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Even though proteins are produced from mRNA, the correlation between mRNA levels and

protein abundances is moderate in most studies, occasionally attributed to complex post-

transcriptional regulation. To address this, we generate a paired transcriptome/proteome

time course dataset with 14 time points during Drosophila embryogenesis. Despite a limited

mRNA-protein correlation (ρ= 0.54), mathematical models describing protein translation

and degradation explain 84% of protein time-courses based on the measured mRNA

dynamics without assuming complex post transcriptional regulation, and allow for classifi-

cation of most proteins into four distinct regulatory scenarios. By performing an in-depth

characterization of the putatively post-transcriptionally regulated genes, we postulate that

the RNA-binding protein Hrb98DE is involved in post-transcriptional control of sugar

metabolism in early embryogenesis and partially validate this hypothesis using Hrb98DE

knockdown. In summary, we present a systems biology framework for the identification of

post-transcriptional gene regulation from large-scale, time-resolved transcriptome and pro-

teome data.
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According to the central dogma of molecular biology,
protein is translated from mRNA, suggesting that mRNA
levels can be predictive of protein concentrations. How-

ever, the relationship between mRNA and the concentration of its
protein does not follow the simple monotonic correlation that
higher mRNA levels always relate to concordantly more protein.
This nontrivial mRNA−protein relation is a general phenomenon
ranging from yeast to human (reviewed for example in refs. 1–3),
that could arise from extensive post-transcriptional gene regula-
tion in eukaryotic organisms. One important mechanism of post-
transcriptional gene regulation is controlled protein translation.
In line with widespread translational regulation, global studies in
mammalian cells showed very different translation rates across
mRNAs4. Accordingly, ribosome occupancy of a transcript is a
better predictor of protein expression when compared to its
mRNA concentration5. Furthermore, proteins are subject to
active degradation via the Ubiquitin-proteasome system, con-
trolling protein degradation rates independently of its transcript
abundance6,7.

Even in the absence of regulated protein translation or turn-
over, a mismatch between mRNA and protein levels can occur,
due to the temporal delay that occurs when protein is translated
from mRNA. Accordingly, it has been noted that while mRNA
−protein correlations are generally low, the discrepancy is even
more pronounced during dynamical cellular transitions3. Theo-
retical considerations revealed that delayed protein dynamics
relative to mRNA results in a nonlinear relationship between the
two species8–10, and is especially pronounced for stable proteins
with long half-lives11. Furthermore, during cellular transitions
active regulation of protein translation and turnover is enforced.
For instance, RNA binding proteins, micro-RNAs, or RNA
modifications can affect processing, translation, and/or turnover
of a transcript12–16.

Drosophila embryogenesis poses an interesting case to study
post-transcriptional regulation, since almost no transcription
takes place during the first 3 h after oocyte fertilization. Instead,
developmental dynamics rely on post-transcriptional regulation
of maternally deposited mRNA and protein until the transcrip-
tion of embryonic genes is switched on during maternal-to-
zygotic transition (MZT)17,18. For example, it is well established
that the maternally deposited positional information genes
hunchback, caudal, nanos, and oskar are regulated post-
transcriptionally19,20. Global measurements of ribosome occu-
pancy at various time points demonstrated that post-
transcriptional regulation is a widespread phenomenon in the
developing embryo21. Given that RNA-binding proteins (RBPs)
are major regulators of post-transcriptional gene regulation, it is
not surprising that the mRNA-bound proteome is highly
dynamic during MZT22.

These complex dynamics of post-transcriptional regulation
make it difficult to intuitively understand the relations between
mRNA and protein expression changes. Mechanistic models of
protein translation provide a possible mathematical framework
for an improved understanding of gene expression regulation. For
instance, using simple models of protein translation describing
the spatio-temporal mRNA−protein relationship of three Dro-
sophila gap genes, we concluded that protein abundance merely
represents a time-delayed version of its corresponding mRNA not
requiring post-transcriptional regulation8. On a genome-wide
level, Teo et al. and Cheng et al. developed a time-discrete model
of protein turnover and directly inferred post-transcriptional
regulation from characteristic features of protein and mRNA time
courses23,24. Applying kinetic, time-continuous, models of pro-
tein translation, Peshkin et al. concluded for Xenopus laevis
development that the majority of protein expression changes can
be explained by assuming proportional protein production from

mRNA and first-order protein degradation25. Likewise, in den-
dritic cells responding to external lipopolysaccharide treatment,
Jovanovic et al. conclude that simple models of protein transla-
tion explain most of the variance in protein expression based on
mRNA abundance changes26.

In this work, we investigate the relation between mRNA and
protein levels during Drosophila embryogenesis using highly
time-resolved paired transcriptome/proteome measurements.
Compared to the previous modeling studies, we specifically
describe a framework for the systematic discovery of post-
transcriptional regulation mechanisms controlling a biological
process of interest: We combine model fitting and model rejec-
tion to explicitly name mRNA−protein pairs insufficiently
described by four distinct model variants, thereby deriving lists of
potentially post-transcriptionally regulated proteins. We show
that post-transcriptionally regulated proteins are enriched for
certain biological functions, including cell cycle and regulation of
glucose metabolism. Furthermore, based on sequence motif
analyses and knockdown experiments, we propose that the spli-
cing factor Hrb98DE may be involved in post-transcriptional
control of glucose metabolism.

Results
Paired mRNA/protein data reduces experimental variation. We
previously followed proteome changes during Drosophila devel-
opment with high temporal resolution27. This dataset included
measurement time points every 1 h within the first 6 h after egg-
laying, and every 2 h hereafter until 20 h (Fig. 1a). When com-
paring our proteome dataset to a published developmental RNA-
Seq time course28, we observed limited correlation between RNA
and protein levels. To further investigate post-translational gene
regulation in more detail, and to exclude that the discrepancies
between RNA and protein levels arose from experimental varia-
tion between laboratories, Drosophila strains, and measured time
points, we generated a new RNA-Seq dataset using the same fly
embryo samples as for our proteome measurement (Fig. 1a and
Supplementary Figure 1a).

Our transcriptome matches the published RNA-Seq dataset at
similar stages of development when calculating pairwise correla-
tions of all common reads between samples (Supplementary
Figure 1b). Time-course analysis however showed altered
developmental speed between our data and the published dataset
(Supplementary Note 1 and Supplementary Figures 1b-1d),
indicating that laboratory conditions can affect the overall
kinetics of gene expression even for a robust biological process
as Drosophila embryonic development. Thus, pairing of RNA and
proteome measurements from the same laboratory avoids the risk
of systematic mis-estimations.

Proteome and transcriptome changes show limited correla-
tions. We related transcriptome and proteome measurements to
explore whether both gene expression layers exhibit a high degree
of coordination during Drosophila embryogenesis. We based our
analysis on median values across four replicates and focused on
3761 RNA−protein pairs detected reproducibly in at least ten
time points (Supplementary Data 1).

We classified the temporal behavior of these 3761 mRNA
−protein pairs into four groups with qualitatively distinct
dynamics using a hierarchical clustering approach (see Fig. 1b).
These four groups are: (1) mRNA and protein levels increase
concordantly (525 genes), (2) mRNA and protein levels decrease
concordantly (1063 genes), (3) mRNA increases, while protein
levels decrease (372 genes) and (4) mRNA decreases, while
protein levels increase (1801 genes). In total, 58% of genes
showed inverse abundance changes between mRNA and protein,
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indicating that the temporal expression dynamics of most mRNA
transcripts and the corresponding proteins are not directly
related.

To quantify the relationship between mRNA and protein
abundance, we calculated Spearman correlation coefficients
globally, relating mRNA and protein levels across all genes at
the same time point. We included only proteins showing the
largest fold-changes compared to 0 h (n= 500) to avoid that
random variations mask existing trends between mRNA and
protein. In line with previous studies, the average correlation
between mRNA and protein levels of the same time point is
limited (ρ= 0.41) (Fig. 2a, diagonal) with a maximum at 14 h (ρ
= 0.57) (Fig. 2b—green panel). Of note, this limited correlation is
not due to experimental variation, as the mean correlation across
four biological replicates at 14 h is ρ= 0.96 for the transcriptome
and ρ= 0.96 for the proteome.

To account for time delays associated with mRNA processing
and translation, we also assessed nonsynchronous correlations by
globally relating mRNA and protein levels at different time
points. In this scenario, the highest mRNA−protein correlation
reaches ρ= 0.63 between mRNA levels at 12 h and protein
abundances at 16 h (Fig. 2b—orange panel). Despite this modest

value, we observed a general trend of better transcriptome/
proteome correlation when relating mRNA samples to later
protein time points, most likely due to delays in protein synthesis.
Furthermore, higher correlations are generally observed at later
developmental time points, possibly because less pronounced
dynamical changes of mRNA and protein occur after MZT.

To further test for the correspondence of mRNA and protein
dynamics, we calculated the correlation between the mRNA and
protein time courses for each gene individually. Only a subset of
mRNA−protein pairs (n= 429 (11.4%)) exhibits a significant
positive Spearman correlation coefficient (Fig. 2c—bottom panel,
Student’s t test, two-sided, p < 0.05), and the median correlation
coefficient over all genes is close to zero (Fig. 2c—top panel). To
account for protein expression delays, we additionally calculated
the same correlation coefficients after introducing a time shift
between mRNA and protein measurements. These shifts only
marginally improved the median correlation coefficient over all
genes, with a maximum median correlation when the protein was
assumed to lag behind the mRNA for 4−6 h (Fig. 2c—top panel).
At a time shift of 4 h, we also observed the highest number
(n= 520 (13.8%)) of mRNA−protein pairs with significant
positive correlation (Fig. 2c—lower panel, Student’s t test, two-
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Fig. 1 Paired transcriptome and proteome of Drosophila embryogenesis. a Time-points of paired mRNA and protein measurements during Drosophila
embryonic development using RNA-Seq and mass spectrometry, respectively. The initial time point (0 h) represents egg deposition; the maternal-to-
zygotic transition (MZT) occurs within the first 3 h of development. b Heatmaps of mRNA and protein time courses. The 3761 mRNA/protein pairs
(y-axis), for which protein could be quantified in at least 10 of 14 time points, are shown for the developmental time points (x-axis). The color code
indicates the mRNA and protein fold-changes relative to t= 0 h after min-max normalization between −1 and 1. Time courses are sorted according to
hierarchical clustering using the Euclidean distance (see also dendrogram on the left). Time courses within each of the four clusters (green, red, blue,
purple) roughly follow similar dynamics, reflecting concordant or opposing mRNA and protein dynamics (increase (up) or decrease (down))
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sided, p < 0.05). A similar time delay of 2−6 h between peaking of
circadian mRNA and protein was also reported by Robles et al.29.

Taken together, these data indicate a poor correlation of
mRNA and protein dynamics. Overall, only 33.7% (n= 1268) of
genes show a significant (Student’s t test, two-sided, p < 0.05)
positive monotonic relationship between mRNA and protein at
positive time shifts with protein lagging behind mRNA. As each
mRNA−protein pair may be characterized by a distinct delay, we
further selected the maximal correlation estimate of each mRNA
−protein pair over all time shifts, regardless of significance. This
procedure improves the median correlation across all genes
to ρ = 0.58 (Fig. 2d).

For the analysis of proteomics data, different quantification
procedures have been proposed: “intensity-based absolute
quantification” (iBAQ4) and “label-free quantification” (e.g.
MaxLFQ30). We found that the conclusion of a limited
correlation between mRNA and protein remains valid irrespective
of iBAQ or MaxLFQ quantification (see Supplementary Note 2
and Supplementary Figure 2). Taken together, this suggests that
the relation between mRNA and protein abundances requires a

more elaborate mathematical framework than correlation analy-
sis, incorporating gene-specific parameters. We therefore turned
to mathematical modeling to better describe the mechanisms
underlying protein production from mRNA.

Kinetic models quantitatively relate mRNA/protein dynamics.
We used a set of dynamical models describing protein expression
based on ordinary differential equations (ODEs) and investigated
whether the dynamics of each protein can be explained as a
function of the corresponding mRNA time course. By fitting these
models to the experimentally measured protein expression time
courses, we assigned each mRNA−protein pair to a model
representing one of four regulatory scenarios described below
(schematically depicted in Fig. 3a), or excluded it from any of
these.

The default model (production) follows the simple assumption
that protein is synthesized from mRNA and additionally subject
to degradation. The mRNA concentration serves as an input and
proportionally affects the translation rate, implying the absence of
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complex post-transcriptional regulation. We also considered a
delayed-production model, which assumes a temporal delay in
translation. In this model, the protein is initially degraded until
translation sets in, from which point the delayed-production
model corresponds to the production model. The implementation
of the delayed-production model was motivated by very low
protein accumulation prior to the MZT (see Fig. 1b). Addition-
ally, we assumed two mathematically less complex models: In the
degradation model de novo translation can be neglected
throughout embryonic development and therefore protein
synthesis was omitted. In the stationary model, the protein is
assumed to be stable during embryogenesis thereby eliminating
protein production and degradation altogether.

The unknown model parameters such as protein synthesis and
degradation rates, initial protein concentrations, and delay times
were determined by fitting our models to the experimental data.
We fitted each of the 3761 mRNA−protein pairs individually
using the four model variants, and classified the genes into one of
the regulatory scenarios (stationary, degradation, production and
delayed-production) using a two-step strategy: First, we assessed
whether a given model describes the measured mRNA−protein
dynamics based on the difference between model fit and data

using a χ2-test (Benjamini−Hochberg (BH) corrected p value <
0.05). To exclude that deviations between model and data are
correlated in time, we further applied a Durbin−Watson test (BH
corrected p value < 0.05), and only considered a model variant
feasible if both tests were passed. Second, for mRNA/protein pairs
fitting multiple models, we performed a stepwise likelihood-ratio
test, balancing the goodness-of-fit against the risk of overfitting,
to select for the simplest model explaining the data. If the model
selection assigned a protein to the degradation or stationary
classes, but the mathematically more complex production model
could not be rejected with a nonzero protein translation rate, we
re-assigned the protein to the production class. Thus, we consider
the production model as the simplest, unregulated protein
expression scenario in biological terms, whereas the competing
(mathematically simpler) models require the existence of an
additional biological factor blocking translation or degradation.
While Fig. 3a shows examples of classifications, see Supplemen-
tary Note 3 for a detailed description of the classification
procedure.

Slightly more than half (54%) of mRNA−protein expression
patterns follow the production model, which assumes continuous
protein synthesis from mRNA, and are thus likely determined by
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pure transcriptional control (Fig. 3b). Furthermore, 5% of
proteins were stable during embryogenesis (stationary model),
and another 3% of proteins were best fitted by the degradation
model. Finally, the assumption of a delay time for translation
(delayed-production model) explained another 21% of genes.
Altogether, 84% of genes were explained by any of these four
simple regulatory models, suggesting that simple ODE models
quantitatively describe proteome dynamics by including tran-
scriptome data. For each of the four models the Pearson
correlation between fitted and measured protein expression
values across all genes and time points is above 0.99
(Supplementary Figure 3).

For the remaining 16% of protein−mRNA pairs all four
proposed models were rejected, suggesting that these proteins are
under complex post-transcriptional control. Accordingly, we find
a statistically significant overlap (1.85-fold enrichment, hypergeo-
metric test, p= 2.3e-16, Supplementary Figure 4a) with a
published set of translationally regulated developmental genes
identified by ribosome profiling21. Potentially post-
transcriptionally regulated proteins are found in all four
dynamical groups obtained by hierarchical time-course clustering
(Supplementary Figure 4b). This demonstrates the complemen-
tarity of our modeling analysis and suggests that post-
transcriptional regulation occurs by various mechanisms rather
than being controlled by a global factor. Interestingly, previous
proteomic studies report similar fractions of 20−30% of
potentially post-transcriptionally regulated proteins for other
biological processes (see Discussion). The fact that we obtain
slightly smaller numbers of post-transcriptionally regulated genes
(16%) most likely reflects that our approach produces a
conservative estimate as we show using in silico benchmarking
(see Supplementary Note 1).

During the first 3 h until MZT, no transcription occurs in the
fly embryo18. Thus, any protein must be maternally deposited or
translated from maternally deposited RNA. MZT is visible in our
data as striking changes in mRNA as well as protein expression
patterns at 3 h (Fig. 1b). Since MZT marks the advent of
transcriptional activity, we expected a large fraction of post-
transcriptional regulation specifically within the first 3 h of
development. To test this hypothesis, we repeated the protein
classification including only data from time points beyond MZT
(3−20 h). In line with a strong decline of post-transcriptional
control after MZT, we found that for 98% of proteins the post-
MZT data can be explained by one of the four ODE model
variants (Fig. 3b, right).

Among these 98%, only 3% of proteins (initially 21%) are still
assigned to the delayed-production model, i.e. only few proteins
show delayed translation post-MZT. This observation again
supports that MZT is a major point of post-transcriptional
control at which mRNA translation may be activated on
demand31. In line with this hypothesis, estimated delay times in
the delayed-production model fitted to the full dataset (0−20 h)
show a bimodal distribution with a group of proteins exhibiting
delays of 0.5−2.5 h (381 proteins) and another group with
translation delayed even longer for about 3–10 h (452 proteins)
(Fig. 3c). This indicates two waves of translation: a first
translation burst coinciding with MZT and a secondary delayed
translation phase. The general ability of our classification
method to distinguish between different mRNA/protein
dynamics is shown in Supplementary Figure 4c.

Kinetic models account for lack of mRNA−protein correlation.
Given that 84% of mRNA−protein pairs are described without
assuming complex post-transcriptional regulation, the low
mRNA−protein correlation might be surprising. The proposed

mathematical models provide mechanistic insights into the
missing correlation: For the stationary, degradation, and delayed-
production classes, the model predicts simple biological control
mechanisms on protein translation, leading to an uncoupling of
mRNA−protein dynamics.

However, even for the production model, where such control
mechanisms are absent, mRNA and protein time courses are not
necessarily correlated, as evidenced by a broad distribution of the
corresponding correlation coefficients (Fig. 4a, top panel). The
lacking correlation seems to arise, in part, because proteins with
long half-life lag behind corresponding mRNA32, hereby
decreasing mRNA−protein correlation33. Based on our fitting
results, we obtained estimates for the kinetic parameters and
indeed find that the lack of positive mRNA−protein correlation
(ρ= 0.03) is particularly evident when considering only stable
proteins whose half-life confidence interval exceeds the median
(8.4 h) of all protein half-lives (260 proteins; ρ=−0.55, Fig. 4a,
second panel). In contrast, positive correlations are much more
common in the inversely defined group of proteins with short
half-lives (331 proteins, ρ= 0.24, Fig. 4a, third panel), supporting
that protein degradation rates determine how closely protein
dynamics follow the mRNA time course.

However, our analysis indicates that even proteins with short
half-lives can show a weak mRNA−protein correlation (Fig. 4a,
third panel, short half-life). Our model explains many of these
mRNA−protein discrepancies with out-of-steady-state protein
concentrations at the initial time-point (t= 0 h): Certain mRNAs
deposited in the egg remain untranslated in the inactive egg and
are only translated upon fertilization34. Here, initial protein
production at t= 0 exceeds protein degradation, leading to a net
increase in protein level even at constant mRNA amounts. In an
extreme case, this can result in an inverse protein−mRNA
relationship during the developmental time course, where the
protein level increases, while mRNA abundance decreases (Fig. 4b,
left). Likewise, mRNA increase with a concomitant protein decay
can occur if net protein degradation exceeds synthesis (Fig. 4b,
right).

