTS




