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Cryo-EM structure of cardiac amyloid fibrils from
an immunoglobulin light chain AL amyloidosis
patient
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Martina Maritan1, Francesca Brambilla6, Paolo Milani3, Pierluigi Mauri 6, Carlo Camilloni 1,

Giovanni Palladini3, Giampaolo Merlini3, Stefano Ricagno 1 & Martino Bolognesi 1,2

Systemic light chain amyloidosis (AL) is a life-threatening disease caused by aggregation and

deposition of monoclonal immunoglobulin light chains (LC) in target organs. Severity of heart

involvement is the most important factor determining prognosis. Here, we report the 4.0 Å

resolution cryo-electron microscopy map and molecular model of amyloid fibrils extracted

from the heart of an AL amyloidosis patient with severe amyloid cardiomyopathy. The helical

fibrils are composed of a single protofilament, showing typical 4.9 Å stacking and cross-β
architecture. Two distinct polypeptide stretches (total of 77 residues) from the LC variable

domain (Vl) fit the fibril density. Despite Vl high sequence variability, residues stabilizing the

fibril core are conserved through different cardiotoxic Vl, highlighting structural motifs that

may be common to misfolding-prone LCs. Our data shed light on the architecture of LC

amyloids, correlate amino acid sequences with fibril assembly, providing the grounds for

development of innovative medicines.
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Light chain amyloidosis (AL), with an incidence of about 10
new cases per million-persons/year, is currently the most
common systemic form of amyloidosis in Western coun-

tries1. The disease is associated with the presence of a plasma cell
clone, and is caused by extracellular deposition of misfolding-
prone monoclonal immunoglobulin light chains (LC), trans-
ported to target organs through blood. Deposition of amyloid
fibrils is associated with dysfunction of affected organs. The
amino acid sequence of each patient’s monoclonal LC is virtually
unique, as a consequence of immunoglobulin germline genes
rearrangement and somatic hypermutation. Fibril deposition in
AL is widespread, and can target different organs; heart invol-
vement dramatically worsens patients’ prognosis2–4. Much
research is currently being devoted to defining the molecular
bases of amyloid cardiomyopathy5–7, to hinder fibrillogenesis8

and cell damage5,9,10.
LC subunits (ca. 215 residues) consist of two β-sandwich

domains, each hosting a disulfide bridge: the highly variable N-
terminal domain (Vl, ca. 105 residues), a short joining region (Jl),
and the C-terminal constant domain (Cl)6,11. Both full-length LCs
and isolated Vl domains are typical components of the deposited
fibrils;12,13 nonetheless, the mechanisms promoting aggregation
in vivo remain unclear. Progress in understanding LC aggregation
is hampered by lack of structural insight on AL fibrils, only low-
resolution characterization of LC fibrils being available to
date14,15.

Cryo-EM is currently the first-choice method for the structural
analysis of amyloids16–20. Notably, in the few studies reported to
date, the protein hosted within the fibril was shown to adopt
composite folds, compatible with, but not fully predictable from,
fibril models based on short peptides21. Moreover, whether
samples prepared in vitro or in model systems truly represent the
fibril structures accumulated in patients remains an open ques-
tion. Recent structural work on Tau protein fibrils well demon-
strated that the same polypeptide chain can assume different folds
within the fibrils16,17, and that in vitro grown fibrils may not
recapitulate the structural features observed in patient deposits22.
One further question concerns systemic amyloidosis, where the
involved amyloidogenic proteins are typically natively folded
under physiologic conditions. It is in fact unclear whether
natively folded proteins need to unfold completely before re-
assembly into cross-β structure, but also whether the native and
fibril folds should bear any structural resemblance. Thus, it can be
argued that structures of fibrils grown under denaturing condi-
tions, and perhaps in animal models, may not completely address
features present in patients’ amyloids20,23.

The above considerations prompted us to focus our studies on
the characterization of patient-derived amyloid fibrils. Here we
present the cryo-EM structure, at 4.0 Å overall resolution, of
ex vivo LC fibrils extracted from the heart of a patient affected by
severe AL cardiac amyloidosis. We show that the ex vivo fibrils
are composed of an asymmetric protofilament hosting 77 residues
from the LC Vl domain, coupled to two low-order regions that
comprise about one-third of the Vl domain and portions of the Cl

domain. Consideration of proteolytic patterns, fibril structural
motifs, and of amino acid sequences suggests mechanisms for
aggregation and fibril elongation in AL amyloidosis.

Results and Discussion
Characterization of amyloid deposits in AL amyloidosis. In
order to explore the structural organization of natural amyloid
fibrils, we extracted and characterized ex vivo amyloid aggregates
from the affected heart tissue. Specifically, fibrils were isolated
from left ventricle specimens acquired during autopsy from a
male patient affected by AL λ amyloidosis, with severe amyloid

cardiomyopathy. Microscopic analysis of cardiac tissue showed
extensive extracellular amyloid accumulation (Fig. 1a, b). The
monoclonal amyloidogenic LC responsible for such deposits,
labeled AL55, was sequenced from its coding mRNA from bone
marrow plasma cells; AL55 is of λ isotype and belongs to the
IGLV6-57 germline gene, which is overrepresented in the reper-
toire of amyloidogenic LCs, compared to the polyclonal
repertoire24,25.

The molecular composition of the isolated fibrils was analyzed
through a proteomic approach, based on two-dimensional
polyacrylamide gel electrophoresis (2D-PAGE) followed by
nano-liquid chromatography tandem mass spectrometry (nLC-
MS/MS) analysis of excised protein spots. In agreement with
previous observations12,13, AL55 fibrils are composed of a
heterogeneous population of LC proteoforms and N-terminal
LC fragments (Fig. 1c, Supplementary Figure 1). Besides species
corresponding to the intact AL55, as commonly observed in AL λ
deposits13, chain fragments whose molecular weight is lower than
the full-length LC are predominant in the fibrils; all host a
complete Vl domain and extend through regions of the Cl

domain. After tryptic digestion of the protein spots, our nLC-MS/
MS data allowed to identify AL55 fragments extending to residues
129, 134, or 150, i.e. to residues located at the distal ends of the
first or of the third β-strands in the Cl domain, respectively
(Supplementary Figure 1d–f). Low molecular weight fragments
are resistant to fibril limited proteolysis in vitro (Supplementary
Figure 1c); in contrast, degradation of the longer proteoforms is
observed, suggesting protection or burial of the Vl domain within
the assembled fibril.

Cryo-EM structure of the AL55 fibrils. Contrary to previous
reports14, our negative staining electron microscopy and cryo-EM
analyses of freshly extracted AL55 amyloid material revealed no
polymorphs (Fig. 1d, Supplementary Figure 2). AL55 fibrils dis-
play a helical pitch of 1070 ± 30 Å and 80–175 Å width range
(Supplementary Figure 2). Absence of two symmetric protofila-
ments is evident from inspection of the fibrils in raw micro-
graphs, and in images obtained by reference-free 2D classification
of segments comprising an entire helical pitch (Fig. 1d, Supple-
mentary Figure 2). 2D class averages of vitrified AL55 fibrils,
where β-strands are clearly resolved, suggest the presence of a
highly ordered core surrounded by low-order regions (Fig. 1e,
Supplementary Figure 2). Cryo-EM 3D reconstruction of AL55
fibrils resulted in a map at overall resolution of 4.0 Å, in which the
cross-β structure was clearly resolved (Fig. 2, Supplementary
Figure 3, Supplementary Table 2). Consistent with the 2D ana-
lyses, the AL55 density map showed a fibril core whose con-
secutive β-strand rungs are related by helical symmetry, with a
rise of 4.9 Å, a twist of approximately –1.6°, and two low-order
outer regions.

For each LC subunit deposited along the fibril axis, the inner
structured core is divided into two segments: the central part of
the density displays a “snail-shell” trace that is surrounded by a
second, “C-shaped”, extended polypeptide stretch (Fig. 2a). The
two regions are spatially contiguous but not directly connected by
interpretable density, indicating that two distinct LC segments
build the fibril core. Several bulky side-chains visible in the map,
together with the Cys22–Cys91 disulfide bridge, supported chain
tracing and modeling for 77 residues of AL55 Vl. As a result, the
first N-terminal 37 residues map into the internal snail-shell
region, while the outer C-shaped stretch hosts residues 66–105
(Fig. 2d). Individual LC subunits assemble with a parallel β-sheet
topology along the fibril elongation axis, i.e. along the inter-
subunit H-bonding direction. Each subunit presents nine β-
strands; β1–β5 belong to the snail-shell region, and β6–β9 pack
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around it in the C-shaped stretch (Fig. 2f). In particular, strands
β1, β3, β5, and β6 face each other and tightly pack their side
chains together, while β4, β7, and β9 form a second contact
region of lower side chain packing density.

As previously reported for other amyloid fibril structures16–18,20,26,
the β1–β5 modeled strands do not lay in a planar arrangement
within the fibril; rather, the snail-shell region adopts a β-helix-like
structure. In particular, the polypeptide chain of LC subunit i,
whose N-terminus rests on plane i, rises twice along the fibril axis,
at residues Pro14 (to i+1 level) and at Trp36 (to i+2 level). As a
result, and looking along the opposite fibril axis direction, the side
chains from subunit i strand β1 pack against the C-terminal
residues of subunit i−2 (Fig. 3a). On the contrary, the C-shaped
region (β6–β9) lays essentially in a plane; given that it is
covalently bound to the snail-shell region through the
Cys22–Cys91 disulfide bond, this segment in subunit i is located
at the i+1 level (Fig. 3a). Such overall assembly produces fibril
ends that are not flat. Thus, analogously to what has been
discussed for amyloid-β (Aβ1–42) fibrils18, the two fibril ends
present a groove and a ridge (Fig. 3b, c), both of which expose
highly hydrophobic patches (β1–β3 interface). Conceivably, the
edge β1-strand of a natively folded LC could be recruited through
interaction with the hydrophobic groove/ridge of a growing fibril,
promoting unfolding and association of a new subunit.