To test whether a large fraction of proteins is out of steady-
state at egg deposition (t= 0 h), we compared the actual protein
expression values with the theoretical steady-state predicted by
the ratio of the fitted synthesis and degradation rates (see Fig. 4c).
As expected, the correlation of measured protein levels with the
theoretical steady-state is limited at fertilization, whereas they
agree better later in development. Such a perturbation from
steady-state indeed weakens the mRNA−protein correlation: If
we consider only proteins with fast dynamics (short half-life),
whose abundance is close to their estimated steady-state at 0 h
(101 proteins), the median correlation between individual mRNA
−protein pairs significantly increases to ρ= 0.45 (Fig. 4a, bottom
panel) compared to ρ= 0.24 for all fast changing proteins (two-
sided Kolmogorov−Smirnov test, p= 0.003). In a dynamical
context, a prerequisite for a high correlation between mRNA and
protein is therefore not only fast protein turnover, but also an
appropriate initial mRNA−protein ratio with balanced produc-
tion and degradation rates.

Regulatory classes show enrichment for biological functions.
We performed Gene Ontology (GO) analyses to investigate
whether certain biological functions are specifically represented in
each class (Fig. 5). Proteins assigned to the production model
showed enrichment for processes related to mRNA processing,
splicing and RNA metabolism, suggesting that this class contains
critical regulators of post-transcriptional gene expression. More-
over, proteins in the delay group are enriched for GO terms
related to protein catabolic processes, possibly indicating
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widespread expression of factors mediating the degradation of
maternal protein at the onset of MZT35. Among post-
transcriptionally regulated proteins for which all of our four
models needed to be rejected we found an enrichment of cell
cycle-related genes. Indeed, early nuclear divisions in Drosophila
embryos cannot be controlled transcriptionally, since transcrip-
tion is virtually absent before MZT. Accordingly, widespread
post-transcriptional regulation has been reported for maternal
mRNAs involved in cell cycle regulation36. In addition, GO-terms
related to sugar metabolism are enriched in the group of poten-
tially post-transcriptionally regulated proteins, which agrees with
previous evidence showing post-transcriptional control of genes
functioning in glucose metabolism29.

The mode and time scale of post-transcriptional regulation,
however, appears to be distinct for cell cycle and sugar
metabolism: Protein levels of genes related to sugar metabolism
predominantly upregulate 3 h after egg-laying and afterwards
remain nearly stable, while their mRNAs sharply decrease already
within 2 h after egg-laying (Supplementary Figure 5a). This
suggests early post-transcriptional regulation of sugar metabolic
processes before or at MZT. In contrast, a subset of proteins
related to the cell cycle shows an abrupt downregulation of both
mRNA as well as protein at 14 h, potentially indicating (post-)
transcriptional regulation long after the completion of MZT
(Supplementary Figure 5b).

Identifying mechanisms of post-transcriptional regulation. To
uncover potential regulators of post-transcriptional gene

regulation, we searched for enriched sequence motifs in the
mRNA sequence of proteins in our protein classes. We con-
sidered 67 Drosophila-specific RNA -binding protein (RBP)
motifs corresponding to 51 different RBPs37. We found no or
little enrichment of RBP motifs in stationary, degradation, and
delayed-production classes, whereas seven RBPs showed sig-
nificant motif enrichment for the class of potentially post-
transcriptionally regulated proteins (Fig. 6a).

Among the enriched motifs were the RBPs Pumilio and Bruno
(also known as Aret), which are known post-transcriptional
regulators of positional information genes in early Drosophila
development19,20. The strongest motif enrichment was observed
for Hrb87F and Hrb98DE (also known as Hrp36 and Hrp38), two
proteins recognizing highly similar RNA sequence motifs
(Fig. 6a). In our time course, Hrb87F and Hrb98DE both show
a ~5-fold upregulation in protein expression (Fig. 6b), indicating
that they are developmentally regulated. Accordingly, a recent
RNA interactome study demonstrated that the mRNA-bound
fraction of Hrb87F and Hrb98DE changes during MZT in
Drosophila22. Interestingly, the known functions of Hrb87F and
Hrb98DE match with results of our GO term analysis, as these
proteins have been identified in large-scale screens for regulators
of the cell cycle and sugar metabolism, respectively38,39.

Hrb98DE-dependent regulation of glucose metabolism. For
further analysis, we focused on Hrb98DE, because this protein
(and its vertebrate homolog hnRNPA1) has been implicated in
the regulation of protein translation40. To assess the role of
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Hrb98DE in post-transcriptional gene regulation during devel-
opment, we performed in vivo knockdown experiments with two
different dsRNAs (Supplementary Figure 6a) and measured
protein expression 7:45 h (29°C) after egg deposition. The first
dsRNA, which reduced Hrb98DE protein by 42% (Supplementary
Figure 6a), led to differential expression of 78 proteins of 2600
genes consistently detected in the embryonic time course and the
knockdown (3.0%, Supplementary Figure 1b right). In support for
our model-based classification approach, there exists a significant
overlap between genes predicted to be post-transcriptionally
regulated and differentially expressed genes upon knockdown (24
genes observed vs. 13.26 expected, hypergeometric test, p= 2.6e-
3; Fig. 7a). This significant overlap was preserved in the

knockdown with the second dsRNA, even though knockdown
efficiency was lower (Supplementary Figure 6a-c), suggesting that
Hrb98DE indeed regulates the predicted targets during Droso-
phila development.

Since assessing the role of Hrb98DE during embryogenesis
remains challenging due to limited knockdown efficiency, we
turned to Drosophila S2R+ cell culture to obtain more robust
Hrb98DE depletion. Based on RNA-Seq and mass spectrometry
data, we observed a strong depletion of Hrb98DE mRNA and
protein by about 84 and 76%, respectively (Supplementary
Figure 6d). Off-target effects could be excluded, as two different
dsRNA constructs induced highly overlapping transcriptome
changes (Supplementary Figure 6e). In the knockdown showing
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greater Hrb98DE depletion, we detected an overlapping set of
4406 genes at both transcriptome and proteome, out of which 231
are differentially expressed at the mRNA level upon Hrb98DE
knockdown (Wald test—DEseq2, BH corrected p value < 0.05,
absolute fold-change > 30%), whereas 40 change significantly at
the protein level (independent t test two-tailed, p value < 0.01,
absolute fold-change > 50%) (Fig. 7b).

Interestingly, a large fraction of genes responding at the protein
level (26 out of 40, 65%) do not change at the mRNA level
(Fig. 7c), which agrees with published data showing that
Hrb98DE binding to mRNA leads only to few instances of
changed transcript levels40. Thus, we hypothesize that Hrb98DE
binds these 26 RNAs to affect protein translation, but not mRNA
turnover. In line with Hrb98DE controlling sugar metabolism at
the post-transcriptional level, three out of the 26 candidate genes
(14-3-3zeta, dorsal, domino) are known to affect glucose
metabolism39.

Hrb98DE has been described as a regulator of alternative
splicing41,42. To identify additional targets of Hrb98DE-
dependent post-transcriptional regulation, we analyzed splicing
changes upon knockdown. We focused on 3542 transcripts
consistently detected in the S2R+ cell line and the embryonic
time course. We found 287 differentially spliced genes upon
Hrb98DE knockdown (Fig. 7d), which significantly overlap with
the set of direct Hrb98DE targets, which either contain a
sequence motif or are published RIP-Seq targets40,41 (1.93-fold
increase observed vs. expected, hypergeometric test, p value=
6.0e-24) (Fig. 7e). We further tested for enrichment of model-
predicted post-transcriptionally regulated genes in the set of
differentially spliced genes, but did not find a significant overlap.
The differentially spliced genes, however, are significantly
enriched for the GO-term “regulation of glucose metabolism”
(18 genes, 3.37-fold enrichment observed vs. expected, hypergeo-
metric test, p= 2.6e-6), and 11 genes in this set have previously
been identified as Hrb98DE targets. Notably, Hrb98DE-
dependent alternative splicing of domino, one of the genes
involved in glucose metabolism, led to a detectable isoform switch
at the protein level (Supplementary Figure 6f).

Our analysis thus suggests post-transcriptional regulation of
glucose metabolism by the RBP Hrb98DE, the majority of effects
being visible at the level of pre-mRNA splicing.

Discussion
Early Drosophila development occurs in the absence of de novo
transcription, suggesting extensive post-transcriptional gene reg-
ulation. In this study, we set out to quantify how mRNA and
protein levels are dynamically coordinated, and combined our
Drosophila embryogenesis proteome of 14 time points with its
paired transcriptome. The data show high biological and tech-
nical reproducibility among the four quadruplicates for proteome
and transcriptome. This creates an extensive systems-level dataset
to study translational and post-translational gene regulation in a
highly resolved temporal fashion.

We expressed mRNA and protein concentrations as relative
units after normalization by the total amount of mRNA and
protein at each time point, as was done in other dynamic tran-
scriptome studies analyzing early Drosophila development28,43.
This implicitly assumes that total mRNA and protein mass do not
change significantly during development. The conclusion of a
stable total protein expression across developmental stages is
supported by a recent single-embryo proteome survey44. Fur-
thermore, a recent study used spike-in controls for absolute
quantification of 68 mRNAs in developing Drosophila embryos45.
We quantitatively compared our relative RNA expression values
to their corresponding absolute transcript counts and found a

good agreement in time-dependent transcriptome changes
(Supplementary Figure 7).

There is a recent interest in explaining the moderate mRNA
−protein correlation3. While it is appealing to attribute the lack
of correlation to a widespread post-transcriptional regulatory
network, correlation measures—although practical—do not
reflect the complex temporal connection between mRNA and
protein dynamics. This is especially true if the correlation analysis
is limited to the global mRNA−protein relationship at a single
time point. Using mathematical models, we show that a low
correlation of mRNA and protein time courses does not neces-
sarily imply post-transcriptional regulation, but could be
explained based on protein turnover rates or deviations from
steady-state at the onset of development. Thus, the analysis of
time-resolved mRNA and protein expression data using
mechanistic mathematical models of translation is superior when
compared to simple correlation analysis.

Few studies have quantitatively modeled time-course data to
investigate the transcriptome/proteome relationship23–26. Most of
these studies employ protein expression models comparable to
ours, but do not explicitly identify post-transcriptionally regu-
lated genes. Using our combined model rejection and model
selection approach, we determined post-transcriptional regulation
during Drosophila embryogenesis for about 16% of expressed
proteins. We establish further confidence in these candidates
using a combination of in silico benchmarking and published
evidence for post-transcriptional regulation provided by ribosome
profiling21. We find that post-transcriptionally regulated proteins
are enriched for certain biological functions and identify potential
mechanisms by RBP motif analysis.

Previous studies also reported comparatively low numbers of
post-transcriptionally controlled genes: Investigating the
response of dendritic cells to LPS stimulation, Jovanovic et al.
can explain 79% of the protein variance based on a simple model
of protein translation26. They further concluded that post-
transcriptional regulation is relevant predominantly for the
regulation of absolute protein levels rather than fold-changes
upon stimulation. Another study characterized early Xenopus
embryonic development and classified proteins into four simple
models of translation using model fitting and selection25. Only
few proteins are not classified into one of the four groups, sug-
gesting limited importance of post-transcriptional regulation
during early embryonic development. Two proteomic studies on
mammalian circadian rythmicity and on yeast amino acid star-
vation report fractions of 20−30% of potentially post-
transcriptionally regulated proteins5,29. This indicates that the
low degree of post-transcriptional regulation may be conserved
across organisms.

For Drosophila development, our analysis shows that most
post-transcriptional control occurs within the first few hours after
fertilization, i.e. before or during MZT. In addition, based on our
models, we evidenced wide-spread delay of protein production
until the onset of MZT. Translation-on-demand mechanisms
have been postulated in yeast31,46 and neurons47 but to our
knowledge not yet for metazoan embryonic development. Inter-
estingly, the proteins with delayed production are enriched for
GO terms related to protein catabolic processes, suggesting that
induced protein translation may in turn trigger the degradation of
maternal proteins at the onset of MZT35.

Based on sequence motif analyses, we hypothesized that the
RBP Hrb98DE is a post-transcriptional regulator of sugar meta-
bolism during early embryogenesis. Indeed, a global remodeling
of energy production can be observed during Drosophila devel-
opment48. Collectively, our results and previous work suggest that
this remodeling is largely coordinated at the post-transcriptional
level24,29.
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Overall, we provide a framework for investigating gene reg-
ulation in large-scale paired RNA−protein datasets, by which we
identified genes under strong post-transcriptional control.

Methods
Collection of embryos for RNA-Seq. Population cages of wild-type Oregon R flies
containing only fertilized females were maintained at 25 °C. Embryos were col-
lected on standard agar apple juice plates in 30 min laying time windows and
processed immediately (0 h time point) or aged at 25 °C for the required period (1,
2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20 h). After collection, embryos were dechor-
ionated using 7.5% hypochlorite for 2 min and rinsed with water. At this point,
approximately 30% of the embryos (20 µl embryo pellets) were transferred to PBS
buffer for lysis and mass spectrometry measurement. To check for correct and
homogeneity of stages, approximately 10% of each sample was fixed and staged.
The remaining samples were snap-frozen in liquid nitrogen and stored at −80 °C.
Proteome extraction was performed previously as described in Casas-Vila et al.27.
Total RNA was extracted from approximately 20 µl embryo pellets with the RNeasy
Mini Kit (Qiagen) and RNA integrity checked by Bioanalyzer.

In vivo knockdown experiments. Females carrying one of two Hrb98DE dsRNA
transgenes (obtained from Bloomington Drosophila Stock Center: # 31303 and
32351) were crossed with males carrying the actin-GAL4 driver for 3 days to allow
mating. On the fourth day, flies were transferred to conical flasks covered with
apple agar plates and females were allowed to lay eggs for 45 min at 29 °C. Embryos
were developed for another 7 h at 29 °C and subsequently transferred into tubes
containing 1× PBS. For control, actin-Gal4 males were crossed with WT females
and experimental flies were harvested and treated in parallel to control flies.

Cell culture. Experimental knockdown of Hrb98DE in S2R+ cells was performed
using two distinct dsRNAs. Drosophila S2R+ cells were cultured at 25 °C in
Schneider’s Drosophila Medium (GIBCO, Cat-No 21720) supplemented with 10%
FBS and 2% penicillin/streptomycin. For knockdown experiments, dsRNA was
synthesized overnight at 37 °C using the Hi-Scribe T7 kit (NEB, Cat-No-E2040).
dsRNA was transfected in S2R+ cells by serum starvation for 6 h. The treatment
was repeated twice and cells were harvested 5 days after the first treatment. Primer
sequences to amplify dsRNA templates are listed in Supplementary Table 1.

qRT-PCR. Three micrograms total RNA was transcribed into cDNA using MMLV
reverse transcriptase (Promega). qRT-PCR analysis was performed using a ViiA7
real-time PCR system (Applied Biosystems). Measurements were done in tripli-
cates and relative RNA levels were normalized to rpl15 levels. qRT-PCR primer
sequences are listed in Supplementary Table 1.

Mass spectrometry measurement and label-free analysis. For mass spectro-
metry measurement of Hrb98DE in vivo knockdown, experiments were performed
in biological triplicates. Embryos were homogenized in PBS with a microtube
pestle, cells were pelleted at 1000 × g for 5 min at 4 °C and resuspended in 1× LDS
buffer complemented with 0.1 M DTT. Samples were boiled for 10 min at 80 °C
and proteins were separated on a 4−12% NuPAGE Bis/Tris gel for 10 min at 180 V
in MOPS buffer.

For mass spectrometry measurement of Hrb98DE knockdown in S2R+ cells,
experiments were performed in biological quadruplicates. Cell pellets were lysed in
RIPA buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 0.1% sodium deoxycholate,
1% igepal CA-630) supplemented with protease inhibitor mix (Roche) for 30 min
on ice and vortexed in between. After centrifugation at max speed for 10 min at
4 °C, the cleared supernatant was recovered and protein concentration determined
using Bradford. Sixty microgram protein lysate was fractionated by SDS PAGE
(three slices per sample).

For Hrb98DE knockdown experiments in vivo and S2R+ cells, gels were cut
and destained with 50% EtOH/25 mM ammonium bicarbonate (pH 8) (ABC).
After dehydration of the gel pieces with 100% acetonitrile (ACN), samples were
dried for 5 min in a concentrator (Eppendorf) and afterwards incubated with
reduction buffer (10 mM DTT in 50 mM ABC) for 30 min. The reduction buffer
was removed, substituted with alkylation buffer (50 mM IAA in 50 mM ABC) and
then subjected to 30 min incubation. Gel pieces were completely dehydrated with
ACN and covered in trypsin solution (1 μg trypsin in 50 mM ABC per sample).
Proteins were digested overnight at 37 °C. Tryptic peptides were extracted twice by
incubation with extraction buffer (3% TFA and 30% ACN) for 15 min and
afterwards with 100% ACN. After reduction of the volume of the elution fraction to
about 10−20% in a concentrator (Eppendorf), the peptides were passed through a
StageTip. StageTips were prepared using two layers of C18 material (Empore)
which was activated with methanol, washed with buffer B (80% ACN, 0.1% formic
acid) and equilibrated once with buffer A (50 mM ABC, 0.1% formic acid).
Extracted peptides were loaded on the StageTips, washed with buffer A and
peptides were eluted with 30 μl buffer B and concentrated. Peptides were separated
by nanoflow liquid chromatography on an EASY-nLC 1000 system (Thermo)
coupled to a Q Exactive Plus mass spectrometer (Thermo). Separation was
achieved by a 25 cm capillary (New Objective) packed in-house with ReproSil-Pur

C18-AQ 1.9 μm resin (Dr. Maisch). The column was mounted on an Easy Flex
Nano Source and temperature controlled by a column oven (Sonation) at 40 °C
using SprayQC. Peptides were separated chromatographically by a 240 min
gradient from 2 to 40% acetonitrile in 0.5% formic acid with a flow rate of 200 nl/
min. Spray voltage was set between 2.4 and 2.6 kV. The instrument was operated in
data-dependent mode performing a top10 MS/MS per MS full scan. Isotope
patterns with unassigned and charge state 1 were excluded. MS scans were
conducted with 70,000 and MS/MS scans with 17,500 resolution. The raw
measurement files were analyzed with MaxQuant 1.5.2.8 standard settings except
LFQ quantitation30 and match between runs option was activated. The standard
search parameters were as follows: carbamidomethylation on cysteine as fixed
modification, methionine oxidation and protein N-terminal acetylation as variable
modification, a minimum peptide length of seven amino acids, specific digestion
with trypsin/P with maximal two miscleavages, MS search tolerance for initial
search set to 20 ppm and 4.5 ppm for main search, identifications FDR-controlled
(<0.01) on peptide level and protein level. Alternatively, quantification was
performed using iBAQ4. The raw data were searched against the translated
ENSEMBL transcript databases (release 79) of D. melanogaster (30,362 translated
entries) and the Saccharomyces cerevisiae protein database (6692 entries). Known
contaminants, protein groups only identified by site and reverse hits of the
MaxQuant results were removed. A distribution calculated via the logspline R
package of each replicate per time point as density function was used to impute the
missing values. The mean of measured replicates or the average of two surrounding
time points were used as a central value for the imputation distribution calculated
using the zoo R package49. In case the gap was bigger than a single time point, as
well as single measurements with no surrounding values, they were replaced by a
fixed small value of 22.5 in log2 scale.

RNA-Sequencing. NGS library prep was performed with Illumina’s TruSeq
stranded mRNA LT Sample Prep Kit following Illumina’s standard protocol (Part
#15031047 Rev. E). Libraries were prepared with a starting amount of 500 ng and
amplified in 11 PCR cycles. Libraries were profiled in a High Sensitivity DNA on a
2100 Bioanalyzer (Agilent technologies) and quantified using the Qubit dsDNA HS
Assay Kit, in a Qubit 2.0 Fluorometer (Life technologies). All 68 embryo samples
were pooled in equimolar ratio and sequenced on 8 HiSeq 2500 lanes, SR for 1× 51
cycles plus 7 cycles for the index read. S2R+ samples were sequenced with a Mid
Output kit using PE2x 79 bp.

