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Demonstration of a two-dimensional
PT -symmetric crystal
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With the discovery of PT -symmetric quantum mechanics, it was shown that even non-

Hermitian systems may exhibit entirely real eigenvalue spectra. This finding did not only

change the perception of quantum mechanics itself, it also significantly influenced the field of

photonics. By appropriately designing one-dimensional distributions of gain and loss, it was

possible to experimentally verify some of the hallmark features of PT -symmetry using

electromagnetic waves. Nevertheless, an experimental platform to study the impact of PT
-symmetry in two spatial dimensions has so far remained elusive. We break new grounds by

devising a two-dimensional PT -symmetric system based on photonic waveguide lattices

with judiciously designed refractive index landscape and alternating loss. With this system at

hand, we demonstrate a non-Hermitian two-dimensional topological phase transition that is

closely linked to the emergence of topological mid-gap edge states.
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In 1998, Carl M. Bender and Stefan Boettcher challenged the
conventional wisdom of quantum mechanics that the Hamil-
tonian operator describing any quantum mechanical system

has to be Hermitian1. They showed that Hamiltonians that are
invariant under combined parity-time (PT ) symmetry transfor-
mations likewise can exhibit entirely real eigenvalue spectra2. This
insight had a particularly profound impact in the field of pho-
tonics, where PT -symmetric potential landscapes can be imple-
mented by appropriately distributing gain and loss for
electromagnetic waves3–5. Following this approach, it became
possible to observe some of the hallmark features of PT sym-
metry, such as the existence of non-orthogonal eigenmodes6

and exceptional points7,8, diffusive coherent transport9, and to
study their implications in settings including nonlinearity10,
PT -symmetric lasers11,12, and topological phase transitions13–15.
Similarly, PT -symmetry has enriched other research fields ran-
ging from PT -symmetric atomic diffusion16, superconducting
wires17,18, and PT -symmetric electronic circuits19.

Nevertheless, to this date, all experimental implementations
of PT -symmetric systems have been restricted to one effective
spatial dimension, which is mostly due to technological limita-
tions involved in realizing appropriate non-Hermitian potential
landscapes.

In this work, we report on the experimental realization and
characterization of a two-dimensional PT -symmetric system by
means of photonic waveguide lattices with judiciously designed
refractive index landscape and alternating loss. A key result of our
work is the demonstration of a non-Hermitian two-dimensional
topological phase transition that coincides with the emergence of
mid-gap edge states. Our findings lay the foundation for future
investigations exploring the full potential of PT -symmetric
photonics in higher dimensions. Moreover, our approach may
even hold the key for realizing two-dimensional PT -symmetry
beyond photonics, e.g., in matter waves and electronics.

Results
Theory. PT -symmetric systems are described by a Hamiltonian
that is invariant under parity-time symmetry transformations1. In
a more formal language, this means that if the Hamiltionian Ĥ
commutes with the PT -operator: Ĥ; PT

� �
¼ 0, and the Hamil-

tonian shares the same set of eigenstates with the PT -operator,
then the entire set of eigenvalues of Ĥ is real. A necessary con-
dition for this symmetry to hold is that the underlying potential
obeys the relation V̂ �xð Þ ¼ V̂ � xð Þ1. Whereas complex poten-
tials tend to be difficult to realize in most physical systems, in
2007 it was shown that photonics provides a suitable testbed due
to the complex-valued character of the refractive index3,4. Since
then, PT -symmetric systems have been explored in a variety of
photonic platforms, ranging from waveguide arrays6, fiber lat-
tices7, and coupled optical resonators20 to plasmonics21 and
microwave cavities22. The implementation of PT -symmetry in
photonics is based on the observation that the Schrödinger
equation of quantum mechanics for the probability amplitude ψ
(x, y, t),

i�h
∂

∂t
ψ x; y; tð Þ ¼ � �h2

2m
∇2ψ x; y; tð Þ þ V x; y; tð Þψ x; y; tð Þ; ð1Þ

and the paraxial Helmholtz equation of electromagnetism for the
electric field amplitude E(x, y, z),

i
n0
2k0

∂

∂z
E x; y; zð Þ ¼ � n0

2k20
∇2E x; y; zð Þ � n x; y; zð ÞE x; y; zð Þ; ð2Þ

are formally equivalent if the potential V(x, y, t) in the Schrö-
dinger equation is replaced by the refractive index profile −n(x, y,

z) in the Helmholtz equation23. PT -symmetry then translates
into the following condition for the complex refractive index:

n �x;�y; zð Þ ¼ n� x; y; zð Þ ð3Þ

In other words, the real part Re(n(x, y, z)) needs to follow a
symmetric distribution, while the imaginary part Im(n(x, y, z))
has to be antisymmetric under the parity operation. In general,
the latter implies that loss in one propagation direction has to be
compensated by an identical gain in the opposite direction3. It
turns out, however, that this stringent requirement can be relaxed
in tight-binding systems, where an alternating loss distribution is
sufficient to obtain PT -symmetric behavior9,24. Indeed, such
passive systems exhibit exactly the same evolution dynamics that
one would expect in active structures if one accounts for a
constant global loss by normalizing the field intensity, an
approach we followed up on in our work.

Nevertheless, to date PT -symmetry was only realized in one-
dimensional (1D) systems, which drastically limits the spectrum
of accessible physical effects. For example, the second spatial
degree of freedom in two-dimensional (2D) structures allows for
the study of various additional symmetries, such as rotation, and
their interplay with PT -symmetry. Moreover, one can introduce
anisotropy with much more variety than in just one dimension.
Furthermore, some physical effects fundamentally change their
characteristics depending on the dimensionality, such as
Anderson localization. This also applies to nonlinear optics, in
particular solitons, which exhibit entirely different properties in
2D systems. The dimensionality is likewise of great importance
for topological systems, since topological indices such as Chern
number, Z2 invariant or Bott index in general necessitate at least
a two-dimensional parameter space in which they can be defined.
Moreover, chiral edge states can exist only along the edge of a 2D
system. In our work, we break new grounds by devising a
platform for the implementation of 2D PT -symmetry that may
enable future studies of this wide range of effects.

Setting. We consider so-called “photonic graphene”, a regular
arrangement of waveguides in a honeycomb geometry (sketched
in Fig. 1a)25. In order to establish the necessary potential con-
dition for PT -symmetry Eq. (3), the two triangular sublattices of
the honeycomb may exhibit different loss, symbolized by the
yellow and blue filling of the individual lattice sites, respectively.
We describe the light evolution in this system by the tight-
binding approximation of Eq. (2), which reads as26:

i∂zam;n ¼ iγam;n þ c bm�1;n þ bm;nþ1 þ bm;n�1

� �
ð4aÞ

i∂zbm;n ¼ �iγam;n þ c amþ1;n þ am;nþ1 þ am;n�1

� �
ð4bÞ

The am,n and bm,n denote the amplitudes at the lattice sites of
the two sublattices, γ describes the gain/loss, and c is the coupling
constant.

Launching a light beam into the waveguides results in spatial
beam dynamics (governed by Eqs. (4a) and (4b)) that, for the case
of neither gain nor loss in both sublattices, resembles the
evolution of a single electron in carbon-based graphene according
to Eq. (1). One of the striking features of the graphene band
structure is the existence of the so-called Dirac region in the
vicinity of the conical intersection points (“diabolical points”)
between the first and the second bands, displayed in Fig. 1b. In
these regions, the tight-binding Hamiltonian of our PT -sym-
metric photonic graphene can be expanded into a Taylor series26

to obtain a mathematical structure resembling the Dirac equation

Ĥ ¼ c
ffiffiffi
3

p
~νσ1 þ c

ffiffiffi
3

p
~μσ2 þ iγσ3 ð5Þ
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that describes relativistic quantum particles. Here, σ1,2,3 are the
Pauli matrices:

σ1 ¼
0 1

1 0

� �
; σ2 ¼

0 �i

i 0

� �
; σ3 ¼

1 0

0 �1

� �
; ð6Þ

2γ denotes the difference in loss between the sublattices, and c
is the intersite hopping. The quantities ~μ and ~v represent the
components of the transverse wave vector kx, ky measured from
the position of the original Dirac point. For simplicity, we
suppressed an additional term −iΓσ0 that arises from the passive
nature of our system, where Γ is the average loss of both
sublattices, and σ0 is the unity matrix. The non-Hermitian
Hamiltonian in Eq. (5) exhibits a complex dispersion relation
with a non-real eigenvalue spectrum27. Mathematically, complex
eigenvalues of the Hamiltonian appear whenever the PT -opera-
tor and the Hamiltonian cease to share all of their eigenvectors.
Such a system is said to have broken PT -symmetry, although the
PT -operator still commutes with the Hamiltonian. This seeming
paradox stems from the fact that the T -operator is anti-linear. A
graph of the real part of the graphene dispersion relation

with γ
c ¼ 0:32 is shown in Fig. 1c. In contrast to “conventional”

(i.e., dissipation-less) graphene, the real part of the dispersion
relation is now a single-sheeted hyperboloid. The lower part of
Fig. 1c shows the imaginary part of the dispersion relation,
highlighting the purely imaginary eigenvalues around the original
vertices.

One can drive the system back into the unbroken PT -sym-
metry regime by applying a linear strain τ, where τ= 1
corresponds to the unstrained case. This strain is applied as
indicated in Fig. 1a by the red connections between the atoms. In
Hermitian lattices (γ= 0), increasing the strain pushes pairs
of Dirac points towards one another until they merge at τ= 228.
For any given loss factor γ, all eigenvalues of the system become
real above a threshold strain τ � 2þ γ

c
26. Therefore, in such a

setting, the structure can exhibit unbroken PT -symmetry, with
the transition occurring exactly at τ ¼ 2þ γ

c. The Hamiltonian
of this system reads as26

Ĥ ¼ c τ � 2ð Þ � 3
2
ct~μ2 þ c~ν2

	 

σ1 þ ct

ffiffiffi
3

p
~μσ2 þ iγσ3; ð7Þ
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Fig. 1 The PT -symmetric graphene lattice. a Due to the quantum-optical analogy between solids and waveguide lattices, the probability amplitude of
a single electron in a carbon graphene lattice shares the same evolution equation as a light beam injected into a honeycomb waveguide lattice. b The
dispersion relation of a graphene lattice with no gain/loss and no strain (τ= 1), c with gain/loss and no strain (τ= 1), and d with gain/loss above the critical
point (τ > 2þ γ

c), which corresponds to the unbroken PT -symmetry regime
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with Δ= c(τ− 2) denoting the gap in the spectrum26. In Fig. 1d,
we show the real and imaginary parts of the dispersion relation
for photonic graphene with the same loss factor as in Fig. 1c in
the presence of a strain given by τ ¼ 2þ γ

c þ 0:61. Evidently,
all eigenvalues are real, and a gap has opened in accordance
with Eq. (7).

Experimental methods. In order to implement the PT -symmetric
photonic graphene lattice, we employ the direct laser-writing
technology29. The desired loss in the system is realized by intro-
ducing a certain concentration of microscopic scattering points
along the waveguides by dwelling, as sketched in Fig. 2a. As both
the dwelling time and the separation between the individual scat-
tering points can be freely tuned, this approach allows for a wide
range of artificial losses to be chosen without compromising the
real part of the refractive index or introducing directionality into
the system. Figure 2b shows our calibration measurements of the
realized loss, as a function of dwelling time and scattering point
separation. The general trends are clearly visible: the cumulative
loss experienced by light propagating through the waveguides sys-
tematically increases the smaller the separations and the longer
the dwelling times. The strain is realized by reducing the distance
between the waveguides with the red connection bond, shown in
Fig. 1a, while the distances between the waveguides with the gray
connection bonds are kept constant.

PT -phase transition. With these tools at hand, we can now
proceed to experimentally demonstrate the PT -symmetry tran-
sition in our 2D photonic graphene lattice. When no strain is
present, PT -symmetry is broken and, hence, the spectrum is
complex. After a certain propagation distance, the remaining
light tends to reside predominantly in the lossless sublattice30.
As the strain is increased, however, the system enters the regime

of unbroken PT -symmetry, resulting in a real spectrum. This
transition can be readily visualized by exploiting the fact that in
the broken PT -phase, the eigenvalues exhibit a wide range of
different imaginary parts, and the power remaining in the lattice
depends strongly on the injection site. In contrast, the unbroken
PT -phase is by definition characterized by all eigenvalues having
the same imaginary part and, for an infinite system, the power
decay in the lattice becomes entirely independent of the excited
waveguide. Therefore, as the strain is increased above the critical
value of τ ¼ 2þ γ

c, the standard deviation of the transmitted
power will eventually vanish14. Furthermore, one has to take into
account that the modes are non-orthogonal even in the unbroken
PT -regime, hence the power is not preserved3 and one does not
observe a sharp drop of the standard deviation at the transition
point. We demonstrate this behavior by fabricating 6 samples
with γ= 0.15 cm−1, a coupling of c= 0.475 cm−1 and strains
ranging from 1 ≤ τ ≤ 2.9. In each sample, we perform 6 single-
channel excitations of bulk sites, corresponding to 3 unit cells,
and measure the total power remaining in the lattice at the output
facet. The extracted data is plotted in Fig. 3. As expected, the
variance substantially decreases and tends toward zero as the
lattice is brought into its unbroken phase.

Topological phase transition. The phase transition from the
broken to the unbroken PT -symmetry regime in the graphene
lattice is inextricably linked to a topological phase transition
related to the emergence of topological mid-gap states. Figure 4a
summarizes this feature in a τ–γ phase diagram. The presence or
absence of topological mid-gap states at the edge of the Hermitian
graphene lattice (γ= 0) can be reconciled from the perspective of
the winding number in a Su–Shrieffer–Heeger (SSH) chain per-
pendicular to the edges31,32. A topological phase transition from a
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2D topological semimetal to a trivial insulator, accompanied by a
change of the SSH winding number, takes place at τ= 228,33,34.
For any γ > 0, however, a topological mid-gap state spontaneously
breaks PT -symmetry, since its real dispersive part is pinned.
As a consequence, the unbroken PT -symmetric domain of the
τ–γ phase diagram does not exhibit any edge modes, as shown
in Fig. 4a. In other words, one can either observe unbroken
PT -symmetry, or topological mid-gap states, but never both at
the same time, since the two phenomena are mutually exclusive35.
Interestingly, a third domain is wedged between the previously
discussed cases in the phase diagram. It arises when the strain τ
exceeds the gap threshold determined by γ. As the gap is closed,

PT -symmetry is invariably broken—yet, as long as the hyper-
boloids in the real part of the dispersion relation still touch,
topological mid-gap states are prevented from forming at the
bearded edge36. This can be intuitively explained by the shape of
these states, which are known to reside exclusively within one of
the sublattices, and, hence, experience solely +γ or −γ. As a
consequence, the imaginary part of the mid-gap dispersion is ±γ
and, from the perspective of a PT -symmetric SSH chain, this
implies the disappearance of the mid-gap state for τ ≥ 2− γ/c14,36.
Therefore, when starting in the topologically non-trivial domain
with mid-gap states and broken PT -symmetry, and following a
vertical trajectory (fixed γ and increasing τ) in the phase diagram,
the system passes not one but two phase transitions. The first
one is of topological nature and occurs when the direct gap of
the topological mid-gap states closes at τ= 2− γ/c. The second
occurs at τ= 2+ γ/c when the gapped unbroken PT -symmetric
domain is reached (see Fig. 4a).

These transitions are exactly what we observe in our
experiment. For the unstrained system (τ= 1) and a loss of
γ= 0.15 cm−1 such that γc ¼ 0:32, the systems exhibits topological
mid-gap states (Fig. 4b), which we excite by launching light into
an edge waveguide (Fig. 4c). Upon increasing the strain to τ= 2.2,
the mid-gap edge states disappear, in the dispersion relation
(Fig. 4d) as well as in experiment (Fig. 4e). However, the system is
still in the broken PT -symmetric phase, as shown in Fig. 3b. By
further increasing the strain to τ= 2.9, we finally drive the system
into the unbroken PT -symmetric phase, whereas the mid-gap
states are likewise absent (see Fig. 4f for the dispersion relation
and Fig. 4g for the experimental data). Our results clearly
show the close links between PT -symmetric and topological
phase transitions, and their related transition points as shown in
Fig. 4a. This rich interplay stems from the fact that it is the very
existence of a band gap that allows for the proper definition of a
topological invariant in this structure.