AL55 unfolding is an obligate step for amyloid formation.
Figure 4 compares a molecular model of the natively folded AL55
Vl, displaying the typical immunoglobulin β-sandwich domain,
with the fibril structure of AL55 Vl (Fig. 4a, c), and allows a few
general considerations. Native AL55 Vl displays a compact
domain composed of two antiparallel β-sheets; conversely, in

fibrils, 77 Vl residues adopt a relatively planar organization
devoid of intramolecular β-sheet-like interactions. The natively
folded Vl domain is fully structured for ca.105 residues, while
about one-third of the fibril Vl (residues 38–65) fall in a poorly
structured region. Moreover, although both the native and the
fibril structures essentially consist of β-strands and loops, the
locations, number, and extensions of such structures are mark-
edly different in the two states (Fig. 4b). Essentially none of the
side-chain interactions present in the tertiary structure of native
AL55 are conserved in the fibril. Two salt bridges stabilize the
fibril core: expectedly, Lys82–Glu84 is also present the native
folded state, while the Lys16–Asp95 salt bridge links residues that
are 40 Å apart in the folded AL55 Vl domain. Similar con-
siderations hold for hydrophobic contacts: none of the hydro-
phobic contacts observed in the fibril (Phe2–Ile20; Leu4–Leu18,
and Ile29–Leu81; Ile29–Ile78 and Ala30–Leu76) can be achieved
in the domain folded state. The above observations suggest that
in vivo major unfolding of AL55 Vl is an obligate step for amyloid
formation.

Role of the AL55 sequence in fibril assembly. Overall, the
AL55 segments that build the structured fibril core are char-
acterized by a few charged residues (9 out of 77), four of which
are involved in two salt bridges (Lys16–Asp95, Lys82–Glu84)
alleviating Coulombic repulsion (Fig. 5a, b). The 82–88 segment,
which comprises most of the charged residues, is detached from
the inner fibril core (Fig. 5b) and may prove accessible to water
molecules. The Vl stretches predicted to be most aggregation
prone27 are all comprised in the fibril core (Fig. 4b) that hosts two
hydrophobic clusters. The first cluster builds the β1–β3 interface
(Phe2, Leu4, Leu18, Ile20), while the second is located between
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Fig. 1 Morphological and molecular characterization of AL55 fibril deposits. a Myocardial tissue from patient AL55, stained with Congo red. Red-orange
stain and apple-green birefringence indicate amyloid deposits under visible (left) and under polarized light (right), respectively (magnification ×100; scale
bar 100 μm). b Immuno-electron microscopy imaging of heart tissue from patient AL55 (magnification ×6000). Extracellular amyloid fibrils are visible on
the right side: the gold-conjugated secondary antibody appears as black dots. The cardiomyocyte sarcomeres are visible in the upper left corner. Scale bar:
600 nm. The squared portion is zoomed in the inset on the right. c 2D-PAGE analysis of purified AL55 LC fibrils (inset from Supplementary Information
Fig. 1b, left panel), showing the spots identified by MS as AL55 LC fragments (framed). These encompass the full Vl and variable portions of Cl (MS
sequence coverage ranges from aa 1–129 to aa 1–150). Low and high MW fragments comprise residues from the N-terminus to residue 129, and to 150,
respectively. d Representative cryo-EM micrograph of AL55 LC fibrils; orange arrows highlight fibril cross-overs. e Reference-free 2D class averages of
AL55 fibril showing distinct cross-β staggering (green arrows)
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the β4–β5 turn and β6–β7 (Ile29, Leu76, Ile78, Leu81) (Fig. 5a),
and includes the disulfide bond linking β4 to β7. The two prolyl
residues in the fibril core (Pro7 and Pro14) help forming the β1–
β2 and β2–β3 turns, respectively. In the native Vl immunoglo-
bulin fold Pro7 is located at the center of the edge β1-strand that
is bulged; notably, such bulged edge strands are held to protect
against amyloid aggregation28. Nevertheless, in the AL55 fibril
core Pro7 conveniently accommodates in the β1–β2 turn.

Besides the structured core region, as mentioned above (Fig. 1e,
and Supplementary Figure 2), AL55 fibrils present two areas of
lower order: the first falls between residues 37 and 66 of the
structured segments (Fig. 2). As limited proteolysis suggests that
the whole Vl domain is protected in the fibril core, we postulate
that the 38–65 polypeptide fills the low-order region adjacent to
residues 37 and 66. The 38–65 sequence hosts residues with low β
propensity (four Pro and three Gly) and seven charged residues,
which might prevent the formation of regular β-structures once
out of the folded immunoglobulin domain context. The second
poorly structured zone surrounds the last core modeled residue
(Gly105) (Fig. 2d). nLC-MS/MS analysis shows that the fibrils
contain portions of the Cl domain (that follow beyond Gly105 in
the intact LC). Similar to the 38–65 low-order region described
above, the portion of AL55 downstream of the three consecutive
Gly residues terminating the structured fibril core hosts residues
with low aggregation propensity, such as four Pro and four
charged residues that may trigger the onset of this low-order
region. Moreover, heterogeneity in extension of the AL55 C-
terminal region can also contribute to packing defects and
conformational variability within the fibril, thus negatively
affecting the local cryo-EM density observed (Fig. 2d).

LC sequence and fibril assembly. AL55 sequence belongs to the
λ6 subgroup, and in particular to the IGLV6-57 germline gene,
which is expressed in about 2% of in bone marrow plasma cells
expressing λ LC25, but makes up to 18% of all the monoclonal λ
proteins responsible for AL amyloidosis24. Given the relevance of
such subgroup in AL pathogenesis, several previous studies have
analyzed proteins belonging to the IGLV6–57 segment, their
aggregation propensity and the role of specific positions in tuning
protein stability and amyloidogenicity29. In particular, the inter-
action between residues Phe2 and Arg25 highly stabilizes the Vl

native fold, while amino acid variations in one of the two posi-
tions increases the overall aggregation propensity30,31. Gly at site
25, as occurring in AL55, is reported to facilitate amyloid
formation31.

The LC fibril model, here presented, shows that two AL55
hypervariable complementarity determining regions (CDR)
contribute to the structured fibril core. CDR1 (Thr23-Gln35)
spans strands β3 through β4; CDR3 (Gln92-Val101) falls at the
C-end of the modeled fibril core. Such observations highlight
sequence variability of Vl domains as a key factor not only for
protein instability and aggregation propensity, but also for the
molecular interactions that stabilize fibril assembly. Thus,
questions arise on how common the fibril architecture here
reported might be for AL deposits due to LCs other than AL55.
Structure-based considerations can be drawn.

Firstly, AL55 solubilized fibrils provide a typical pattern in 2D-
PAGE observed in the other solubilized AL deposits from
patients13. The fragments of molecular weight lower than the full-
length LC are highly abundant and consist of the Vl domain, with
or without a short stretch of Cl domain; even the shorter
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Fig. 2 Structure of AL55 amyloid fibrils. a–c Orthogonal views of the post-processed 3D reconstruction at overall resolution of 4.0 Å (FSC= 0.143).
d Overview of the AL55 fibril cryo-EM map covering the structured fibril core region (blue). Cross-sectional EM densities of sharpened, 4.0 Å (blue) and
unsharpened, 4.5 Å low-pass filtered (gray) reconstructions. e Atomic model of AL55 (residues 1–37 and 66–105) superimposed on a cross-section of the
EM density map. f Ribbon representation of the fibril structured core, rainbow colored. Four stacks (subunits) in the typical cross-β arrangement are shown
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fragments always contain the LC N-terminal region13, strongly
suggesting that the Vl domain is constantly required to build the
fibril core. To assess whether other LCs may be compatible with
the fibril architecture here reported, AL55 sequence was aligned

with eight diverse cardiotoxic λ LCs (Fig. 5c) previously
reported6. Despite sequence variability, the residues that appear
to play structuring roles in AL55 fibrils are conserved or
conservatively mutated. An N-terminal stretch of hydrophobic
residues, building the fibril inner β1-strand, is present in all
sequences (Fig. 5a, c). Frequently, an extra prolyl residue (Pro8)
can be found, which would be located in the β1–β2 turn, not
impairing the fibril fold observed for AL55. Indeed, previous
evidence showed that the His8→Pro mutant in the Vl domain
belonging to the IGLV6–57 slowed but did not abrogate fibril
formation32. Gly15, which in the AL55 fibril core adopts a
conformation unfavorable for other amino acids, is conserved in
all sequences. The conserved disulfide bond is a strong structural
restrain. The two hydrophobic clusters stabilizing the AL55 fibrils
can be assembled in all other eight λ LCs. Moreover, several
aromatic residues that stabilize the fibril through inter-subunit
stacking interactions, and the (82–88) segment comprising
charged residues, are present in all sequences (Fig. 5a, c). A
recent ssNMR model of in vitro fibrils formed by a Vl belonging
to the IGLV6–57 gene segment and with only 12 mutations when
compared to AL55 sequence, shows several structural analogies.
Even though the N-terminal stretch is predicted partially flexible,
both the reported polymorphs display two ordered regions
(residues 20–45 and 65–103) with parallel arrangement and a
disordered region spanning residues 45–60 (ref. 33).

Hence, overall, while the sequence variability observed in Vl

domains might result in different fibril structural arrangements,
as observed for example for different isoforms of the Tau
protein16,17, nevertheless, our results strongly suggest that the
structural motifs observed in the AL55 fibril architecture are
compatible with the assembly of amyloid deposit from different
LCs, opening the way to an innovative and targeted molecular
characterizations of AL amyloidosis.

Finally, some considerations on the role of proteolysis in AL
amyloidosis may be drawn. Although the presence of multiple
N-terminal LC fragments is a universal finding in AL amyloid
fibrils, it is however unclear whether proteolysis releases
amyloidogenic LC fragments, which then assemble into fibril
deposits, or whether proteolysis occurs after amyloid formation.
Recent reports suggest that susceptibility to proteolysis is
distinctive for amyloidogenic LCs6,34,35. Our nLC-MS/MS
analysis of AL55 fibrils allowed the identification of peptides
from LC fragments extending to the distal ends of the first or of
the third Cl domain strands. These protein regions are solvent
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representation of the AL55 Vl domain fibril structure
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exposed in the native LC domain structure (Supplementary
Figure 1), thus proteolysis could feasibly take place when the LC
chains are natively folded. In turn, such cleavages may well
destabilize (i.e. start unfolding of) the Cl domain, whose
structural integrity is known to play a stabilizing role for the
full LCs36. The overall structure of the AL55 fibrils on the other
hand, shows that the Cl domain is not protected in the mature
fibrils, thus it might be completely removed by proteolysis
occurring on fibril deposits. Taken together, the above
structural and biophysical considerations allow speculating
that LC proteolysis may occur to a large extent before
aggregation.

In summary, the data here reported present a cryo-EM
characterization of ex vivo fibrils from a patient affected by the
most common systemic form of amyloidosis. Together with the
recent work on the Tau protein16,17, to date, this is the only
structural analysis of fibrils carried over on materials directly
extracted from human tissue under pathologic conditions. The
data and associated considerations help shedding light on some
of the basic molecular aspects of AL amyloidosis and, more in
general, of systemic amyloidoses. AL55 fibrils present an
asymmetric single protofilament; 77 residues belonging exclu-
sively to the AL55 Vl domain are required to build the
structured core, and to extend the fibril through intermolecular
hydrogen bonds and hydrophobic contacts. Despite the high
sequence variability typical of Vl domains, the amino acid
sequences of other amyloidogenic (cardiotoxic) LCs are
compatible with the fibril main structural motifs here identified.
Having shed light on the structure of ex vivo fibrils that result
from an otherwise natively folded protein, our results, as a
whole, support the concept that LC unfolding is needed along
the aggregation pathway in AL disease. In this context, we
propose a major role for proteolysis in triggering the LC
amyloid aggregation process.

Methods
Fibril extraction from heart. Heart tissue (left ventricle) was acquired during
autopsy from a patient (herein indicated as patient AL55) affected by systemic AL λ
amyloidosis, whose autopsy examination showed Congo red positivity in heart,
kidney, lung, liver, pancreas, and spleen. The patient died of acute bronchopneu-
monia with alveolar damage. Tissue was stored frozen (−80 °C) without fixation
until use. The diagnosis of amyloidosis had been made 4 years earlier; the main
clinical features are described in Supplementary Table 1. The patient was treated
with oral melphalan and dexametasone37–39, with achievement of complete
hematological remission and organ response. Six months before the patient’s death,
reappearance of the serum monoclonal component was documented, but no
therapy was started due to the stability of organ damage. Bone marrow had been
withdrawn from the same patient during the routine diagnostic procedures, upon
acquisition of the informed consent for storage and use of samples for research
purpose. This study has been approved by the Ethical Committee of Fondazione
IRCCS Policlinico San Matteo and was performed in accordance with the
Declaration of Helsinki. The presence of amyloid deposits was evaluated by Congo
red staining analysis under polarized light and by electron microscopy. Amyloid
typing was confirmed by immuno-electron microscopy40. Organ involvement was
defined according to international criteria41. Baseline clinical and demographic
information has been collected (Extended Data Table 1). Fibrils were extracted as
described by Annamalai et al.42. Briefly, 0.5 g of tissue were cut in small pieces and
repeatedly washed in Tris calcium buffer (20 mM Tris, 140 mM NaCl, 2 mM CaCl2,
pH 8.0; each washing step was followed by centrifugation at 3100g at 4 °C). Tissue
was then digested overnight with Clostridium histolyticum collagenase (Sigma
Aldrich, Saint Louis, MO, USA) (5 mg/ml in Tris calcium buffer at 37 °C). The
material was centrifuged at 3100g for 30 min at 4 °C. The pellet was manually
homogenized with a glass Potter pellet pestle in 1 ml of Tris EDTA buffer (20 mM
Tris, 140 mM NaCl, 10 mM EDTA, pH 8.0). The homogenate was centrifuged for
5 min at 3100g at 4 °C. This step was performed for 10 times overall. The remaining
tissue pellet was homogenized with a glass Potter pestle in 1 ml of ice-cold water.
The homogenate was centrifuged for 5 min at 3100g at 4 °C and the supernatant
was stored. This step was repeated six more times, without pooling supernatants.
The cryo-EM and proteomic analyses were performed on fraction 3. Immediately
after protocol completion complete protease inhibitor cocktail (Roche, Basel,
Switzerland) was added to fibrils (with the exception of fibrils destined for limited
proteolysis experiments), and the sample tubes were stored on ice until analysis.

cDNA sequencing of monoclonal free LC. Total RNA was extracted from 107

bone marrow mononuclear cells with TRIzol reagent (Life Technologies, Paisley,
United Kingdom). Monoclonal λ LC sequence was cloned by a universal inverse-
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Fig. 5 The fibril assembly depends on AL55 sequence. a A 2D schematic view of the core polypeptide stretches. Residues are colored as follows: gray
hydrophobic, cyan polar, red and blue negatively and positively charged, respectively. b Stick representation of the fibril core together with a surface
representation colored according to electrostatic charges. c AL55 Vl is aligned against eight previously reported LCs responsible for severe cardiac
amyloidosis; such LCs display highly diversified sequences and belong to distinct germlines6. The first line shows only AL55 residues modeled in the map.
Residues considered particularly relevant in determining AL55 fibril structured core fold are highlighted in green. Conserved residues are highlighted in
yellow. The nine LCs here aligned belong to the following germlines: AL55 IGLV6–57; H3 IGLV1–44; H6 IGLV1–51; H7 IGLV1–51; H9 IGLV2-8; H10 IGLV1–36;
H15 IGLV6–57; H16 IGLV2–14; H18 IGLV3–19
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PCR strategy43, using primers specific for the 5′ (5′-AGTGTGGCCTTGTTGGCT
TG-3′) and 3′ (5′-GTCACGCATGAAGGGAGCAC-3′) portions of the λ LC
constant region. The germline gene of V region was deduced by sequence align-
ment with the current releases of EMBL-GenBank (https://www.ncbi.nlm.nih.gov/
genbank/), V-BASE (http://www.vbase2.org/) and IMGT (http://www.imgt.org/)
sequence directories. In order to obtain the original full-length LC sequence,
standard RT-PCR was employed using the same RNA, N-terminal monoclonal V
region primer (5′-AATTTTATGCTGACTCAGCCC-3′) and a universal Cλ car-
boxyterminal primer, corresponding to the last amino acids of the constant region
(5′-TGAACATTCTGTAGGGGCCAC-3′)44. After purification of recombinant
plasmid, insert was sequenced from both sides.

Limited proteolysis. Proteins were quantified using BioRad Protein assay (Bio-
Rad, Hercules, CA, USA) after 1:4 dilution of the fibril suspension with isoelec-
trofocusing (IEF) buffer (7 M urea, 2 M thiourea, 4% CHAPS, 0.1 M DTT) and
incubation for 30 min at room temperature, in order to disrupt the aggregates. For
limited proteolysis, a volume of purified fibrils corresponding to 20 μg of proteins
was incubated with 0.1 μg/ml of Proteinase K (Sigma Aldrich, Saint Louis, MO,
USA), at 37 °C, in a buffer containing 10 mM Tris pH 8, 10 mM NaCl, 5 mM
CaCl2. The reaction was stopped after 1 h by dilution 1:4 (v:v) with a solution
containing 7M urea, 2 M thiourea, 4% CHAPS, 0.1 M DTT, and freezing at
−80 °C.

Two-dimensional polyacrylamide gel electrophoresis. For 2D-PAGE analysis,
25 μg of fibril proteins were diluted (1:4 v:v) in IEF buffer, with addition of pI 3–10
ampholytes (Bio-Rad) to a final concentration 0.02% v/v (final volume ~200 µl)
and incubated for 30 min at room temperature. First and second electrophoretic
dimensions were performed using, respectively, 11 cm strips, non-linear 3–10 pH
gradient (Bio-Rad) and 8–16% polyacrylamide gradient midi format gels (Criterion
TGX gels, Bio-Rad). IPG strips were subjected to active rehydration at 50 V for
12 h. Isoelectric focusing was performed in a Bio-Rad ProteanTM IEF cell as fol-
lows: 250 V for 15 min, increase up to 8000 V over 1 h and 8000 V steady until a
total of 35,000 V–h had elapsed. Proteins were reduced and alkylated (using
iodoacetamide) between first and second dimension. All gels were stained with
colloidal Coomassie blue (Pierce, Thermo Fisher Scientific, Waltham, MA, USA)
and imaged using a Gel Doc XR imaging system (Bio-Rad). For western blotting,
proteins were transferred onto a PVDF membrane (Bio-Rad) using a trans Blot
Turbo apparatus (Bio-Rad) and probed with polyclonal rabbit anti-human λ LCs
(Dako, Agilent, Santa Clara, CA, USA) used at a concentration of 1 μg/ml, followed
by incubation with an horseradish-peroxidase conjugated swine anti-rabbit sec-
ondary antibody (Dako).

Protein spots analysis and identification. Protein spot excision and in-gel
digestion were performed as previously described13. Tryptic digests from each spot
were analyzed using an Eksigent nanoLC-Ultra 2D System combined with cHiPLC-
nanoflex system (trap-elute mode) (Eksigent, AB SCIEX Dublin, CA, USA) coupled
to Q Exactive mass spectrometer (Thermo Fisher Scientific, San Josè, CA, USA).
Briefly, tryptic digests were first loaded on the cHiPLC trap (200 µm × 500 µm
ChromXP C18-CL, 3 µm, 120 Å) and washed in isocratic mode with 0.1% aqueous
formic acid for 10 min at a flow rate of 3 µl/min. The automatic switching of
cHiPLC ten-port valve then eluted the peptide mixture on a nano cHiPLC column
(75 µm × 15 cm ChromXP C18-CL, 3 µm, 120 Å), through a 40 min gradient of
5–60% acetonitrile (containing 0.1% formic acid), at a flow rate of 300 nl/min. Trap
and column were maintained at 35 °C. A Q Exactive mass spectrometer was
equipped with a nanospray ionization source using a coated fused silica emitter
(New Objective, Woburn, MA, USA) (360 µm o.d./50 µm i.d.; 730 µm tip i.d.) held
at 1.9 kV. The ion transfer capillary was held at 220 °C. Full mass spectra were
acquired in positive ion mode over a 400–1600m/z range and with a resolution
setting of 70000 FWHM (@ m/z 200) with 1 microscan per second. Each full scan
was followed by seven MS/MS events, acquired at a resolution of 17,500 FWHM,
sequentially generated in a data-dependent manner on the top seven most abun-
dant isotope patterns with charge ≥2, selected with an isolation window of 2m/z,
fragmented by higher energy collisional dissociation (HCD) with normalized col-
lision energies of 30 and dynamically excluded for 30 s. Data were processed using
the Sequest HT-based search engine contained in the Thermo Scientific Proteome
Discoverer software, version 2.1. using a human protein database downloaded in
January 2018 from UNIPROT, and augmented with the sequence of AL55. The
following criteria were used for the identification of peptide sequences and related
proteins: minimum precursor mass 400 Da, maximum precursor mass 5000 Da
(S/N ratio for peak filter 1.5); maximum missed cleavage per peptide 3; minimum
peptide length 6 amino acids; maximum peptide length 144 amino acids; tolerance
on precursor mass was set at 10 ppm and on fragment mass at 0.05 Da. Percolator
(maximum delta Cn 0.05 and maximum rank 1). Target false discovery rate was
0.01 in strict mode. Validation was based on q-value.

Electron microscopy sample preparation. Freshly extracted AL55 fibrils were
first analyzed by negative staining EM. Briefly, a 4-μl droplet of sample was applied
onto a 400-mesh copper carbon-coated grids (Agar Scientific), glow discharged for
30 s at 30 mA using a GloQube system (Quorum Technologies). After 1-min

incubation, excess of sample was removed and the grid was stained with 2% (wt/v)
uranyl acetate solution, blotted dry, and imaged on a LEO 912Ab transmission
electron microscope (Zeiss) operating at 100 keV. For cryo-EM grid preparation, a
3-μl droplet of freshly extracted AL55 fibrils was applied onto a glow discharged
holey carbon grids (Quantifoil R1.2/1.3, 300-mesh), incubated for 30 s, and plunge-
frozen in liquid ethane using a Vitrobot Mk IV (Thermo Fischer Scientific)
operating at 4 °C and 100% RH.

Cryo-EM data collection and image processing. In total, 1680 images of vitrified
AL55 fibrils were acquired on a Falcon 3EC direct electron detector (Thermo
Fischer Scientific) using a Thermo Fischer Talos Arctica transmission electron
microscope operating at 200 kV. Each image was acquired with an exposure time of
1 s and a total accumulated dose of 50 electrons per A2 equally distributed over 39
movie frames. Images were acquired at a nominal magnification of ×120,000,
corresponding to a pixel size of 0.889 Å/pixel at the specimen level, with applied
defocus values between −0.5 and −2.5 μm.