The RNA-Seq measurement of the embryo time course yielded an average 18M
reads per sample. Reads were mapped to the BDGP6 fly reference from Ensembl
version 7950 using STAR51 version 2.4.0 h, allowing up to two mismatches, a
minimum intron length of 21, discarding reads mapping to more than ten loci, and
eventually keeping only the primary alignment. We assessed the quality of the
sequenced reads with FastQC52, dupRadar53 and other in-house developed tools.
We then counted reads per gene using htseq-count54 from the HTSeq package with
the default “union” mode and using the gene model provided by Ensembl for the
same assembly version (BDGP6 version 79).

RNA-Seq of Hrb98DE knockdown in S2R+ cells was performed in biological
quadruplicates for each dsRNA. In the S2R+ samples, we obtained an average of
31 M paired reads per sample, assessing the quality using the same strategy
described above. For these samples, we used STAR version 2.5.1b to align the reads
to the BDGP6 fly reference from Ensembl version 90, using the same parameters as
before. To quantify read counts we used an equivalent quantification procedure as
described for the in vivo data, applied using the same parameters: FeatureCounts55

from the Subread package version 1.4.6-p2 was used in order to count reads per
gene, also with the default “union” parameters and using the gene model provided
by Ensembl for the same assembly version used for mapping (BDGP6 version 90).
We estimated the isoform abundance with the Miso package56, as described in their
pipeline (miso --run, miso_pack, summarize_miso). MISO estimates differential
splicing of individual exons. For genes containing multiple exons, we designate the
complete locus as being differentially spliced if at least one of the exons changes
significantly upon knockdown.

Time-course clustering. From the mass spectrometry data, we selected 3761
proteins for further analysis based on their number of missing values (maximum
four LFQ values below the detection limit out of 14 time points). Both mRNA and
protein data including imputed values (see Casas-Vila et al.27) was normalized by
the respective value at 0 h, log10 transformed, and scaled to minimum and max-
imum values between −1 and 1. A hierarchical clustering approach was applied to
the processed data with imputed values: For this, pairwise distances between all
mRNA−protein time courses were calculated using the Euclidean distance. Clus-
ters were merged using a complete-linkage criterion.

Correlation analysis. Global Spearman correlation coefficients between mRNA
(RPKM) and protein (LFQ, IBAQ) samples were calculated using only proteins
showing largest absolute fold-changes compared to the 0 h time point (top 500).
Values for which no protein measurement value exists, were not considered in this
as well as the following analysis, i.e. no imputed values were taken into account.

We calculated the Spearman correlation coefficients between individual mRNA
(RPKM) and protein for all (LFQ: 3761, IBAQ: 4179) time courses based on even
time points only (t= {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}). Shifts were introduced by
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matching mRNA at time tn with protein at time tn+ i with i 2 Z : �5 � i � 5.
Unmatched time points were left out, leading to a minimum number of six paired
values for the assessment of correlation. mRNA/protein correlations with a p value
< 0.05 (p value returned by scipy.stats.spearmanr—Student’s t test, two-sided) were
chosen as significant.

Model fitting and evaluation. Before fitting, protein data were rescaled by its
global mean value over all proteins to avoid numerical issues due to overly large
LFQ values. On each time interval between two subsequent measured time points
the model variants (stationary, degradation, production, delayed-production) can
be solved analytically if the input mRNA time course on each interval is described
using a linear function u(t)=mt+ b. The explicit solution for the delay model

dy t; θ; uð Þ
dt

¼ αh t � τð Þ mt þ bð Þ � λy t; θ; uð Þ ð1Þ

with initial value

y t ¼ 0ð Þ ¼ y0 ð2Þ

then becomes

y tð Þ ¼ αh t � τð Þ bλ�1 �mλ�2 þmtλ�1� �þ ceλt ð3Þ

with

c ¼ y0 � αh �τð Þ bλ�1 þmλ�2� �
: ð4Þ

In the above equation y denotes measured protein, α and λ the production and
degradation rate, respectively. The Heaviside function h is used to suppress the
production term in the delay model with τ being the time delay.

Model parameters θ= {y0, λ, α, τ} were estimated by minimizing the weighted
least-squares distance between modeled values (Eq. 3) and nonimputed protein
data using a trust region reflective optimization scheme (scipy.optimize.
least_squares in Python). Missing protein values (or their imputed counterparts)
were not considered in the cost function.

χ2 θ; uð Þ ¼
Xn

i

y θ; uð Þmodel
i �ydatai

� �2

σ2i
: ð5Þ

Here n denotes the number of data-points, y modeled or measured protein
expression, θ= {y0, α, λ, τ} the parameter vector, and σ the weight for each data-
point i. By relating mean and standard deviation of the four biological replicates, a
linear error model was chosen to express σ dependent on mean protein expression
(slope, 0.169, intercept, 0.0). Ranges for the parameters are chosen as follows: y0∈
[1e-1, 5e3], λ∈ [ln(2)/1e3, ln(2)/1e-1], α∈ [1e-5, 1e-1], τ∈ [1e-5, 1e1]. In all cases,
multi-start local optimization was carried out via latin-hypercube sampling and
parameters were sampled on a logarithmic scale. Depending on the model
complexity, a different number of initial parameter samples was chosen
(degradation model: 5, production model: 5, delayed-production model: 25).

Model rejection was carried out by applying a χ2-test to the weighted squared
residuals between model and data57. To further exclude strong systematic
deviations between model and data, the residuals were subjected to a Durbin
−Watson (DW) test. Normality of model residuals was checked comparing
residuals of the complete model (delayed-production) with a standard normal
distribution (Supplementary Figure 8). The empirical distribution of both test
statistics (χ2 and DW-test) was determined using a parametric bootstrap approach.
Here the best model fit was resampled 1000 times assuming normally distributed
noise with mean zero and standard deviation corresponding to the data-point of
the randomized observable. Models were fit to bootstrapped data using the
optimization procedure outlined above with estimated parameters of the original fit
as initial parameter vector. p values for each test statistic were calculated from the
empirical cumulative density function of their distribution and corrected via the
Benjamini−Hochberg (BH) procedure. Only if a model fit passed both χ2- and
Durbin−Watson-tests (BH corrected p value < 0.05), a model variant was
considered feasible for the mRNA−protein pair under consideration.

If multiple models remain possible for a given mRNA−protein pair after
testing, model selection was carried out using a stepwise likelihood-ratio test with
α= 0.95 (one-tailed). For both the stationary and the degradation model,
correction criteria were applied according to the procedure described in
Supplementary Note 3. For all estimated parameters 95% confidence intervals were
calculated using a profile likelihood approach58 (see Supplementary Data 1).

