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Prediction of a topological p + ip excitonic insulator
with parity anomaly
Rui Wang1,2, Onur Erten3, Baigeng Wang1 & D.Y. Xing1

Excitonic insulators are insulating states formed by the coherent condensation of electron

and hole pairs into BCS-like states. Isotropic spatial wave functions are commonly considered

for excitonic condensates since the attractive interaction among the electrons and the holes

in semiconductors usually leads to s-wave excitons. Here, we propose a new type of excitonic

insulator that exhibits order parameter with p+ ip symmetry and is characterized by a chiral

Chern number Cc= 1/2. This state displays the parity anomaly, which results in two novel

topological properties: fractionalized excitations with e/2 charge at defects and a sponta-

neous in-plane magnetization. The topological insulator surface state is a promising platform

to realize the topological excitonic insulator. With the spin-momentum locking, the interband

optical pumping can renormalize the surface electrons and drive the system towards the

proposed p+ ip instability.
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Massless Dirac particles preserve both parity and time-
reversal symmetry (TRS). However, an infinitesimal
mass will inevitability break these symmetries

through the radiative correction1–3, resulting in an Abelian or
nonAbelian Chern–Simons theory of the external gauge field.
This effect is called parity anomaly. Quasiparticles with linear
dispersion in condensed matter physics have recently drawn
broad attention4–13, and they provide a quintessential platform to
test these effects. Indeed, the gapless Dirac fermions of topological
insulator (TI) surface states have been predicted to exhibit the
parity anomaly and a number of exotic phenomena when dif-
ferent types of mass terms are considered, including the p+ ip
type topological superconductor induced by the superconductor
(SC) proximity effect14,15, and the quantum anomalous Hall
effect in the TI surface with a Zeeman field16–19.

In this work, we expand the realm of two-dimensional (2D)
topological states by devising a study on the particle–-hole
instability of Dirac fermions. We show that the formation and
condensation of excitons can lead to a novel topological excitonic
insulator that exhibits the parity anomaly. Furthermore, in sharp
contrast to conventional semiconductors, the 2D helical Dirac
liquid with spin-momentum locking (e.g., the TI surface), has an
inherent tendency towards the formation of spin-triplet excitons.
This remarkable property manifests itself most clearly by the
interband optical absorption processes, as shown by Fig. 1.

For conventional semiconductors with absence of the
spin–orbit coupling, the direct interband excitation generates a
conduction electron and a valence hole with the same momentum
k and the opposite spins (Fig. 1a), resulting in a spin-singlet
exciton after they form into a pair. The situation is, however,
different in TI surfaces, as shown by Fig. 1b. Due to the spin-
momentum locking of TI surface, the direct interband excitation is
accompanied by the spin-flip of the electron; the resultant exciton
consists of an electron and a hole with the same spin polarization,
and therefore a spin-triplet state. This unique optical property of
TI surface, as will be shown below, can be used for generation and
stabilization of a unique p+ ip excitonic insulator. The natural
topological p-wave excitonic insulator has p+ ip symmetry
inherent to their order parameters. We firstly explore the salient
feature of the p+ ip excitonic state by studying a minimal theo-
retical model. In contrary to the conventional excitonic insula-
tors20 described by a s-wave Bardeen–Cooper–Schrieffe (BCS)-like
theory21, the p+ ip state mathematically resembles the spinless
p+ ip SC22 in the chiral basis. However, unlike the p+ ip SC, it
does not break the global U(1) gauge symmetry but only violates
the TRS. To characterize such exotic states, we propose a chiral
Chern number Cc and unveil the underlying parity anomaly by
deriving an effective Chern–Simons gauge theory associated with
topological defects. This is further responsible for (i) fractionalized
excitations with charge e/2 at vortices and (ii) a spontaneous in-
plane magnetization of ground state. Then, we investigate the
excitonic instability of a strongly correlated TI surface model

where we show that a p-wave-type interaction component emerges
intrinsically, which stabilizes the p+ ip excitonic phase in a sig-
nificant parameter region of the phase diagram. Moreover, we also
consider the effects of interband optical processes and we
demonstrate that the electron–photon coupling can effectively
drive the system into the proposed p+ ip excitonic insulator as a
result of the spin-flip mechanism demonstrated in Fig. 1b.

Results
Model. We start from a spontaneous symmetry breaking of 2D
Dirac fermions with spin-momentum locking and a momentum-
dependent mass term, H ¼ HDirac þ M̂ðkÞ, where

HDirac ¼
X
k

Φy
kvFσ � kΦk: ð1Þ

k is the 2D wave vector, Φk= [ψk,↑, ψk,↓]T is the fermionic spinor
and ψy

k;σ (ψk,σ) denotes the creation (annihilation) operator of
electrons with spin σ. We firstly focus on a concrete mass term
M̂ðkÞ=Pk Φ

y
k Δc cosθσ

z þ Δc sin
2θσx � Δcsinθcosθσ

yð ÞΦk ,
while under which conditions M̂ðkÞ can be spontaneously gen-
erated will be investigated below. θ is the polar angle of k, and Δc

is the overall gap scale. It is straightforward to verify that M̂ðkÞ
breaks TRS, T̂M̂ðkÞT̂�1≠M̂ð�kÞ, where T̂ ¼ iσyK being the
time-reversal operator, with K the complex conjugation operator.
In contrast with the TI surface with a Zeeman field, where the
diagonal term mσz breaks TRS23, here the diagonal term Δc cos
θσz in M̂ðkÞ respects the TRS. The TRS is however violated by the
two off-diagonal terms in M̂ðkÞ.

One can unveil the physical meaning of M̂ðkÞ by making a
unitary transformation onto the chiral basis with HDirac being
diagonalized: Ck ¼ R̂ðkÞΦk , where R̂ðkÞ is a 2 by 2 rotation
matrix with R̂11 ¼ �R̂21 ¼ eiθ=

ffiffiffi
2

p
, R̂12 ¼ R̂22 ¼ 1=

ffiffiffi
2

p
, and Ck=

[ck,+, ck,−]T is the spinor composed of the conduction and valence
band fermions. In the chiral basis, H becomes

H ¼
X
k

ck;þ
ck;�

 !y
vFk �Δce

�iθ

�Δce
iθ �vFk

 !
ck;þ
ck;�

 !
: ð2Þ

The off-diagonal Δce−iθ describes the process where an electron
in the valence band is scattered up to the conduction band,
leaving a particle–hole excitation on top of the many-body
ground state. For Δc ≠ 0, the particle–hole pairs condense and gap
out the Dirac cone, generating an excitonic insulator. Another
interesting feature of the off-diagonal term is the factor e±iθ= (kx
± iky)/k24, similar to the spinless p+ ip-wave SC25, but we note
that the order parameter resides in the particle–hole rather than
the particle–particle basis. The model Hamiltonian can be
analyzed similarly as the BCS superconductor theory. The ground
state wave function |Ψ〉 is obtained after a Bogoliubov
transformation as,

Ψj i ¼
Y
k

uke

P
k

gkc
y
k;þck;�

0j i; ð3Þ

with gk= vk/uk, uk= Δc(kx− iky)/kξk, vk= vFk/ξk, where ξk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
c þ v2Fk

2
q

is the energy spectrum of quasiparticles. |Ψ〉 clearly

describes a coherent state of electron–hole pairs with the
distribution factor gk of the p+ ip symmetry.

Topological classification and chiral Chern number. To
examine the topological classification of the p+ ip excitonic
insulator, we write Eq. (2) into the compact form as,

Semiconductors

a b

TI surface

spin-singlet, s-wave spin-triplet, p-wave

Fig. 1 Schematic plot of the direct interband optical absorption process. a
The s-wave excitons are formed in the conventional semiconductors. b The
helical spin texture of topological insulator (TI) surface state favors p-wave
rather than s-wave excitons
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H ¼P3
i¼1 dðkÞτi, with τi being the Pauli matrices defined in the

chiral basis. For the continuum model, where k →∞ is envisioned
as a single point, the three-vector d(k)= (−Δc cosθ, −Δc sinθ,
vFk) defines a mapping from the k-space (S2) to the d-vector
space. Since the z-component vFk ≥ 0, the normalized d-vector
d̂ðkÞ ¼ dðkÞ= dðkÞj j resides in a hemisphere surface. For d̂ðkÞ
covering the hemisphere n times, the winding number becomes
n/2. This winding number is a topological invariant defined in the
chiral basis Ck= [ck,+, ck,−]T, which we term as the chiral Chern
number Cc.

Recalling that for the TI surface with a Zeeman field, a
conventional Chern number C is defined in the same way16,23 but
in the spin basis, Φk= [ψk,↑,ψk,↓]T. The difference between C and
Cc becomes clear from the perspective of Berry phase as
following. In the original spin basis, following a closed loop in
momentum space, the accumulation of Berry phase is
ϕ ¼ �i

H
dk � ukh j∇k ukj i, where ukj i is the eigenstate of the

valence band in the spin basis. For a Bloch state defined in the
chiral basis, a similar geometric phase can be defined as
ϕc ¼ �i

H
dk � uck

� ��∇k uck
�� �

, where uck
�� �

is the eigenstate of the
valence band in the chiral basis. The Bloch states in the above two
formalisms are related to each other by the unitary transforma-
tion uck

�� � ¼ R̂ðkÞ ukj i. It then becomes obvious that the two Berry
phases satisfy ϕc− ϕ=�i

H
dk � ukh jR̂yðkÞ∇kR̂ðkÞ ukj i, leading to

Cc− C=�ði=2πÞH dk � ukh jR̂yðkÞ∇kR̂ðkÞ ukj i= 1/2, after insert-
ing the R̂ðkÞ matrix we used to diagonalize HDirac.

To explicitly demonstrate the topological invariants, we plot
the normalized vector d̂ðkÞ with traversing the whole k-space.
Figure 2a, b shows the mapping of the d̂ðkÞ vector in the spin and
chiral basis, respectively. It is found that d̂ðkÞ in latter basis
completely covers the hemisphere while d̂ðkÞ in the former does
not, leading to Cc= 1/2 and C= 0. Therefore, two topological
invariants are needed to completely characterize the p+ ip
excitonic state, namely, (C, Cc)= (0, 1/2). The zero Chern
number C= 0 means that the p+ ip excitonic insulator is
topologically distinct from the TI surface with a Zeeman field that
has C= 1/216. This is clear from the Landau quantization of the
two states. For the TI surface with a Zeeman field, the Landau
level (LL) for |n| ≥ 1 reads as En ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ev2FB nj j þm2

p
, where m is

the Zeeman gap. In addition, there is an unconventional zeroth
LL E0= sgn(m)m which is located exactly at the gap edge26–28.
This zeroth LL is a manifestation of the nontrivial Zeeman mass
as a result of C= 1/227,28. For the p+ ip excitonic insulator
phase, however, one cannot find the unconventional zeroth LL
located at the gap edge, consistent with C= 0.

Chern–Simons theory and fractionalization. The nonzero chiral
Chern number Cc= 1/2 indicates that the p+ ip excitonic insu-
lator must be topologically distinct from normal insulators.

Recalling the p+ ip SCs where Majorana fermions are encoded in
vortices22, we shift our attention to topological defects in the p+
ip excitonic state. To this end, we can solve the Bogoliubov de
Gennes (BdG)-type equations looking for zero-energy solutions.
In real space, the equations can be derived as (see Methods for
details):

eiα �i∂r þ r�1∂α
� �

uðrÞ � 1
vF

ΔcðrÞvðrÞ ¼ 0; ð4Þ

e�iα �i∂r � r�1∂α
� �

vðrÞ þ 1
vF

Δ�
cðrÞuðrÞ ¼ 0; ð5Þ

where α is the polar angle in real space and u, v are the two
components of the spinor wave function. Similar equations have
been studied in refs. 22,29,30. However, note that the physics in the
present model is different from previous works. Read and
Green22 derive the equations for SCs, where charge conservation
is broken and Majorana fermions are the emergent excitations.
For our system, the U(1) gauge symmetry is preserved, therefore
no Majorana modes are allowed. Hou et al.29 investigate graphene
with a chirality mixing texture which induces the mass term, and
Seradjeh et al.30 discuss the exciton condensation between two
opposite TI surfaces. In contrary, here we focus on the excitonic
order in a Dirac liquid state and the mass term is generated by the
condensation of p+ ip excitons. To solve the equations in the
presence of a topological defect31, we assume Δc(r)= Δc(r)eiα. A
unique normalized zero-energy bound state32,33 can be obtained
as, u= Af(r)ei(α+π/2)/2 and v= u*, where A is the normalization
constant and the function f(r)= exp[−|Δc|r/|vF|] decays
exponentially.

We note that the single particle Hamiltonian h in Eq. (2)
satisfies (iτ2)h(iτ2)= h. This allows one to define a time-reversal-
type operator Θ= iτ2K, with which it is clear that for any
eigenstate ψE with energy E, ΘψE is also a eigenstate with energy
−E. Besides, the total number of fermion states are conserved,
namely,

R1
�1 dEδρðEÞ ¼ 0, where δρ(E) is the change of density

of states. Applying this formula to the case where a topological
defect is in presence, and then taking into account the fact that ρ
(E) is a symmetric function with respect to E= 0, one comes to
the conclusion that both the conduction and valence band lose
half a state. This state is compensated by the zero mode that is
bound to the topological defect. Consequently, at half filling, the
electron charge associated to the defect is either −e/2 or e/2,
depending on whether the zero mode is occupied or empty.

We have shown that the p+ ip excitonic insulator is
characterized by Cc= 1/2 and displays fractional charge e/2 at
vortices. However, it is still unclear how the two observations are
related to each other. This can be answered by the parity
anomaly34 of the p+ ip excitonic insulator and the effective gauge
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Fig. 2 The mapping of d̂ðkÞ. a The mapping in the original spin basis. b The mapping in the chiral basis. The difference between the two situations shows
that the two topological invariants are needed to completely characterize the p+ ip excitonic insulator, i.e., (C, Cc)= (0, 1/2)
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theory associated with the topological defects. First, we couple an
external U(1) gauge field Aμ (with μ= 0, 1, 2) to the p+ ip
excitonic state35, and we introduce the Dirac matrices defined as
γ0= τ3, γ1,2= iτ1,2. In order to extract the effective theory for the
vortices, we include the vortex degrees of freedom χ in the order
parameter. Second, we perform a singular gauge transformation,
c± → e±iχ/2c±36, which results in the following Lagrangian (see
Methods for details),

L ¼ Ck i~γμ∂μ þ ~γμaμ þm
� 	

Ck; ð6Þ

where Ck �Ck
� �

is the Grassmann field. ~γμ are defined as ~γ0 ¼ γ0,
~γ1 ¼ γ2, ~γ2 ¼ �γ1. In Eq. (6), the vortex degrees of freedom have
been absorbed into an effective gauge field aμ after the singular
transformation. For a static defect with ∂0χ= 0, aμ ¼ Aμ þ 1

2 ∂μχ.
Finally, after one integrates out the Grassmann field, a
Chern–Simons term with respect to the effective gauge field aμ
can be obtained in the second order expansion:

LCS ¼
I
2π

ϵμνρaμ∂νaρ; ð7Þ

where the coefficient I is found to be 1/2 for the proposed p+ ip
excitonic insulator.

We note that for the TI surface with a Zeeman field23, a similar
Chern–Simons Lagrangian arises as a result of the parity
anomaly, where the coefficient in front of the Chern–Simons
term is exactly the Chern number C. Here, the coefficient I= 1/2
is identified to be the chiral Chern number Cc defined above. The
similarity between the two gauge field theories is due to the
underlying parity anomaly; however, for the p+ ip excitonic
insulator, it is the effective gauge field aμ rather than the external
field Aμ that obeys the Chern–Simons form. Further inserting
aμ ¼ Aμ þ 1

2 ∂μχ, the full Lagrangian LCS ¼ I
2π ϵ

μνρAμ∂νAρ �
Aμj

μ þLv consists of a Lagrangian describing the vortex Lv
and a current operator associated with the vortex,

jμ ¼ I
2π

ϵμνρ∂ν∂ρχ: ð8Þ

For a static vortex (with vortex number n= 1) that centered at r0,
we have ϵij∂i∂jχ ¼ 2πδ r� r0ð Þ, inserting which into Eq. (8), the
electron charge of the defect is then obtained as
Q ¼ R d2xj0 ¼ I � Cc ¼ 1=2. Therefore, we have proved that
the chiral Chern number Cc equals to the fractional charge (in
unit of e) of a topological defect, justifying Cc to be the essential
topological invariant characterizing the p+ ip excitonic insulator.

Spontaneous in-plane magnetization. The order parameter
−Δce−iθ in Eq. (2) breaks TRS. This suggests that the ground state
carries a magnetization associated with it. Before proceeding, we
note that the order parameter −Δce−iθ still enjoys a redundant
global phase. In the following, we take this into account and write
the off-diagonal term in Eq. (2) as −Δce−iθ′, where θ′= θ− β
with β being a constant angle independent of k. The global phase
β is analogous to U(1) phase of a superconductor.

To clearly show the feature of magnetization, we calculate the
spin expectation values 〈σx〉, 〈σy〉, 〈σz〉 from the single particle
eigenstates and study the spin texture of the p+ ip excitonic
ground state |Ψ〉 (Eq. (3)). We obtain

σxh i ¼ � Δc cosθ′þξkð Þ vFk cosθ′þΔc sin
2θ′ð Þ

v2Fk
2þΔ2

cþΔc cosθ′ξk
;

σyh i ¼ � Δc cosθ′þξkð Þ vFk sinθ′�Δc sinθ′cos θ′ð Þ
v2Fk

2þΔ2
cþΔc cosθ′ξk

;

σzh i ¼ � Δ2
c sin

2θ′�Δ2
c cos

2θ′�Δ2
c�2Δccos θ′ξk

v2Fk
2þΔ2

cþΔc cosθ′ξk
:

As has been discussed before, 〈σz〉 does not break TRS. The
integral of 〈σz〉 over the whole k-space vanishes. The in-plane
spin texture (〈σx〉, 〈σy〉) is however nonzero, and we plot it in
Fig. 3 for different values of β, i.e., β= 0, β= π/2, β= π, β= 3π/2.
Interestingly, it is found that the in-plane spin configuration is
tilted from the standard helical spin texture of the original TI
surface, and the spins at two TRS-related momentum points, k
and −k, are no longer always opposite to each other, violating the
TRS. Though being tilted, the chiral nature of electron’s spin is
preserved as we can see that the direction of the vector (〈σx〉, 〈σy〉)
still undergoes a change of 2π when traversing a closed path
around k= 0 point. Furthermore, we calculate the total in-plane
magnetization M by integrating (〈σx〉, 〈σy〉) over the momentum
space. It is found that M always points towards the opposite
direction of the global phase β, as shown by the thick red arrows
in Fig. 3. We also note that the emergent magnetization of ground
state can lead to anisotropic in-plane transport of excitons which
serves as an evident experimental signature of the p+ ip excitonic
insulator. Furthermore, since β determines the direction of
magnetization of ground state, one expects to control β by
applying a weak in-plane magnetic field during the process of
TRS symmetry breaking.

