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Calcium signals are necessary to establish auxin
transporter polarity in a plant stem cell niche
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In plants mechanical signals pattern morphogenesis through the polar transport of the hor-
mone auxin and through regulation of interphase microtubule (MT) orientation. To date, the
mechanisms by which such signals induce changes in cell polarity remain unknown. Through
a combination of time-lapse imaging, and chemical and mechanical perturbations, we show
that mechanical stimulation of the SAM causes transient changes in cytoplasmic calcium ion
concentration (Ca2*t) and that transient Ca2™ response is required for downstream changes
in PIN-FORMED 1 (PIN1) polarity. We also find that dynamic changes in Ca2* occur during
development of the SAM and this Ca2* response is required for changes in PIN1 polarity,
though not sufficient. In contrast, we find that Ca2™ is not necessary for the response of MTs
to mechanical perturbations revealing that Ca2* specifically acts downstream of mechanics
to regulate PINT polarity response.
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lant cells respond in a number of ways to mechanical

stresses. Cortical microtubules (MTs) align to the direction

of maximal anisotropic mechanical stress in shoot apical
meristems (SAMs) and in pavement cellsb2. As MTs guide cel-
lulose synthesis, this is thought to lead to directional reinforce-
ment of the cell walll2. Polar transport of the plant hormone
auxin is necessary for floral organ initiation and tissue morpho-
genesis in SAMs*. In the epidermal cells of the SAM, the plasma
membrane-localized transporter of auxin PIN-FORMED 1
(PIN1) is the major auxin efflux carrier that directs auxin flow,
and as a consequence controls the formation of leaves and
flowers>~7. The PIN1 protein exhibits dynamic patterns of
expression and polarity and its loss of function is sufficient to
disrupt floral phyllotaxis®. It has been proposed that the asym-
metric distribution of PIN1 in the plasma membrane of inflor-
escence meristem epidermal cells (PIN1 polarity) is also patterned
by mechanical signals, as its membrane localization responds to
mechanical changes and correlates with the orientation of cortical
MTs!®, The current model proposes that PIN1 adjusts its sub-
cellular location to be preferentially in the plasma membrane
adjacent to the most stressed side wall%, which directs auxin
toward expanding neighbors (as auxin causes wall weakening
and, therefore, cell expansion). This positive feedback controls
auxin flow in the epidermis, and as a consequence controls the
pattern of formation of leaves and flowers®’. The mechanisms
by which mechanical signals induce changes in meristem cell
polarity remain to be determined.

An additional cellular response to mechanical stress is
mechanically induced transient change in cytoplasmic calcium
ion concentration (Ca2%)>10. It is known that Ca?* signaling
plays a role in the development of patterning and morphogenesis
in early embryos in ascidians, frogs, and zebrafish. In plants, de la
Fuente et al. studied the role of Ca2* in auxin transport!!. Auxin
application causes a rapid increase in cytosolic Ca?* in Zea mays
coleoptiles and plant protoplasts!?-14, and Ca?*/calmodulin
binding to auxin-induced regulatory proteins has been suggested
to control auxin response in maize roots!”. These and many other
studies indicate that calcium-mediated processes may be involved
in modulating auxin response and polar auxin transport!®17. Yet
the link underlying Ca?* signaling and morphogenesis is not fully
understood. Here we show that one prerequisite for the PIN1
response, which takes place over hours, is the much more rapid
calcium response, as blocking the calcium response prevents later
PIN1 relocalization. This is not a result of irreversible injury to
the meristem cells and this is necessary for initiation of PINI
relocalization and not for the protein vesicle traffic itself. The
findings in this study establish a new framework for the function
of Ca?™ signals in cellular polarity during organ initiation, tying
them directly to morphogenesis.

Results

Blocking Ca2™ signals prevents PIN1 repolarization in growth.
To explore the possibility that [Ca?*],, signals are related to
PIN1 protein dynamic changes during tissue growth, we
immersed dissected pPINI:PINI-GFP transgenic inflorescence
SAMs in LaCl; (5 mM), known as a plasma membrane Ca2t
channel blocker!®, for 2 min every hour for 12h without rinse
after each treatment to maintain the chemical effect. Control
samples were treated identically, using water without the inhi-
bitor. After mock treatment, SAMs continued growing (cell
division can be detected in every sample, Supplementary Fig. 1a),
producing new floral primordia (Fig. 1a, c) and showing stereo-
typical changes in PIN1-GFP subcellular polarization” (n=10)
(Fig. la—-d). LaCl;-treated meristems formed no new flower pri-
mordia, and the PINI1-GFP polarization pattern remained

unchanged, with a gradual increase in overall fluorescent signal
intensity (n = 10) (Fig. le, f, h, 1). Cell division was seen in every
LaCl;-treated sample (Supplementary Fig. 1a). The LaCl; block-
age effect diminished after a 12 h recovery in which the samples
were rinsed in water. After this recovery PIN1-GFP regained the
ability to repolarize (Fig. 1g, j). To control for any non-specific
effects of LaCls, we used a second and unrelated method to block
calcium response, treating meristems with 1,2-bis(o-aminophe-
noxy)ethane-N,N,N’,N'-tetraacetic acid (BAPTA), an extra-
cellular pH-insensitive calcium chelating agent!®20, and tested its
effect on PIN1 protein polarization dynamics during growth. We
found that BAPTA also caused a delay or inhibition of PIN1-GFP
polarity convergence on new primordia, although in this case no
PIN1-GFP fluorescent signal increase was detected (n=10 for
BAPTA-treated SAMs, n =6 for mock-treated SAMs, Supple-
mentary Fig. 2a-j). Cell divisions still occurred during BAPTA
treatment, but the frequencies were lower compared to mock-
treated samples (Supplementary Fig. 1b).

Ca?* signal blockage prevents PIN1 mechanical repolarization.
To see if inhibition of calcium response affects the PIN1 repo-
larization that results from external mechanical cues, we used
local cell ablation treatments that change the mechanical stress
pattern in the SAM, normally causing a predictable pattern of
PIN1 relocalization over several hours®. We pretreated dissected
PPINI::PINI-GFP transgenic inflorescence SAMs with LaCls,
then used a glass needle to kill a local group of cells. PIN1
response was monitored 3h later by laser scanning confocal
microscopy, as in Heisler et al. 2010° (n = 5) (Fig. 2a, b). In the
meristems pretreated with 5mM LaCl; no PIN1 relocalization
response was observed in cells surrounding the ablation site (n =
9) (Fig. 2¢, d). Partial inhibition of the relocalization response
could also be observed with a pretreatment of 1 mM LaCl; when
compared with mock treatment (Supplementary Fig. 3a-d, n =
3), but 5mM LaCl; completely prevented PIN1 repolarization.
After a 3 h recovery period during which the samples were rinsed
in water without LaCl;, PIN1 response to mechanical force
change was restored, as PIN1-GFP relocalized around the earlier
ablation site, similar to the control meristems (Fig. 2e, Supple-
mentary Fig. 3e).

Similar effects to those with LaCl; were seen when the SAM
was pre-treated with 2 mM BAPTA (n =14 of 26 total treated
meristems) (Supplementary Fig. 3f-i). The remaining 12 out of 26
BAPTA-treated samples showed only a weak PIN1-GFP signal
suggesting that BAPTA apparently had a variable effect on PIN1
protein stability or degradation. Nevertheless, BAPTA treatment
invariably caused inhibition of the PIN1 re-localization response
in the cells where PIN1-GFP signal was visible. Restoration of
extracellular calcium levels by rinsing samples with 3 mM CaCl,
restored the normal PIN1 re-localization response (Supplemen-
tary Fig. 3j).

Ca?* changes are not required for MT mechanical response. A
different mechanical response to that of PIN1 in the SAM cells is
reorientation of the cortical MT cytoskeleton to the principal
direction of maximal anisotropic stress in the cell walll. In order
to test the requirement for calcium during MT reorientation in
response to mechanical perturbation, we carried out cell ablations
using a multiphoton laser in inflorescence meristems pretreated
with 5mM LaCl; expressing both a pMLI:mCHERRY-MAP4
marker?! along with pPINI::PINI-GFP as a positive control for
LaCl; treatment. In contrast to PIN1-GFP, which did not reorient
away from laser-ablated cells in the presence of 5mM LaCls, we
observed that MTs re-oriented circumferentially around the
ablated cells despite LaCl; pre-treatment (n=5 out of 6)
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Fig. 1 PIN1 dynamic polarization pattern during 12 h growth after 5 mM LaCls treatment. a, ¢ PIN1-GFP signal indicates a new primordium forming after 12 h
(dashed square). b, d Enlargement of the square region in a, ¢. Colored dots indicate the cells that had PIN1-GFP polarity changed over 12 h of growth.
e-g PIN1-GFP dynamic polarization pattern freezes after repeated application of 5mM LaCls for 2 min in every hour for 12 h without sample rinse (f), but
primordia resume growth and PIN1-GFP signal relocalizes in the dashed square region after 12 h of recovery following water rinse (g). h-j Enlargement of
the square region in e-g. The cells that are labeled by colored dots show that PIN1-GFP does not repolarizes during LaCls treatment but resumes a
dynamic pattern after a 12 h recovery. a-j scale bar: 20 um. LUT is gem in Fiji-lmageJ software

(Fig. 2f-m, Supplementary Fig. 4). A similar MT response was
observed after mechanical perturbation via glass-needle-induced
cell ablation using a MBD-GFP MT marker after a pretreatment
with 5 mM LaCl; or 2 mM BAPTA (n =5 for LaCl; and n = 6 for
BAPTA) (Supplementary Fig. 3k-n).

Calcium dynamics in the SAM. Having determined that calcium
signaling is required for the reorientation of intracellular PIN1
polarity during regular growth and in response to mechanical
perturbation, we next assessed [Ca?*],, dynamics in the SAM by
utilizing two fluorescent reporters of cytoplasmic Ca?* con-
centration, R-GECO12223, and GCaMP6f(fast)24. We found that
an individual SAM shows two different patterns of spontaneous
Ca2?* concentration dynamics, as inferred from fluorescence
intensity. These patterns occur simultaneously and are similar to
some aspects of calcium dynamics observed in animals, for
example as characterized in larval organs in Drosophila®®.
Although both patterns consist of a transient increase in Ca?*
concentration, one appears to be a global meristematic behavior,
referred to as oscillations hereafter (Fig. 3a), while the other is at a

single cell level—sporadic single-cell transients, or calcium spikes
as in the literature?9, referred to as spikes hereafter (Fig. 3b).
Analysis of plants expressing R-GECOL1 indicates that the
oscillations have a typical time between peaks of 22 min +4%
(estimated mean * relative standard error, standard deviation
(SD) of 8 min 35s, 123 inter-peak times), with event duration
of 4min 51s+3%, estimate as full width at half maximum
(FWHM) amplitude (mean = relative standard error, SD of 1 min
53s, n =141 peak events). Supplementary Movie 1 shows one
example of a SAM exhibiting the oscillations. The inter-peak time
and FWHM are introduced graphically in Fig. 3a, further
statistics are provided in Supplementary Fig. 5a, b and its
caption; these findings are based on 19 SAMs out of 24, as
explained in the SI section. Our observations do not indicate a
single location in the SAM from which the oscillations originate,
such as a new primordium initiation region, or any other
meristematic landmark. Supplementary Movie 2 shows that over
5h, oscillations initiated from a variety of SAM and primordia
regions including central SAM region. To test whether the
oscillations result from excision of the meristem from the plant,
we imaged SAMs in intact plants, where similarly to the case of
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Fig. 2 Mechanical responses of PINT and MT after LaCls treatments. a, b PIN1-GFP shows polarized subcellular localization 3 h after local cell ablation with
a glass pipette, without pharmacological treatment. ¢, d PIN1-GFP reorientation was not detected 3 h after cell ablation following 15 min pretreatment
with 5mM LaCls without a subsequent water rinse. e At three additional hours after LaCls washout, PIN1-GFP has reoriented away from the ablation site.
a-e LUT is gem in Fiji-Image) software. f-m Confocal projections of laser-ablated SAMs expressing pPIN1::PIN1-GFP (magentain f, h, j, lor red in g, i, k, m)
and pML1:mcherry-MAP4 (green). f, g Mock treated meristem just after ablation. h, i The same meristem as in f and g, 4 h later. j-m Another laser ablated
meristem, treated with 5mM LaCls 15 min before ablation and imaged at O h after ablation (j, k) and 4 h later without a water rinse during incubation
(I, m). Note difference in PIN1 polarity response comparing h with I although MTs re-oriented circumferentially in both cases (compare i with m).

a-m Similarly colored dots mark the same cells tracked over time. Scale bars: 20 um (a-e) and 10 um (f-m)

the excised SAM, hindering floral primordia and flowers had to
be removed to allow imaging of the SAM tissue. In the intact
SAMs, we found a typical time between peaks of 21 min + 11%
(estimated mean + relative standard error, SD of 8 min 555, 15
inter-peak times), with event duration of 5min 32s5+9%
(FWHM, mean = relative standard error, SD of 2 min 15s, n =
19 peak events). Supplementary Movie 3 presents one example of
an intact SAM; this is one out of the four SAMs included in the
statistical analysis summarized above and in Supplementary
Figure 5¢c and d; #n = 4 out of 5 SAMs. The empirical distributions
for the intact and excised SAMs, both for inter-peak-times and
FWHM, are found to be so similar to each other that the null
hypothesis that they are the same could not be rejected by the
statistical tests we have applied (the smallest p-value was 0.28);
see “Image processing and data analysis” under Supplementary
Methods.

As for the single-cell spikes, these generally lasted between 1
and 5s (more than 70% of events), though 13% of the cells
showed prolonged signals lasting longer than 10s (n =292
individual cells from 30 SAMs in total events) (Supplementary
Fig. 5f). A few cells appeared to spike repeatedly and continuously
over minutes. Our observations indicate that one cell in hundred
spikes every 20-40 s. Twelve SAMs showed only one spike signal

in more than 3 min in a normalized group of about 100 cells
(n=69 SAMs in the total experiments) (Supplementary Fig. 5e).
Similar spikes and oscillations were observed in the cells of
the meristems expressing the GCaMP6f sensor (Supplementary
Movie 4), although at a higher frequency for the spikes, possibly
due to higher sensitivity of the GCaMP6f sensor line. Both types
of spontaneous Ca%t dynamics were blocked when samples were
immersed in 0.5mM LaCl; (n=15, Supplementary Movie 5)
or in 02mM BAPTA during time lapse imaging (n=5,
Supplementary Movie 6), which indicates that the spontaneous
[Ca?*] . transients are largely dependent on Ca?* entry from
apoplastic stores.

We next extended our observations to situations where the
SAM is deliberately mechanically stimulated. After the meristems
expressing the R-GECO1 sensor were mechanically stimulated by
pressing from the side with a glass pipette (often accompanied
by some cell injury at the point of contact) during confocal
microscope observation (Supplementary Fig. 6a), a R-GECO1
fluorescent signal occurred as an intercellular calcium wave that
initiated from the stimulated area (Fig. 3c, Supplementary
Movie 7). After the calcium wave propagated through the
SAM (Fig. 3d and Supplementary Fig. 7f), the Ca>* signal started
to decrease. Following the initial decrease, a dark crescent
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Fig. 3 Three different types of Ca2t signal in the Arabidopsis SAM. Ca2+ signals in the SAM include two spontaneous Ca2t patterns (a, b), and calcium
waves that are activated by mechanical stimuli (c-f). a Global meristematic transient Ca2+ levels, as measured by the mean fluorescence intensity level
taken over a region-of-interest in the SAM, and plotted as function of time, showing regular peaks. The inter-peak time and the full width at half maximum
(FWHM) are annotated in the panel, as well as the baseline (dashed gray line) and peak height. b Two representative Ca2*+ spike images. Arrow points to a
cell showing a spike signal. The contour line delineates the border of the SAM. LUT is gem in Fiji-lmageJ software. c-f Representative frame images of R-
GECO1 (magenta) and membrane marker 29-1 fused to GFP (gray) in the SAM, in response to mechanical stimulus from a glass pipette at the side of the
SAM. g-j Effects of a 15-min pretreatment with 5mM LaCl; on Ca2t wave transmission in the SAM. Arrow points to the direction of pipette

prodding. Scale bars: 20 um (b-j)

representing low Ca®* levels appeared between the stimulation
site and the wave front at an average time of 23 + 3 s (mean + SD)
and lasting for 16 + 5s (mean * SD) (Fig. 3e, Supplementary
Table 1). After 73 + 18 s (mean + SD) the calcium response was
greatly diminished across the meristem, except in the cells closest
to the stimulation site, which were the last to show decreased
fluorescence (n = 34) (Fig. 3f). The Ca?* fluorescence increased
nearly four-fold on average when compared with resting
fluorescence levels (Supplementary Fig. 7e). We did a dilution
series of LaCl; and BAPTA concentrations to observe the effects
of different concentrations on mechanically induced Ca?* signals.
On average LaCl; started to block the Ca>* wave propagation at
1 mM concentration (Supplementary Fig. 8a), and for BAPTA, 1
mM concentration is also capable of partially blocking the Ca2+
waves (Supplementary Fig. 8b). In 5mM LaCl;— and 2mM
BAPTA-pretreated SAMs, mechanical stimulation with a glass
pipette did not induce calcium waves (n = 26 for LaCls, n =5 for
BAPTA) (Fig. 3g-j and Supplementary Fig. 7a-d, j), indicating
that calcium wave initiation or propagation depends on plasma
membrane Ca?t influx from apoplastic stores. Image analysis
(Supplementary Fig. 9a-h) showed the average velocity of the

calcium wave signal transmission in the first half (by time) of the
wave propagation to be about 2 um s~1, roughly one cell diameter
per 2's (Supplementary Fig. 7g). As the response proceeds across
the meristem the speed slows down to about 0.5 ums~! (n =22
from 13 SAMs) (Supplementary Fig. 7g). The relatively low wave
front speed indicates that the response fits into the slow calcium
wave class?’. In 5mM LaCls;— and 2mM BAPTA-pretreated
SAMs, calcium wave velocities are close to zero (n =17 from 17
SAMs for LaCl; and n=7 from 5 SAMs for BAPTA)
(Supplementary Fig. 7h, i). The GCaMP6f sensor showed a
similar wave response to that of R-GECO1 upon laser-induced
cell ablation (Supplementary Movie 8).

Next, we directly compared the spontaneous Ca2* oscillation
signals and Ca2* wave following mechanical stimulation by a
glass pipette using the same sample under the same imaging
settings. We found that the spontaneous oscillation signals took
8.8 + 4.4 times the interval of the time for mechanically triggered
waves (mean + SD, n =9 individual SAMs). Thus the speed of
spontaneous CaZ* signal propagation is much slower than that of
deliberately mechanically stimulated waves. We also compared
the fluorescence intensity changes between the two responses.
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The maximum intensity fold change (I — Iy)/I, of the mechani-
cally induced Ca2* wave is about 2.3+ 1.1 (mean +SD, n=7);
that of oscillation signals is 0.5+0.2 (mean+SD, n=12)
(Supplementary Fig. 10). The duration of the major peak of the
wave is in about 2 min, but the oscillation signal duration time is
longer than 10 min on average (Supplementary Fig. 10). There-
fore, the endogenous oscillation reaction is weaker than the
response to exogenous mechanical stimulation.

As prodding with a glass pipette appears to wound the SAM,
we tested if non-injurious treatments had the same effect. As one
example, in addition to responding when indented by a pipette,
the SAM expressing the R-GECO1 sensor generates a comparable
Ca?T wave when a glass pipette, pressed against the meristem, is
withdrawn from contact (Supplementary Fig. 11a-d, Supplemen-
tary Movie 9). The response timeline is similar to that of the Ca>*
wave propagated by the initial pipette stimulation (Supplemen-
tary Fig. 11i-k, Supplementary Table 1).

To further address whether the SAM Ca?*t response can be
triggered by noninvasive mechanical stimuli, we built a device
that is able to press a coverslip down onto a cultured SAM from
the top (Supplementary Fig. 6b, Supplementary Movie 10). After
applying force with the coverslip, the R-GECO1 fluorescent signal
did not increase compared with the resting level (Supplementary
Fig. 1le, ). However, Ca2* fluorescence increased immediately
upon SAM release from the cover slip (Supplementary Fig. 11g, 1),
with signal intensity change up to three-fold and the response
lasting 22 + 7 s (mean + SD, n = 14) (Supplementary Fig. 11h, I).
Previous studies have shown that compression stress is expected
to reduce the stress intensity of a thin pressurized shell such that
turgor pressure is locally balanced in the flattened area?82°.
Conversely, when the planar constraint is released from the SAM,
the previous high stress is expected to recur. Thus, it appears that
intracellular Ca2t is more responsive to mechanical stress
increase than decrease.

As mentioned above, the dynamic re-localization of PIN1-GFP
is restored after diluting away LaCl; or BAPTA (Fig. 1g, j, Fig. 2e,
Supplementary Fig. 3e, j). To see if the calcium response is
similarly reversible, R-GECO1 reporter signals were observed in
SAMs after reversal of earlier chemical treatments. Similar to the
PIN1 response, Ca2t response returns after SAMs pretreated with
either LaCl; or BAPTA were washed with water (Supplementary
Fig. 12a—j, Supplementary Movies 11 and 12). In SAMs pretreated
for 15 min with 5 mM LaCls, and incubated for 3 h, followed by a
water washout, a [Ca2+]Cyt signal occurred after 8 + 3's (mean
+ SD) and lasted for 23 + 8s (mean + SD) (Supplementary
Table 2). The primary peak amplitude of the whole-meristem
fluorescent intensity was approximately two times that of the
resting level. This was followed by a secondary peak that lasted
for 81 + 12 s (mean + SD) with a mean amplitude of ~1.5 after an
interval of 60 £ 25s (mean = SD) (n=11) (Supplementary
Fig. 12k, Supplementary Table 2). BAPTA-pretreated and then
washed SAMs showed a similar response pattern (n=10)
(Supplementary Fig. 121, Supplementary Table 2). As these
Ca* transients showed a biphasic kinetic pattern, and some of
the transients were initiated away from ablated regions
(Supplementary Movies 11 and 12), we suspect that these
increases are likely to be caused by the washing treatment rather
than mechanical stimulus.

Ca?* response is required for PIN1 relocalization initiation.
To test whether Ca?™ signals are necessary for PIN1 protein
movement as it re-localizes (for example by being required for
endocytotic or exocytotic vesicle traffic) or whether it may only be
necessary for the initiation of the PINI response, we did mer-
istematic cell ablation with a glass needle, waited for 5min and

)Pl'lw-'GFP

L]

Fig. 4 The PIN1 mechanical response is initiated within 5 min of stimulus
and is not reversed by subsequent Ca2™ inhibitor treatments. a, b PIN1-GFP
behaves similarly to an untreated control at 3 h when pipette-mediated cell
ablation precedes (by 5min) the application of 5mM LaCls (which lasts
15 min with no subsequent washout). ¢, d PIN1-GFP behaves similarly to an
untreated control at 3 h when pipette-mediated cell ablation precedes (by
5 min) the application of 2mM BAPTA (which lasts 10 min with no
subsequent washout), as in a, b. a-d, Scale bar: 20 um. LUT is gem in Fiji-
Image) software

then treated with 5 mM LaCl; or 2 mM BAPTA for 15 or 10 min,
respectively, without a subsequent sample rinse, as in the earlier
experiments. Three hours after stimulation, PIN1 had relocalized
in both cases, just as if the SAM had never been treated (n = 4 for
LaCl; and n =6 for BAPTA) (Fig. 4). The results indicate that
after mechanical stimulation, calcium response is only necessary
for the initiation of the PIN1 response and is not required for
later PIN1 protein trafficking.

Discussion

The experiments described here provide a contribution towards
understanding of how mechanical forces cause changes in the
subcellular location of PIN1 protein, demonstrating that
the initiation of PIN1 re-localization, and correspondingly, the
initiation and the growth of floral primordia (but not reorgani-
zation of the cytoskeleton) require earlier changes in cytoplasmic
calcium concentration. A previous report, on Arabidopsis roots,
also demonstrated that changing Ca?™ levels affects PIN protein
localizations30. Recently, it has been reported that Ca2t transients
participate in the AUXI1-mediated root hair auxin influx and/or
SCFTIRI/AFB baged auxin signaling!®17. Ca2t signals thus play
multiple roles in regulating tissue morphogenesis, affecting both
auxin efflux and auxin signaling.

The mechanism of PIN1 relocalization is not known, but it
involves redistribution of PIN1 protein from one membrane
region to another by exocytosis and endocytosis that is partly
determined by mechanical stress!. The major question, then, is
how mechanical stress in cell walls translates to changes in the
local balance of exocytosis and endocytosis of PIN1 transporting
vesicles. What detailed mechanisms might connect calcium
response to PIN1 relocalization? The normal asymmetric location
of PIN1 in plasma membranes of multiple cell types, including
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those of the SAM, requires activity of the PINOID gene, coding
for a protein kinase that phosphorylates PIN1 on its large central
cytoplasmic loop32. PINOID protein has been shown in yeast
two-hybrid assays to bind in a calcium-dependent fashion to two
different calcium-binding proteins, TOUCH3 (TCH3 is rapidly
induced by mechanical stimuli®3), and PINOID BINDING
PROTEIN 1 (PBP134). Both TCH3 and PBP1 are members of
gene families, TCH3 being related to the many calmodulins and
calmodulin-like proteins encoded in the Arabidopsis genome, and
PBP1 to multiple calcium-dependent protein kinases. One
hypothesis is therefore that calcium transients in the cytoplasm
act to facilitate binding of proteins to PIN1, at least one of which
can phosphorylate PIN1 so as to motivate trafficking.

The experiments reported also reveal a new collection of cal-
cium signals in the plant stem cell niche, including mechanically
induced slow intercellular calcium waves, spontaneous spikes,
and periodic oscillations (as also seen in animal tissues??) in the
entire inflorescence meristem. The observed mechanical Ca?*
response could be mediated by a variety of different components.
The initial signal could depend upon plasma membrane localized
Ca?*t permeable channels, such as those of the CNGC family!®,
the GLR family3>-38, the MCA family3?, the OSCA family**41, or
by the DEK1 protein*? or TPC13043. The intercellular calcium
waves may in addition rely upon plasmodesmata for Ca2t cell-to-
cell diffusion3?, and Ca%* pumps, such as the Ca2+-ATPases for
cytoplasmic Ca2* level return to the resting state*4.

Spontaneous Ca?™ increases have been described previously in
plant guard cells by plasma membrane potential hyperpolariza-
tion and abscisic acid interaction’>%>. A transient calcium
increase causes short-term stomatal closure, while long-term
steady-state stomatal closure is encoded through defined
[Ca?T]y. oscillations?®47. Calcium oscillation is also a signal
responding to symbiotic microorganism colonization in plant cell
nuclei*8. Furthermore, Ca?* oscillations are critical during the
entire fertilization process after gametophyte physical interactions
in plants and animals**->1, One open question is the origin of the
spontaneous spikes, and of the spontaneous oscillations in Ca2+
level seen in the SAMs. It could well be that these represent
changing mechanical interactions of the meristem cells, with the
spikes representing local mechanical interactions due to local cell
expansion (which itself is expected from changing auxin levels®).
The regular oscillations, which occur every 10-30 min, with a
fairly regular frequency, remain a mystery in regard to their
origin. This study indicates their potential importance for
PIN1 protein dynamic polarized movement during growth. It
is tempting to imagine that they are related to some regular
mechanical oscillation that characterizes the growth of meristems
or their cells, such as those that create circumnutation in roots
and stems, which is affected by mechanical inputs®>°3. Micro-
nutation of Arabidopsis hypocotyls has a period of 20-60 min>4,
similar to the calcium oscillation frequency.

Methods

Chemical treatments. Stock solutions of 100 mM LaCl; (Sigma-Aldrich) and
100 mM BAPTA (pH 5.8 KOH; Sigma-Aldrich) were prepared in water. In PIN1-
GFP growth experiments, for LaCl; treatment, 5 mM solution was applied for
2min each hour for 12 h to dissected SAMs embedded at the basal end in a 1%
agarose plate. During treatment, SAMs were incubated on GM (Growth Medium,
containing 1% sucrose, 1X Murashige and Skoog salts (Sigma M5524), MES 2-
(MN-morpholino)- ethane sulfonic acid (Sigma M2933) brought top pH 7 with 1M
KOH, plus 0.8 % Bacto Agar (Difco), 1% MS vitamins (Sigma M3900) agar plus
500 nM 6-benzylaminopurine (BAP). The SAMs were thoroughly washed in water
to remove LaCl; when starting sample recovery. The SAMs were then incubated on
GM + BAP plates for 12 h. Microscopy was performed immediately before and
12 h after LaCl; treatment, and 12 h after recovery. Control samples experienced
the same treatment steps except that the solution used was water rather than 5 mM
LaCl;. In PIN1-GFP growth experiments, for BAPTA treatment, the procedure was
similar to LaCl; treatment, except that 2 mM BAPTA was used, SAMs were

incubated on GM agar plus 500 nM BAP without 3 mM CaCl, and washed in
3mM CaCl, for recovery.

In PIN1-GFP ablation experiments, 5mM LaCl; solution was applied to the
SAM in the same way as in growth tests, but for 15 min before cell ablation. Water
served as the control treatment. After ablation, the SAMs (without water rinse)
were directly transferred to GM plates to incubate for 3 h. During recovery, SAMs
from which the LaCl; was washed with water were incubated for an additional 3 h
on GM plates. Imaging was performed at 0 and 3 h after ablation, and after 3 h of
recovery. For BAPTA treatment, 2 mM BAPTA solution was applied to the
dissected SAM for 10 min before cell ablation. After ablation, the SAMs were
briefly rinsed with water and then transferred to a 1% agarose plate to incubate for
3 h. During recovery, the SAMs were washed with a solution of 3 mM CaCl,
and incubated for an additional 3 h on GM plates. Imaging was performed at 0 and
3 h after ablation, and after 3 h of recovery.

In MBD-GFP experiments, inhibitor treatments were the same as in the PIN1-
GFP experiments, except that the incubation time extended to 6 h, after which
imaging was done, and recovery experiments were not performed.

For R-GECOL1 and R-GECO1; 29-1-GFP double reporter experiments, LaCl; or
BAPTA treatment was the same as for other reporters, except the test for blockage
of spontaneous Ca* reactions (spikes and oscillations) used 0.5 mM LaCl; and
0.2 mM BAPTA immersion during one-hour imaging. During R-GECO1 recovery
experiments, LaCl;— or BAPTA-pretreated SAMs were cell ablated with a pulled
glass pipette and incubated for 3 h on a GM plate (for SAMs with LaCl; treatment)
or on a 1% agarose plate (for SAMs with BAPTA treatment). The sample was then
placed under the confocal microscope objective and laser scanning was started
immediately after adding water.

Mechanical perturbation procedures. For PIN1-GFP and MBD-GFP reporter
lines, cellular ablations were performed manually with a pulled glass pipette under
a Zeiss SteREO Discovery V8 stereomicroscope. Cellular ablations on the SAMs
expressing pPIN1::PIN1-GFP and pMLI::mcherry-MAP4 were carried out on a
Leica SP5 upright confocal microscope using a multiphoton laser from Spectra-
physics which was controlled by Leica software>. Ablations were performed
using 800 nm wavelength with an output power of ~3 W. Each pulse was shot
for 1-15 ms, which varied from sample to sample. Ablations were usually
accomplished within 1-3 bursts of the laser.

For observations of R-GECO1 reporter lines, mechanical perturbation (usually
accompanied by cell injury/wounding) was performed from the side of the SAM
using a pulled glass pipette attached to a micromanipulator. Pipettes were
fabricated by pulling a 1-mm diameter glass capillary on a micropipette puller
(Sutter Instruments, P-97). The tip diameters of the micropipettes ranged between
3 and 5 um, about the size of one meristematic cell. The micropipettes were
mounted on a three-axis micromanipulator (either Narishige Hydraulic
Micromanipulator MO-202 or WPI M3301L manual micromanipulator) allowing
precise micropipette movement under the microscope near the SAM
(Supplementary Fig. 6a). Mechanical perturbation (wounding) was performed
while observing the SAMs with a Zeiss LSM 780 laser scanning confocal
microscope. For GCaMP6f response to mechanical perturbation (wounding),
cellular ablations were performed in the FRAP mode using a multiphoton laser
from MaiTai (Spectra Physics) that was controlled using the Leica software. A
single pulse of 800 nm was used for 100 ms to 2 s (time for ablation varied for each
plant) using bleach point mode in two-dimension (xyt mode).

For the R-GECO1 SAM compression experiments, the SAM upper surface was
pressed and released by a glass coverslip. The device holding the coverslip consisted
of a mechanical part made with stainless steel that is open in its center. The
coverslip was attached (with vacuum grease) to the part in order to close the open
area. The part is mounted on a three-axis micro-manipulator (Narishige Hydraulic
Micromanipulator MO-202) (Supplementary Fig. 6b).

Confocal imaging of fluorescent reporters in living plants. PIN1-GFP and
MBD-GFP fluorescent reporters were imaged using a Zeiss LSM 510 Meta confocal
microscope or a Zeiss LSM 780 laser scanning confocal microscope. R-GECO1 and
double fluorescent reporters R-GECO1; 29-1-GFP were imaged by using a Zeiss
LSM 880 or Zeiss LSM 780 laser scanning confocal microscope. PIN1-GFP and
MBD-GFP laser and filter settings were used as described previously”. Briefly, we
used a 488 nm laser for excitation and 505-550 nm for emission collection. To
image R-GECO1 and 29-1-GFP simultaneously in the SAM, the multi-tracking
mode in the ZEISS LSM 780 was used. R-GECO1 was excited with 561 nm and
its emission was detected between 570 and 640 nm. 29-1-GFP was excited with
488 nm and its emission was collected between 500 and 550 nm. Images were
recorded using a W Plan-APOCHROMAT x40 water-dipping objective (NA 1.0)
with a time interval of 1s for Ca2t wave observation (2D), 1 or 2 s for Ca2* spike
observation (2D), 5 s for Ca?t spike observation (3D), and 5 or 10s for Ca2*
oscillation observation (2D). The movie was recorded in 512 x 512 pixels format.
The intervals between optical slices in z-stacks ranged from 1 to 2 um. Confocal
z-stack images were processed using Image] (imagej.nih.gov/ij/).

The inflorescence meristems of plants carrying GCaMP6f were dissected and
mounted as above. The meristems were incubated for ~15 min to minimize
calcium response from the dissections. Spikes were captured using a resonance scan
mode on Leica TCS-SP5 upright microscope at a scan speed of 8000 Hz. The movie
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was recorded in 512 x 512 pixels format. For recording GCaMP6f response to
mechanical perturbation (wounding), the imaging was performed on a Leica
TCS-SP5 upright confocal laser-scanning microscope using a x25 water-dipping
objective (NA-0.95). Five frames were recorded prior to laser ablation and

100 frames were captured immediately after laser-induced ablation at a scan
speed of 400 Hz and a scan rate of one optical slice per 0.7 s.

The meristems carrying pPIN1::PIN1-GFP and pMLI::mcherry-MAP4 reporters
were imaged on a Leica SP5 TCS microscope. PIN1-GFP was excited using 488 nm
argon laser and mcherry was excited using 561 nm white light laser.

The SAM oscillation signal observation in intact plants was performed using an
imaging box (Cat. #64313, Electron Microscopy Sciences). Plants were initially
grown on soil in small pots until they bolted, then together with the pots, they were
transferred into imaging boxes. The flower-dissected SAM was isolated from leaves
and roots by placing Parafilm around the stem and sealing with a thin layer of 1%
agarose to prevent water leakage. Water immersed SAMs were located under a x40
objective for signal observation.

Code availability. The corresponding open-source Python code, previously
introduced in Refs. °%°7 on natural-cubic-smoothing-splines can be found at
https://github.com/eldad-a/natural-cubic-smoothing-splines. All other code,
including the programming code for quantitative analysis of the meristem calcium
oscillations and waves upon mechanical perturbation, are available from the cor-
responding authors upon request.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All data are available from the corresponding author upon request, including all of the
microscope time lapse files. The source data underlying Supplementary Figs. 1a, b, 4c,
5a-f, 7e-j, 8a, b, 10, 11i-1, 12k-1 and Supplementary Tables 1 and 2 are provided as

a Source Data file.
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