Model analysis. Proteins with an estimated upper confidence interval limit of the
half-life below the median value of all protein half-lives were selected as proteins
with short half-lives (313 proteins). Inversely, the lower confidence interval limit
needed to be above the median estimated half-life for a protein to be classified as
having a long half-life (237 proteins).

Theoretical protein steady-states were calculated based on estimated parameter
values as

ysst ¼ αu tð Þ=λ; ð6Þ

where α denotes the estimated protein production rate, λ the estimated protein
degradation rate and u(t) the measured mRNA abundance either at t= 0 or t= 20.
A protein was considered in steady-state at t= 0 if its measured concentration at
this time point was within 20% of the estimated steady-state as t= 0. This resulted
in 481 proteins to be classified as in steady-state, while a combination of this set
with proteins with short half-lives consisted of 95 proteins. Correlation was
calculated as in section Correlation analysis of the Methods with no time shift
considered between mRNA and protein.

Gene set enrichment analysis. GO term enrichment for protein groups lists was
carried out using Gorilla59. As background the list of 3761 reproducibly measured
proteins was chosen. Results were filtered using a corrected p value of <0.05
(Benjamini and Hochberg correction). Plotting was done using Multi-Dimensional
Scaling implemented in the sklearn package provided for python based on a dis-
tance metric obtained using semantic similarity between GO terms. Semantic
similarities were retrieved from the bioconductor package “GOSemSim”60 using
the Wang distance metric.

Seventeen proteins with the following GO terms have been selected for
Supplementary Figure 5a: “monosaccharide metabolic process” (GO:0005996),
“glucose metabolic process” (GO:0006006), “monosaccharide biosynthetic process”
(GO:0046364), “carbohydrate biosynthetic process” (GO:0016051), “hexose
metabolic process” (GO:0019318), “gluconeogenesis” (GO:0006094), “hexose
biosynthetic process” (GO:0019319). Proteins (34) assigned the following GO
terms are plotted in Supplementary Figure 5b: “mitotic spindle organization”
(GO:0007052), “mitotic cell cycle process” (GO:1903047), “cell cycle process”
(GO:0022402), “microtubule cytoskeleton organization involved in mitosis”
(GO:1902850), “mitotic centrosome separation” (GO:0007100).

Motif analysis. Motif analysis was carried out using AME61. Input sequences were
defined as one of the following: the common transcript sequence between all
mapped transcripts for each protein, the longest transcript sequence, longest 3′
UTR sequence, longest 5′UTR sequence, or longest coding sequence. The motif
database was taken from Ray et al., which included 67 motifs mapping to 51
RBPs37. Using AME, sequence motif scoring method was based on total hits. Motif
match threshold was p < 0.0002 (Fisher’s exact). Background was estimated from
the sequences of the 3761 reproducibly measured proteins. As control all sequences
not in the group were chosen. Statistical test for enrichment/association was
Fisher’s exact. The threshold values for reported results was set to an adjusted p
value of 0.05 (Benjamini and Hochberg correction). Individual motif occurrences
were identified using FIMO62 with a p value threshold of p < 0.0002 (Fisher’s exact)
for reported motifs. Multiple motif copies in the motif database were grouped by
calculating the union over all transcripts.

Statistical analysis of Hrb98DE knockdown in vivo. Only proteins quantified in
all measured samples (actin KD1 and actin KD2, each in biological triplicates) were
chosen for statistical analysis of the in vivo knockdown. Additionally only the
overlap of genes uniquely identified in the embryonic time course as well as the
in vivo knockdown were considered (2600 genes). Differentially expressed proteins
were determined using an independent t test (p < 0.01, two-tailed) and absolute
fold-change > 2.0. Significant overlap between differentially expressed genes and
different model classes or Hrb98DE targets was assessed using a hypergeometric
test.

Genes are considered targeted by Hrb98DE if identified as such by the study of
Ji and Tulin40, the study of Blanchette et al.41 or containing an Hbr98DE binding
motif (section Motif analysis). Target genes identified in Ji and Tulin were kindly
provided by Alexei Tulin. Target genes according to Blanchette et al. were
determined re-analyzing the raw data according to the methods described in ref. 57,
and using a fold-change cutoff of log2 > 10 between immunoprecipitation and
control samples.

Statistical analysis of Hrb98DE knockdown in S2R+ cells. Protein with NaN
values in any of the tested conditions were filtered out before differential expression
was assessed using an independent t test between Hrb98DE knockdown and LacZ
control. As thresholds for differentially expressed protein a p value < 0.01 (t test,
two-tailed, n= 4) and fold-change cutoff > 50% was chosen. In the RNAseq data,
nonexpressed mRNAs were removed based on a mean RPKM over all samples > 1.
We obtained mRNA statistics using DESeq263 version 1.14.1, using the default
Wald test to calculate the significance and applying automatic independent filtering
to avoid testing genes which were poor candidates of being differentially expressed
(maximizes the number of adjusted p values less than alpha= 0.1). Differentially
expressed mRNA were identified using a threshold of <0.05 for BH corrected p
values (n= 3) and a fold-change cutoff of >30% change.

To identify differentially spliced genes we used DEXSeq64 in the following way:
we recounted reads on exons using the default htseq union mode; not discarding
reads spanning multiple exons; taking into account that data is paired-end but
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without discarding singletons. DEXSeq is a specialization of the NB-GLM approach
and internally uses DESeq2 to test for differential exon usage, and we modeled our
data with the formula “~ sample+ exon+ condition:exon”, looking for changes in
exon abundance that could be explained by the KD (hence the interaction term in
the formula). Finally, we considered that genes could show a differential splicing
pattern if they included exon abundance changes of at least 50% between
conditions at FDR 1%. Dupradar, DESeq2 and DEXSeq are part of the
Bioconductor65 project. Genes associated with the GO-term “regulation of glucose
metabolic process” (GO:010906) were retrieved from FlyMine v45.1 2017.

Code availability. The code to classify paired mRNA/protein time courses is
available using the following link: https://github.com/Legewie/PyProt (https://doi.
org/10.5281/zenodo.1435819). All code made available is licensed under the GNU
General Public License (Version 3, 29 June 2007).

Data availability
The mass spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with the dataset iden-
tifier PXD011238. The RNA-Seq data of this publication have been deposited in
NCBI’s Gene Expression Omnibus and are accessible through GEO Series
accession numbers GSE121160 and GSE121161. A Reporting Summary for this
Article is available as a Supplementary Information file. All other data supporting
the findings of this study are available from the corresponding authors on rea-
sonable request.
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