The excitonic phases on interacting TI surfaces. After careful
characterization of the topological properties of the p+ ip exci-
tonic insulator, we now study its possible realization on inter-
acting TI surface states. Although various instabilities of
interacting topological insulators and topological super-
conductors have been extensively studied37–48, we focus on the
excitonic instability of the surface states and propose to realize the
minimal model of the topological excitonic insulators via spon-
taneous symmetry breaking that enjoys a fractional chiral Chern
number Cc= 1/2, which is different from earlier proposals based
on semiconductor heterostructure with an integer
Thouless–Kohmoto–Nightingale–Nijs (TKNN) number49.

The effective model Eq. (1) describing the surface state is
usually modified by a higher order wrapping effect, reducing the
rotational symmetry of the Dirac cone down to a discrete C3

subgroup. Our further studies on the wrapping effect shows that
the exciton gap remains very robust and therefore one can neglect
the wrapping effect for the following analysis. We firstly consider
the particle–hole symmetric case, while the generalization to finite
chemical potential μ is very straightforward and will be discussed
below.

First we start with demonstrating that a p-wave-type interac-
tion that spontaneously generates the p+ ip-wave exciton
insulator naturally arises from the Hubbard model, which reads
in k-space as:

HI ¼
V
2

X
k;k′;q

X
σ

ψy
kþq;σψ

y
k′�q;σψk′;σψk;σ : ð9Þ

To facilitate the study of excitonic instability, we transform HI

onto the chiral basis. Then, considering only interband forward
scattering channel, the low-energy effective vectorial interaction
component can be derived as (see Methods for details),

H ¼ ¼P
k;n

nvFkc
y
k;nck;n

� V
4

P
k;k′;n

k̂cyk;nck;�n

h i
� k̂′cyk′;�nck′;n
h i

;
ð10Þ

where we assume a momentum cutoff Λ implicit in the sum of k.
n is the band index. The interaction term in the second line,

Hð1Þ
eff ¼ � V

4

P
k;k′;n k̂cyk;nck;�n

h i
� k̂′cyk′;�nck′;n
h i

, is of p-wave type,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08203-9

4 NATURE COMMUNICATIONS |          (2019) 10:210 | https://doi.org/10.1038/s41467-018-08203-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and it arises from the spin-momentum locking of the surface
state. After introducing a complex bosonic vector field Δ and
performing the Hubbard–Stratonovich transformation to decou-

ple Hð1Þ
eff , we arrive at a mean-field theory with the order

parameter given by Δ ¼ 1
2V
P

k k̂cyk;�ck;þ
D E

. When Δ ≠ 0, the

condensation of excitons gaps out the Dirac point, resulting in the
excitonic insulator phase. Similar to 3He superfluid theory25,
symmetry analysis implies two possible configurations of the
order parameter that are the extrema of the free energy: (1)

(chiral) p+ ip excitonic insulator with Δ ¼ 1ffiffi
2

p Δc bex � ibey� 	
and

(2) the polar excitonic insulator with Δ ¼ Δpbe, where be is a unit
vector in the xy plane. The polar excitonic phase is topologically
trivial with zero chiral Chern number.

By self-consistently solving the mean-field gap equation, we
obtain the condensation energy and the order parameter (Δc, Δp),
which are plot in Fig. 4a, b, respectively. Figure 4b shows the
emergence of a threshold Vc, beyond which the system develops
the excitonic instabilities with |Δc/p| ≠ 0. Figure 4a indicates that
even though both the p+ ip excitonic insulator and polar
excitonic insulator are stable compared to the gapless Dirac cone
for V >Vc, the p+ ip excitonic insulator is more energetically
favored due to the lower condensation energy. Moreover, we also
performed addition mean-field calculations by treating the p+ ip
and polar excitonic instability on equal footing. It is found that
the p+ ip channel always suppresses the polar order down to
zero. Therefore, even though the ground state energies of the two
states are close, the mass term of the polar exciton insulator is
negligible in the mean-field theory. Hence, the resultant mean-
field Hamiltonian exactly matches with Eq. (2), and the proposed
mass term M̂ðkÞ is generated by spontaneous TRS breaking as a

result of the p-wave interaction Hð1Þ
eff . Moreover, we note that for

particle–hole asymmetric case with a finite chemical potential μ,
the critical Vc increases with increasing μ. Although the exciton
insulator is always stable for strong enough interaction V >Vc, it
is more experimentally favorable to tune μ close to the Dirac
point50,51.

In the above calculations, we temporarily focused on the p-
wave interaction Hð1Þ

eff without considering the s-wave compo-
nent. Nevertheless, the results clearly show that the TI surface
state indeed has a strong tendency towards the p+ ip excitonic
instability via spontaneous TRS breaking. We now take into
account the interaction in the s-wave channel, which can also be
derived from the local Hubbard interaction as (see Methods for
details), Hð2Þ

eff ¼ � V
4

P
k;k′;n c

y
k;nck;�nc

y
k′;�nck′;n. In order to be

more general, we assume in the following two independent
couplings Vp and Vs for the p-wave and s-wave interaction
respectively, and treat both terms on equal footing. An s-wave
bosonic scalar field Δs ¼ Vs

P
k cyk�ckþ
D E

is introduced to
decouple Hð2Þ

eff in addition to the p+ ip excitonic order
parameter Δc. The coupled self-consistent equations with
respect to Δs and Δc are obtained in the standard approach
which leads to the calculated phase diagram shown by Fig. 4c. It
is found that both the s-wave and p+ ip-wave excitonic
insulator can be spontaneously generated from the Dirac liquid
phase with strong enough interactions. The former and latter are
stabilized for large Vs and Vp respectively. We note that
although the p+ ip excitonic phase, which is absent in
conventional semiconductors, becomes stable in a large para-
meter region of the phase diagram, it does not occur as the
ground state for the discussed local Hubbard model, which lies
in the parameter line Vs= Vp that only enters into the s-wave
excitonic condensation.
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The stabilization of the p+ ip excitonic insulator. Now we
study the stabilization of the p+ ip excitonic insulator on TI
surfaces by going beyond the natural Dirac semimetals and taking
into account external perturbations. Recalling the interband
optical absorption process shown by Fig. 1b, one expects that
additional photons should prefer the p-wave pairing due to the
spin-flip mechanism that gives rise to spin-triplet excitons. Since
excitons are usually generated by absorption of photons in a
material, we consider a linearly polarized perpendicular incident
laser with frequency �ω and light intensity I. The corresponding
microscopic theory can be constructed by quantization of the
vector potential A(r), i.e.,

AðrÞ ¼
X
qλ

ffiffiffiffiffiffi
2π
ωq

s
eλ aq;λ þ ay�q;λ

� 	
e�iq�r; ð11Þ

where aq,λ ayq;λ
� 	

is the annihilation (creation) operator of pho-

tons, eλ (λ= 1, 2) are the polarization vectors, ωq= c|q| is the
light frequency, with c being the light velocity and q the wave
vector of photons.

The coupling of the external field to the surface electrons is
described within the formalism of the minimal coupling, which
leads to the electron–photon interaction,

Hel�ph ¼ �evF
P

kqλσσ′

ffiffiffiffi
2π
ωq

q
σσσ′ � eλð Þ ψy

k;σaq;λψk�q;σ′

�
þψy

k;σa
y
�q;λψk�q;σ′

	
;

ð12Þ

where the term (σσσ′ · eλ) arises due to the helical spin texture and

the spin-momentum locking of TI surface states. For linearly
polarized perpendicular incident photons, e1 ¼ bex and e2 ¼ bey .
Thus, the spin-flip matrices σx and σy take place in Hel-ph. This
verifies the spin-flip mechanism illustrated by Fig. 1b in a
microscopic perspective. Moreover, since c � vF, the conserva-
tion of energy and momentum requires kj j � qj j in Hel-ph, and
therefore ensures the direct interband excitation with k− q≃ k.
Furthermore, the photon fields are Gaussian with the Hamilto-

nian Hph ¼
P

qλ ωq ayq;λaq;λ þ 1=2
� 	

, one can therefore exactly

integrate them out. This procedure leads to the effective action
Sint describing the renormalization from photons:

Sint ¼ �R dt P
kk′q

P
αβργλ

2πe2v2F
ωq

σαβ � eλ
� 	

σργ � eλ
� 	

´ 1
i∂t�ωq

ψy
k;αψk;βψ

y
k′;ρψk′;γ:

ð13Þ

Where
P

λ σαβ � eλ
� 	

σργ � eλ
� 	

¼ σxαβσ
x
ργ þ σyαβσ

y
ργ, inserting

which it is found that Sint consists of an equal-time renormaliza-
tion term that produces the effective interaction between
electrons,

Hint ¼ �Veff

X
kk′σ

ψy
k;σψk;σψ

y
k′;σψk′;σ ; ð14Þ

where Veff ¼ 4πe2v2Fnph=�ω
2 and nph is the number density of

photons that interact with the electrons, which is proportional to the
light intensity I. We have utilized the fact that all the wave vectors q
satisfy q ¼ qbez ¼ �ωbez=c for photons with the frequency �ω. The first
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two operators in Hint, ψy
k;σψk;σ , are generated by the optical

interband absorption process with spin-flip depicted by Fig. 1b.
Similarly, the last two operators, ψy

k′;�σψk′;σ , are originated from the
interband relaxation process with spin-flip. After a unitary
transformation to the chiral basis, Eq. (14) is exactly cast into:

Hint ¼ �Veff

2

X
k;k′;n

k̂cyk;nck;�n

h i
� k̂′cyk′;�nck′;n
h i

: ð15Þ

Interestingly, Hint enjoys the p-wave factor k̂ � k̂′, exactly the same
as the p-wave interaction component reduced from the Hubbard

model, Hð1Þ
eff . The interband optical processes automatically select

the p-wave channel due to the spin-flip scatterings (Fig. 1b). More
importantly, Hint has a strength Veff tunable by external field
parameters, �ω and I. According to the mean-field study above and
the calculated phase diagram in Fig. 4, it is known that the
tunable external field can renormalize the Dirac cone state and
drive it into the proposed p+ ip-wave excitonic insulator. The
resultant state displays the predicted fractional charges associated
with vortex excitations, the spontaneous in-plane magnetization
and thus the anisotropic transport of excitons on the TI surface.

Discussion
Excitonic insulators require strong interactions since the topo-
logical surface states become unstable only when the interaction is
as large as the ultraviolet cutoff (band gap) as shown in Fig. 4b.
Therefore, we argue that topological Kondo insulators (TKIs) are
good candidates for excitonic instability on TI surface. For
instance, in the case of SmB6, which is the archetypal TKI, the
renormalized Coulomb interaction (U ~ 1 eV) is much larger than
the direct band gap (ΛvF ~ 20 meV). For these parameters, our
mean-field theory predicts an excitonic gap of order Δs/c≃ 2–10
meV. Indeed, magnetism and hysteresis in magnetotransport
have been observed in SmB652. Whether these experiments
indeed observe an excitonic insulator require future work. We
would like to note that our theory is not related with the recent
works on excitonic contributions to quantum oscillations53 or the
intervalley excitonic instabilities54 in SmB6.

In addition to the short-range interaction, we also considered
a long-range Coulomb interaction on the TI surface and make
generalization to finite temperature55. It is found that the cri-
tical interaction Vc for BCS exciton condensation is sig-
nificantly reduced for long-range interaction. At finite
temperature, taking into account the thermal fluctuation, the
strict long-range order is absent, the Kosterliz–Thouless tran-
sition temperature TKT can be calculated by evaluating the
phase stiffness of the exciton order based on the mean-field
calculations56. Experimentally, the driven TI surface offers a
rare platform for realization of new optical devices and facil-
itates the study of possible collective instabilities of Dirac
electrons. Experiments measuring bulk metallic TI materials
have obtained the lifetime of the excited states to be around a
few picoseconds57–59, which is significantly larger than than
that in graphene. Moreover, a remarkably long lifetime
exceeding 4 μs has been observed by experiment for the surface
states in bulk insulating Bi2Te2Se60. These indicate promising
observation of a transient or quasi-equilibrium excitonic
insulator59,61. Besides, the surface has a reduced dielectric
constant which can be tuned even smaller by doping or gat-
ing62, and this possibly makes the long-range interaction more
effective.

To summarize, we proposed a new type of topological p+ ip
excitonic insulator that achieves the parity anomaly and is
characterized by the nontrivial chiral Chern number. We

provided a concrete example and discussed its possible realization
in strongly correlated TI surface. Interestingly enough, similar to
the TIs due to band inversion, the predicted topological beha-
viors, i.e., the charge fractionalization and the emergent magne-
tization of ground state, are robust and immune to continuous
deformation of the Hamiltonian, as long as the exciton gap
remains unclosed. This suggests that realizations of topological p-
wave excitonic insulators are likely in many other physical sys-
tems. For example, the spectrum under study can be continuously
deformed from the Dirac cone to a quadratic band crossing point
(QBCP)63. This indicates that the instability is also possible and
may be more feasible in interacting 2D electron gas with spin-
momentum locking and QBCP. In this sense, the present results
are general and may provide new physical settings for the reali-
zation of quantum anomalies in condensed matter system, and
may stimulate different directions to search for more exotic
topological state of matters. We also note that a laser-induced
non-equilibrium version of our proposal has been experimentally
observed recently in Bi2Se355, where a millimeter-long transport
distance of excitons up to 40 K is reported, supporting an exci-
tonic condensation state formed on the TI surface. Our study on
the p+ ip excitonic insulator stabilized by the optical pumping
further predicts an anisotropic transport of excitons, which we
believe would be of great interest for future experimental
investigations.