Discussion
In our work, we devised and experimentally demonstrated a 2D
PT -symmetric crystal, using an optical platform. To this end, we
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Fig. 4 Demonstration of the topological transition in the PT -symmetric
structure. a The τ–γ phase diagram shows three distinct phases associated
with the strain and loss parameters of our structure. The three stars
correspond to the parameters used in (b)–(g). b For a strain of τ < 2� γ

c,
the system is in the broken PT -symmetric phase and topological mid-gap
states are present. In the left panel, the corresponding dispersion relation
is shown. c Experimental image at the sample output facet, where light
was injected into the marked edge waveguide and remains close to the
edge as the mid-gap state exists. The ratio of light in the marked waveguide
in proportion to the intensity of all waveguides is about 43.5%. d For
an intermediate strain 2� γ

c < τ < 2þ γ
c, the system is still in the broken

PT -symmetric phase, but the topological mid-gap states cease to exist.
In the left panel, the corresponding dispersion relation is shown.
e Experimental image at the sample output facet, where light was injected
into the marked edge waveguide and spreads into the bulk as no mid-gap
state exists. The ratio of light in the marked waveguide in proportion to the
intensity of all waveguides is about 6.3%. f For sufficiently strong strain
τ > 2þ γ

c, the system is finally driven into the unbroken PT -symmetric
phase, where no topological mid-gap states exist either. In the left panel,
the corresponding dispersion relation is shown. g Experimental image at
the sample output facet, where light was injected into the marked edge
waveguide and spreads into the bulk as no mid-gap state exists. The ratio
of light in the marked waveguide in proportion to the intensity of all
waveguides is about 5.9%
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developed a technology to efficiently introduce artificial losses
into the system and unequivocally proved that our realized
structure is indeed in the unbroken PT -symmetric phase.
Moreover, we highlighted the close connection of a PT -sym-
metry phase transition to a topological phase transition in our
graphene lattice. These findings lay the foundations for realizing
2D PT -symmetry in other wave systems beyond photonics, such
as matter waves, sound waves, and possibly even plasmonics and
electronic circuits. Moreover, our work opens the gate for future
investigations exploring the full potential of PT -symmetry in
higher dimensions and may provide the tools to experimentally
address numerous exciting questions such as the impact of
nonlinearity, single photon interference, and many-body effects
in 2D PT -symmetric systems.

Methods
Fabrication of the structures. The waveguides were manufactured using the
femtosecond laser writing method29 in 10 cm long samples composed of fused
silica glass (Corning 7980). The laser pulses are created by a regenerative Ti:
Sapphire amplifier system (Coherent RegA 9000 seeded with a Mira 900) and
exhibit an energy of 450 nJ @ 800 nm wavelength and 100 kHz repetition rate. A
nano-positioning system in conjunction with a 20× microscope objective (0.35 NA)
provides the highly accurate focusing of the laser beam 50–800 µm under the
sample surface. By translating the sample with a speed of about 100 mm/min, the
refractive index at the focal point is increased by approximately 7 × 10−4, resulting
in waveguides with a mode field diameter of 10.4 µm × 8 µm for the 633 nm illu-
mination wavelength. Intrinsic propagation losses and birefringence were esti-
mated to be 0.2 dB cm−1 and 10−6, respectively.

Characterization of the structures. The single lattice site excitations were per-
formed with light of 633 nm from a Helium–Neon laser (Melles-Griot, 35 mW). In
order to focus into the sample a 10× microscope objective (0.25 NA) was used. The
output facet was imaged with another 10× microscope objective onto a CCD
camera (Basler Aviator). Upon characterization, the output intensity patterns
resulting from the excitation of lossy sites were normalized to compensate for the
systematically lower injection efficiency.

Data availability
All experimental data and any related experimental background information not
mentioned in the text are available from the authors on reasonable request.
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