Prior to image processing, anisotropic magnification distortion was
automatically estimated using mag_distortion_estimate45. Images were corrected
for anisotropic magnification distortion (resulting in a corrected pixel size of 0.887
Å), motion-corrected and dose-weighted using MOTIONCOR2 (ref. 46). Contrast
transfer function (CTF) estimation was performed on aligned, unweighted sum
images using CTFFIND4 (ref. 47). Micrographs reporting resolution estimate of 5 Å
or better were selected for further analysis. A total of 678 selected micrographs
were imported in RELION 2.1 (refs. 48,49) for subsequent image-processing tasks.
Filaments were manually picked using RELION’s helix picker from non-dose-
weighted images. Segments were successively extracted using a box size of 320 pixel
and inter-box distance of ~10% (28.2 Å), yielding a total of 104,689 segments.

An initial reference-free 2D classification was performed with regularization
value of T= 2 to remove segments containing filament’s termini and contaminants.
Subsequent rounds of reference-free 2D classification were performed with
regularization value of T= 4 to select for segments contributing to averages in
which the filament’s cross-β structure was clearly visible. A total of 97,723 segments
were selected for subsequent 3D classification and refinement steps. Inspection of
the squared amplitudes of the Fourier transform of the 2D class averages displaying
the cross-β pattern showed a marked peak on the 1/(4.9 ± 0.05 Å) layer line. The
initial estimate of the helical twist was calculated from measurements of AL55
filament crossover distances in cryo-EM images (1070 ± 30 Å).

An initial 3D model was obtained using relion_helix_toolbox. The model was
low-pass filtered to 60 Å and used as reference for a 3D classification with single
class (K= 1), regularization value of T= 4 and imposing a helical rise of 4.90 Å and
a helical twist of −1.68°. The resulting 3D reconstruction was low-pass filtered to
30 Å and used as a reference for subsequent rounds of 3D classification using
multiple classes (K= 4), a regularization values of T= 10 and local optimization of
helical twist and raise parameters. For each round of classification, segments
contributing to 3D class displaying β-strand separation along the helical axis were
selected for subsequent reconstructions. A total of 21,031 segments were used for
3D auto-refine procedure using a 7 Å low-pass filtered map from previous 3D
classification, a helical z_percentage parameter of 10%, and allowing the
optimization of helical twist and rise. Finally, the refined 3D reconstruction was
sharpened using RELION’s standard post-processing procedure applying a soft-
edge solvent mask and a β-factor of −106. The overall resolution estimate of the
final map was 4.0 Å, calculated from Fourier shell correlations at 0.143. Helical
symmetry was imposed on post-processed 3D map using the relion_helix_toolbox.
Estimation of local resolution was performed using RELION 2.1. Further details are
listed in Extended Data Table 2.

Model building and refinement. The initial model was prepared using Chimera50

by assembling three-residues poly-Ala fragments into the final sharpened cryo-EM
density map. The poly-Ala model was then refined using Coot and Phenix51,52.
Subsequently, each Ala residue was mutated according to consensus between the
AL55 protein sequence and final EM map features. Residues assignment was
guided by the presence of an intramolecular disulfide bridge between Cys22 and
Cys91 and other visible side-chain densities. The final model comprises AL55
residues 1–37 and 66–105. Real space refinement using Phenix, with a resolution
cut-off of 4.0 Å, was performed on a fibril fragment consisting of five subunits
(each one comprising the two segments 1–37 and 66–105). After each refinement
stage, Coot was employed to manually adjust clashes, Ramachandran and rotamer
outliers. During the refinements non-crystallographic symmetry constraints were
imposed on the five subunits overall, and also on rotamers, C-beta deviations,
Ramachandran plot, and secondary structure restraints. β-Sheet restraints were
initially imposed on the whole sequence and then manually adjusted in later stages.
In the last refinement stage, in addition to the gradient-driven model minimization,
rigid-body refinement (where each segment of the five subunits was considered a
rigid body) and grouped β-factor (ADP) refinement were employed, leading to a
mean β-factor of 40.9 Å (ref. 2). Molprobity was used for structure validation53 and
the EMRinger score54 was calculated for a model comprising all the five subunits
used in the refinement. Model building and refinement statistics are shown in the
Extended Data Table 2. No Ramachandran outliers were detected and 91.8% of the
residues were found in the favored regions of the Ramachandran plot. The residues
falling in the allowed regions of the Ramachandran plot are Pro14, Thr17, Cys22,
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Ala74, Ser79, and Gly80, which are mostly located at turns or kinks in the poly-
peptide. Secondary structures were analyzed using STRIDE26. Figures were pre-
pared using Pymol, Chimera, and CCP4mg50,55.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The AL55 cryo-EM map has been deposited with the Electron Microscopy Data Bank
(code EMD-0274); the refined molecular model has been deposited in the Protein Data
Bank (code 6HUD). Monoclonal LC sequence was deposited in GenBank database
(accession number MH670901). Other data are available from the corresponding authors
upon reasonable request.
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