Methods
The zero-energy BdG-type equations. From Eq. (2) in the main text, the zero-
energy eigen-equations can be written down as:

vFkuk � ΔðrÞe�iθvk ¼ 0;

�eiθΔ�ðrÞuk � vFkvk ¼ 0:

Here, we assume a real-space dependence of the order parameter Δ(r). With a
vortex,we have Δ(r)= Δc(r)eiα, where α is the polar angle of r in real space. To
simplify the eigen-equations, one can multiply a factor eiθ from the right in the first
equation, and a factor e−iθ from the left in the second equation. Then, a Fourier
transformation yields,

�i∂x þ ∂y

� 	
ur � 1

vF
ΔðrÞvr ¼ 0;

1
vF
Δ�ðrÞur þ �i∂x � ∂y

� 	
vr ¼ 0:

After transformation to the polar coordinate, we arrive at the zero-energy BdG-like
equations in real space.

eiα �i∂r þ r�1∂αð ÞuðrÞ � 1
vF
ΔcðrÞvðrÞ ¼ 0;

e�iα �i∂r � r�1∂αð ÞvðrÞ þ 1
vF
Δ�
c ðrÞuðrÞ ¼ 0:

Effective gauge field theory. In the second quantized form, the effective
Hamiltonian of the p+ ip excitonic insulator reads as

H ¼
X
k

Cy
k vFkτ

z � Δce
�iθτþ � Δ�

c e
iθτ�


 �
Ck :

Formally, one can make transformation Ck ! Ck ¼ Ck=
ffiffiffi
k

p
, while keeping the

total Hamiltonian unchanged. The action in the functional representation is then
cast into:

S ¼
Z

dτdkCk i∂0 þ τzvFk
2 þ Δck′γ� þ Δ�

c k
′�τþ


 �Ck ;
where we have defined k′= kx− iky and introduced the Dirac matrices in 2D, γ0

= τ3, γ1= iτ1, γ2= iτ2, and γ±= (γ2 ± iγ1)/2. The above action formally describes
a 2D Dirac fermion with a mass vFk2. Since the sign of mass determines the
topology of 2D Dirac systems, and vFk2 ≥ 0 for all k, one can continuously deform
the mass into a constant m while keeping the topological property unchanged.
With a U(1) gauge transformation of the Grassmann field, the gauge invariance
requires the minimal coupling ~k′ ¼ kx � Ax � i ky � Ay

� 	
. With further including

the vortex degrees of freedom in the order parameter, the Lagrangian can be
written as,

L ¼ Ck γ0fi∂0 þ γþeiχ~k′þ γ�~k′e�iχ þm
� 	

Ck ;
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where χ is the vortex phase which goes from 0 to 2π when one completes a closed
loop in real space. Without losing generality, we set |Δc|= 1. The behavior of
vortex degrees of freedom can be extracted from the above Lagrangian after
integrating out the Grassmann fields. To the second order expansion, the
Chern–Simons action in Eq. (7) is obtained.

Mean-field analysis of the Hubbard interaction. Let us denote the four k vectors
in the Hubbard interaction Eq. (9) as k1= k, k2= k′, k3= k′− q and k4= k+ q,
respectively. For zero temperature, only those degrees of freedom near μ become
dominant. Due to conservation of momentum in 2D, only the forward scattering is
least irrelevant for repulsive interactions in the low-energy window in the renor-
malization group sense, which consists of two scattering channels: k1= k3 (k2= k4)
and k1= k4 (k2= k3). Then we make a unitary transformation into the chiral basis.
For the scattering channel k1= k3 (k2= k4), after expansion, there are 16 different
combinations in total. The requirement of conservation of energy greatly simplifies
the expression, leaving us six terms that read as: ðk̂′ � k̂Þcyk′;þcyk;þck′;þck;þ ,�ðk̂′ � k̂Þcyk′;þcyk;�ck′;þck;� , ðk̂′ � k̂Þcyk′;þcyk;�ck′;�ck;þ , ðk̂′ � k̂Þcyk′;�cyk;þck′;þck;� ,�ðk̂′ � k̂Þcyk′;�cyk;þck′;�ck;þ , ðk̂′ � k̂Þcyk′;�cyk;�ck′;�ck;� . Only those scattering terms that
involve two bands can open a gap in the Dirac state, while the scatterings within
one band only renormalize the Fermi velocity but do not contribute to any
instabilities. Moreover, the translation invariant mean-field treatment to the second
and fifth term contributes to a self-energy that only renormalizes the chemical
potential. With these consideration, the forward scattering channel k1= k3 (k2=
k4) produces the following reduced interaction,

Hð1Þ
eff ¼ � V

4

P
k;k′;n

k̂ � k̂′
� 	

cyk;nck;�nc
y
k′;�nck′;n: ð16Þ

For the scattering channel k1= k4 (k2= k3), following the same approach above,
one obtains the following reduced interaction,

Hð2Þ
eff ¼ � V

4

P
k;k′;n

cyk;nck;�nc
y
k′;�nck′;n: ð17Þ

Both Hð1Þ
eff and Hð2Þ

eff , p-wave and s-wave type respectively, are reduced from the
original Hubbard interaction, which are the least irrelevant channels that can
possibly gap out the Dirac cone.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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